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ABSTRACT
Reliably labeled datasets are crucial to the performance of su-
pervised learning methods. Time-series data pose additional
challenges. Data points lying on borders between classes can
be mislabeled due to perception limitations of human label-
ers. Sensor measurements may not be directly interpretable
by humans. Thus label noise cannot be manually removed.
As a result, time-series datasets often contain a significant
amount of label noise that can degrade the performance of
machine learning models. This work focuses on label noise
identification and removal by extending previous methods
developed for static instances to the domain of time-series
data.We use a combination of deep learning and visualization
algorithms to facilitate automatic noise removal. We show
that our approach can identify mislabeled instances, which
results in improved classification accuracy on four synthetic
and two real publicly available human activity datasets.
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1 INTRODUCTION
Noise is most commonly associated with errors in the data
collection process. Sources of errors can include faulty sen-
sors, atmospheric disturbances, corrupted files, and others.
There are many methods to decrease the noise in collected
data. But errors in the labels assigned to data points are
often overlooked. Label noise frequently occurs in manu-
ally annotated datasets, especially when researchers rely on
observation or self-reporting from research subjects. Such sit-
uations are especially common, but not limited to, bio-signal
data.
Removing or re-labeling mislabeled data points can be a

powerful pre-processing step. Unfortunately, label noise re-
duction is often not possible after the initial label assignment
due to the fact that sensor measurements are captured in a
format that is not directly interpretable by humans.
Several packages have been introduced to identify mis-

labeled data points in large datasets. A common approach
to the task of label noise detection is the single learning
method [6], which trains a classifier on a full dataset and
then assumes that the data points classified with the least
certainty are the ones most likely to be mislabeled. However,
most single learning systems do not include classifiers that
are appropriate for time-series data, nor do they have the
ability to recognize data as being time-series. Instead, they
are applied to static instances, where each instance is a fixed-
size feature vector or a matrix, in the case of images. This
makes it of limited use in bio-signal analysis.
Time-series data present a challenge over static numer-

ical data because the significance of a label difference be-
tween two points in an instance is not fixed. A difference
between two points is relevant if they are close in time and
potentially irrelevant if they are distant in time. In this way,
time-series data are similar to image data and benefit from
many of the same advances in machine learning, particularly
Convolutional Neural Networks (CNNs). Activity recogni-
tion presents additional challenges over other varieties of
time-series data [14]. The classes are often very poorly dis-
tinguished and often depend on self-reporting by research
subjects. This makes the likelihood of instances being misla-
beled even higher.
The goal of this project is to develop a new single learn-

ing [6] label noise detector using a 1-dimensional CNN (1D-
CNN). Our work extends the capabilities of an existing tool
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for label noise removal, namely Labelfix [13], by adapting
it to process time-series data. Like its predecessor our sys-
tem works with minimal input from the end user. The only
required input from the user is the parameter 𝛼 , i.e. the per-
centage of the dataset to be flagged for review. User’s can
also pass in hyper-parameter for the classifier but are not
required to.

In order to demonstrate the effectiveness of the system in
removing label noise from time-series data, a pair of classi-
fiers are trained on both uncleaned and cleaned data. Our
experiments show that the accuracy of the classifiers im-
proves by as much as 7.5% and the F1 score by as much as
4.2% when trained and evaluated on the cleaned data. These
tests were performed on four synthetic datasets of differ-
ent sizes and label counts, and two publicly available real
datasets, the UniMiB SHAR dataset [12], and the Sussex-
HuaWei Locomotion hand and torso training data [5]. The
precision of the mislabel detection was also measured by
adding artificial label noise to the datasets to allow a precise
count of true- and false-positives. The experiments show
that the precision of mislabeled point detection ranges from
0.53 to 0.98 depending on the data and the applied 𝛼 , ranging
from 1 to 3% in our experiments.

This paper is organized as follows. In section 2 we provide
an overview of the previouswork related to themethods used
in this work. Section 3 elaborates on the our methodology for
time-series label noise removal. The datasets used to evaluate
the effectiveness of our method are described in section 4. In
section 5, we present and discuss our experimental results.
Finally, section 6 summarizes our findings and concludes
this paper.

