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Abstract. Mislabeled data in large datasets can quickly degrade the
performance of machine learning models. There is a substantial base of
work on how to identify and correct instances in data with incorrect
annotations. However, time series data pose unique challenges that of-
ten are not accounted for in label noise detecting platforms. This paper
reviews the body of literature concerning label noise and methods of
dealing with it, with a focus on applicability to time series data. Time
series data visualization and feature extraction techniques used in the
denoising process are also discussed.
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1 Introduction

Machine learning is well established as a useful field in artificial intelligence. But
poor quality training data can quickly degrade the performance of a machine
learning model in terms of accuracy, time to train, and the size of the classi-
fier [69]. Noise has been defined as any disruption in the observed relationship
between the features of an instance in a dataset and its class [25]. When this
disruption occurs in the features it can be called attribute noise and in the labels,
label noise [26]. The focus of this work will be on label noise, which is common
in real-world datasets [69], but less widely addressed by denoising approaches.

Label noise is only one of the names used to refer to degraded quality in the
assigned labels of datasets. Other names include: class noise, mislabeled data,
poorly annotated data, and the borderline accusatory sloppily labeled data [52].
This work has chosen to use the name label noise because it is common and
because it conforms with the taxonomy presented in [25]. Following that tax-
onomy, every instance of data has an abstract and true identification known as
its class (Y). Its label (Ỹ) is an assigned annotation which should, but does not
always, identify the instance’s correct class.

Frenay’s taxonomy [26] divides label noise into three categories: noise com-
pletely at random, noise at random, and noise not at random based on the
dependencies between Y, Ỹ, the feature space X, and an error rate E. When
noise is completely at random (NCAR), every class is equally likely to be mis-
labeled. Noise at random(NAR) has an error rate that is affected by the class.
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Noise not at random(NNAR) mislabels data at a rate that depends on both
the class and the feature space. The dependencies are shown in Figure 1. These
categories were inspired by early work on missing data [46].

Time series data offer challenges to researchers which are not present in other
classes