2 BACKGROUND
As explained in [4], any process that pollutes labels can be
called label noise. This could be caused by misreporting by
research volunteers, transcription errors when data is copied,
inconsistent data encoding, or mis-annotation. Subjectivity
is another common cause of data being mislabeled [1]. Noise
represents a mismatch between the true class of an instance
and the recorded label of the instance. Noise can be grouped
as: completely at random, at random, or not at random de-
pending on the dependencies between the feature space and
occurrences of mislabeling [4]. Likewise noise detectors can
be grouped into: Local Learning, Ensemble Learning, and
Single Model Learning based on the tools used to comb data
for noise [6].

Labelfix was introduced in 2019 as a technique for identi-
fying mislabeled instances in large datasets [13]. The team
developed a robust system for identifying a certain percent-
age of the instances in a full dataset as requiring human
review for mislabeling. Furthermore, the system was able to
function without user-defined hyper-parameters other than

the percentage of instances to flag, which the authors call the
𝛼 value. Labelfix is a good example of the single learning [6]
method of label noise detection. This class of noise detectors
train a model on the questionable data and then assume that
the points which were classified with the least certainty are
the most likely to be mislabeled. One major advantage of
Labelfix over other single learning methods is the ability of
the system to select a model and a set of hyper-parameters
without further input from the user.

Several approaches have been tested to relabeling or clean-
ing activity recognition datasets. Zhao et al. developed a
technique [15] that used human workers through Amazon’s
mechanical turk to relabel points close to a decision bound-
ary. This system had the workers view a short segment of
video and then assign a label to the corresponding segment
of inertial data. Another approach, as demonstrated in [8] is
to create a classifier which is robust by assuming the pres-
ence of some label jitter in training data. Our system does
not require video data and detects label noise that is broader
than the "temporal label misalignment" used in [8].

Convolutional Neural Networks (CNNs), which were first
introduced in 1998 [9], use small clusters of nodes referred to
as kernels whose inputs are transposed over the full range of
an instance from a dataset. These kernels learn low-level fea-
tures from the data. High layers in the network can process
and combine the output of the low level features to learn
higher level features. The ability of CNNs to learn features
from raw data based on comparisons of small collections of
data points in an instance makes them well suited to signal
processing. 1D-CNNs have been previously used for human
activity recognition [10], among other applications.

These activities are generally broad classes of movement
such as: walking, running, climbing stairs, sitting down, etc.
Many sensors can be employed in this classification task but
the 3-axis accelerometer is the most common choice [14]
and is used in this work.

3 METHODOLOGY
The synthetic data used in the described experiments were
generated using a technique described in 1999 [7]. Arrays are
initialized to random values in a user-defined range and then
processed by a series of generators, which add recognizable
characteristics to the random arrays. Collections of initial-
ization variables to pass to the data generators were used
to generate synthetic signals into classes which are reliably
similar to each other. This process is described in detail in
Section 4.

Our current implementation assumes that numerical time-
series data appear as a single channel, or can be converted
into single channel stream. Furthermore we assume that an
instance of time-series data will have a greater vector length
(dimensionality, listed as “d” in Table 2) than an instance
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Table 1: The list of features extracted from signals.
• Mean • Standard Deviation • Absolute Energy • Sum of
Changes • Auto Correlation • Count of Values Above Mean
• Count of Values Below Mean • Kurtosis • Longest Strike
Above Mean • Zero Crossing Rate • Number of Peaks • Sample
Entropy • Welch Spectral Density (6 coefficients)

of extracted features. For these experiments, datasets with
more that 150 samples per instance are processed as time-
series data. Time series data and numerical data are both
normalized to a range of -1 to 1.

Features were extractedwhen necessary using the TSFresh
Python library [2]. A fixed set of 13 features were chosen
from the many offered by this library and are shown in
Table 1. These features were chosen for their usefulness in
classification tasks, for the relative ease of computation, and
for being portable through a broad variety of signals.

Data that have been identified as time-series are fit by a 1-
D CNN. This network employs 4 convolutional layers with a
kernel size of 16 samples. The output of each 2 convolutional
layers is maxed pool and a 0.25 dropout is applied. 2 dense
layers follow the convolutional layers with the output of the
second identifying the label of the input data sample.

The output of the CNN is sorted by the certainty of classi-
fication, with the most uncertain points at the top of the list.
The points at the head of the list will now be the samples
which are most likely to be mislabeled. The user can review
or remove as many of the indexes as is appropriate with one
to three percent being common[13], by setting the 𝛼 value.
Some varieties of data lend themselves more readily to

hand review than others. It’s easy to see a picture of a shirt
labeled as a dress and understand that the label is incorrect.
But time-series data are substantially more difficult for hu-
man viewers to interpret. Because of this experiments have
been devised for this project which do not rely on human
interpretation. The assumption was made that a classifier
will perform more accurately on a dataset which does not
contain mislabeled data.

In the first experiment an SVM is trained and evaluated on
uncleaned data and then compared to an SVM trained and
evaluated on cleaned data. The training and test sets were
generated with an 80/20 shuffled split of the full dataset. This
comparison was repeated 5 times, with the dataset being
reshuffled and re-split for each repetition. Averaged results
are presented in Section 5. 𝛼 = 0.02 was used as the cleaning
percentage for these trials, meaning that 2% of the instances
will be flagged.

The second experiment is similar to the first but employs
a CNN as a classifier rather than an SVM. Because feature
extraction is not necessary or beneficial for CNNs, all training
and testing was done using only the raw datasets. The CNN
used in this experiment is a more compact model than the

one used in the data cleaning steps with only 2 convolutional
layers feeding into 2 dense layers after max pooling. The
hope is to show improved performance of a "lightweight"
model by cleaning data. Again, an 𝛼 value of 0.02 was used.

The final experiment introduces label noise into the eight
datasets by altering three percent of the labels. Three per-
cent was chosen based on the observation that most real-
world datasets have approximately 5% label noise [3] with
the modification down to 3% suggested by [13]. This noise
was introduced in random fashion with an altered label be-
ing equally likely to be any label other than the correct one.
This type of noise is patterned after the "Noisy Completely
at Random" class of label noise introduced in [4]. The four
synthetic datasets already have a 3% noise introduced dur-
ing their creation. The label sets for the UniMib SHAR and
Sussex-HuaWei datasets were altered for only this exper-
iment by changing labels to an incorrect class with a 3%
probability. The indexes of the altered labels are stored and
used to compute the precision and recall of label cleaning at
rates of 𝛼 = 1, 2, and 3% of labels being marked as mislabeled.
We hypothesize that cleaning label noise out of a time-

series dataset using our approach will improve the perfor-
mance of a classifiers trained and tested with cleaned data
as compared to trained and tested on uncleaned. This will be
demonstrated by a consistent improvement in the measured
precision, accuracy, and recall of the classifiers that were
trained on the cleaned time-series data.

4 DATA
Eight datasets were employed in this project. Four of them
were synthetically generated using parameters that make
them well suited to the techniques being developed for this
project. Another two were taken from the UniMiB SHAR
dataset [12], which is offered as a two label fall detection
data set or as a 17 label activity detection dataset. The final
two sets are the "hand" and "torso" train sets from the Sussex-
Huawei locomotion dataset [5].

The synthetic datasets were generated using a technique
proposed in [7]. Arrays are filled with random values and
then processed using generators which add particular dis-
tinct features (cylinders, bells, and funnels) to the data in
ways that mimic real-world time-series data. Since data gen-
eration depends on user-defined parameters it is possible to
create sets of these parameters that reliably generate data
into distinct classes. All four of the synthetic datasets were
given roughly 3% label noise by randomly altering some of
the labels to represent one of the incorrect classes.
The UniMiB SHAR dataset [12], was collected at Uni-

versity of Milano Bicocca in 2017 using commercial smart
phones. The phones were carried in a front trouser pocket
of the participants. The accelerometer sampling rate was
50Hz. Two sets of labels are provided for the data used in
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Table 2: A summary of the eight datasets used in this project.

instances d classes

Synthetic 1 1000 500 2
Synthetic 2 1000 500 5
Synthetic 3 5000 1000 2
Synthetic 4 5000 1000 5
Sussex-HuaWei 1 196072 500 8
Sussex-HuaWei 2 196072 500 8
UniMiB SHAR 1 11771 151 2
UniMib SHAR 2 11771 151 17

these experiments. One labels instances as fall/not-fall. The
other labels instances with 17 activities of daily life includ-
ing: standing from laying, standing from sitting, lying down
from standing, running, sitting down, going downstairs, go-
ing upstairs, walking, jumping, jogging, falling back, falling
forward, falling left, falling right, and hitting an obstacle.

The Sussex-Huawei Locomotion dataset [5], was collected
in 2018 with subjects wearing several devices on their bodies
engaged in 8 activities of locomotion: standing still, walking,
running, bicycling, riding in a bus, riding in a car, riding in
a train, and riding in a subway. Collected sensor modalities
included accelerometer, GPS, gyroscope, and video data. We
chosen to analyze only the accelerometer data in these ex-
periments as they are interpretable, proven in reliable for
activity recognition, and well suited to our label noise clean-
ing technique.

Table 2 summarizes the size of each dataset. The value ”d”
is the dimensionality of each instance, which is the number
of samples in each instance. All eight datasets are single
channel. Where necessary, a total acceleration as calculated
as the sum of accelerations as the vector norm of the x, y,
and z axes.

5 RESULTS
The first experiment run on our data was to train and evalu-
ate an SVM classifier on the original, “uncleaned” data, then
retrain and evaluate using the “cleaned” dataset, on which
instances identified as possibly mislabeled by our system
were removed. The indexes to be removed were identified
using only the raw data. The SVM was trained using the
extracted feature set as described in Section 3. The accu-
racy and F1 score averaged over 5 runs are presented in
Table 3. These figures indicate that the SVM demonstrated
an average improvement of 2.47% accuracy and 2.54% in
the F1 score when classifying cleaned data on the synthetic
datasets, 0.20% accuracy and 0.37% in the F1 score on the
Sussex-HuaWei datasets, and 0.70% accuracy and 1.69% in
the F1 score.

The second experiment is similar to the first in that a clas-
sifier is trained and evaluated on both cleaned and uncleaned

Table 3: The average accuracy and F1 score is presented for
5 runs of classification using an SVM on cleaned and un-
cleaned data based on an 80/20 shuffled split on the full
dataset.

Uncleaned Cleaned
Acc F1 Acc F1

Synthetic 1 0.968 0.968 0.991 0.991
Synthetic 2 0.835 0.833 0.862 0.862
Synthetic 3 0.972 0.972 0.989 0.989
Synthetic 4 0.909 0.910 0.943 0.943
Sussex-HuaWei 1 0.559 0.580 0.564 0.586
Sussex-HuaWei 2 0.618 0.652 0.616 0.654
UniMiB SHAR 1 0.908 0.899 0.908 0.899
UniMiB SHAR 2 0.523 0.388 0.538 0.417

Table 4: The average accuracy and F1 score is presented for 5
runs of classification using a CNN on cleaned and uncleaned
data based on an 80/20 shuffled split on the full dataset.

Uncleaned Cleaned
Acc F1 Acc F1

Synthetic 1 0.976 0.976 0.995 0.995
Synthetic 2 0.835 0.834 0.860 0.862
Synthetic 3 0.970 0.970 0.992 0.992
Synthetic 4 0.909 0.910 0.969 0.969
Sussex-HuaWei 1 0.515 0.545 0.557 0.543
Sussex-HuaWei 2 0.531 0.606 0.607 0.631
UniMiB SHAR 1 0.998 0.997 0.999 0.999
UniMiB SHAR 2 0.805 0.728 0.829 0.759

data. The classifier used in this process is a small CNN. The
accuracy and F1 score of the evaluated CNN are presented
in Table 4. The CNN showed an average 2.12% improvement
in accuracy and a 2.09% improvement in F1 score when clas-
sifying cleaned synthetic data. The Sussex-Huawei datasets
averaged a 5.12% improvement in accuracy and a 3.38% im-
provement in F1 score. The performance of the CNN on the
UniMiB datasets was improved by an average of 1.29% in
accuracy and 1.65% in the F1 score.
The third experiment performed in this project was to

introduce 3 percent label noise into each of the eight datasets.
This allowed lists of true mislabeled points to be collected
and compared to the lists of potential mislabels generated by
the system. The precision and recall were measured with 1, 2,
and 3% of the dataset flagged. Precision values are presented
in Table 5 and recall in Table 6.
A visualization of the UniMiB Fall dataset is presented

in Figure 1. t-SNE [11] has been used to reduce the dimen-
sionality of the feature set down to two dimensions, in a
way that preserves the relative distance of instances. The
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Table 5: The precision of instance identification as misla-
beled in 8 datasets with 3% label noise introduced into the
data. Each value is averaged over five runs.

Precision
𝛼=0.01 𝛼=0.02 𝛼=0.03

Synthetic 1 0.962 0.850 0.783
Synthetic 2 0.933 0.913 0.835
Synthetic 3 0.988 0.942 0.858
Synthetic 4 0.989 0.919 0.828
Sussex-HuaWei 1 0.534 0.534 0.539
Sussex-HuaWei 2 0.572 0.586 0.604
UniMiB SHAR 1 0.986 0.984 0.931
UniMiB SHAR 2 0.813 0.815 0.799

Table 6: The recall of instance identification asmislabeled in
8 datasets with 3% label noise introduced into the data. Each
value is averaged over five runs.

Recall
𝛼=0.01 𝛼=0.02 𝛼=0.03

Synthetic 1 0.688 0.781 0.837
Synthetic 2 0.641 0.769 0.824
Synthetic 3 0.669 0.804 0.865
Synthetic 4 0.680 0.806 0.856
Sussex-HuaWei 1 0.512 0.523 0.538
Sussex-HuaWei 2 0.525 0.559 0.606
UniMiB SHAR 1 0.663 0.822 0.927
UniMiB SHAR 2 0.595 0.691 0.770

UniMib Fall t-SNE visualization

No Fall
Fall
Mislabeled

Figure 1: Likely mislabeled instances in the UniMiB fall
dataset are marked in red.

Sussex-HuaWei Torso dataset is shown using the same tech-
nique in Figure 2. The points that our system has identified
as the most likely to be mislabeled have been marked. For
comparison Synthetic Set 4 is plotted in Figure 3 with its
mislabeled instances marked.

Mislabeled Instances in Sussex-HuaWei Torso

Still
Walk
Run
Bike
Bus
Car
Train
Subway
Mislabeled

Figure 2: Likely mislabeled instances in the Sussex-HuaWei
Torso dataset are marked in red.

Synthetic Set 4 t-SNE Visualization

0
1
2
3
4

Figure 3: Mislabeled instances in the Synthetic 4 dataset are
marked in red.

Discussion
Human Activity Recognition (HAR) remains one of the most
complicated classification problems in bio-signal analysis [14].
Because activity classes may be very similar to one another
and because several activities might blend into one another,
activity recognition is particularly susceptible to label noise.
This is why it is particularly important to have access to data
cleaning methods based of the most effective technologies,
e.g. deep and convolutional networks.
We have presented our findings based on cleaning both

the train and test data. As mentioned in Section 5 it is also
possible to clean only the training data for a classification
model but with far less efficacy. This follows the assumption
that the primary use of our system will be “offline” cleaning
of large datasets. In this case, an analyst will have access
to labeled train and test data. Some work has shown that
removing label noise in a training set can have a harmful
effect if the noise is still present in the test set [1].
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Wehave approached this project assuming that the UniMiB
SHAR and Sussex-Huawei datasets were mostly cleanly la-
beled to begin with. This is why 3% noise was artificially
introduced during the third experiment. This decision may
account for the relatively low precision seen in experiment
three on the Sussex-HuaWei datasets. If noisy labels existed
in the dataset before our manipulation, then they would ap-
pear as false positives in the experiment and decrease the
F1 score. The relative absence of label noise in the UniMiB
datasets is also a factor in the excellent performance of the
CNN on the uncleaned fall detection dataset. Although the
cleaned data still produced a more reliable classifier, there
was very little room left for improvement.

Noise removal is not without risks. It is possible that edge
cases or ambiguous classes will be cleaned entirely out of the
system, which could degrade rather than improve the perfor-
mance of classifiers working on the cleaned data. Flagged in-
stances should be reviewed rather than automatically treated
as being mislabeled. It is also helpful to start by only flagging
a small percentage of the datasets. This project followed this
approach by only flagging 2% of the data in experiments one
and two, and 1, 2, or 3% in experiment three.

As a final note, anyone who wishes to repeat these experi-
ments will need to remember that the output of the misla-
beled instance finding function is not purely deterministic
as it depends on the probability of a multi-class prediction
by a trained CNN, which can vary between runs. Therefore
results derived from rerunning this project’s code will be
very similar but not identical.

6 CONCLUSION
Our system has demonstrated consistent improvements in
classifiers trained on cleaned data as judged by both the
accuracy and F1 score. Furthermore we were able to cor-
rectly identify intentionally mislabeled points in real-world
datasets with up to 98.6% precision. Labelfix demonstrated
similar precision under the same circumstances [13], so our
results are consistent with the state of the art but have in-
corporated time-series data.

Although our focus was on human activity recognition for
this project, nothing about this work is limited to functioning
exclusively in the arena of HAR. Any time-series dataset
could be improved by our approach to label-noise removal.
This is supported by the strong results we achieved on the
synthetic datasets, which were not constructed to mimic
activity data specifically.
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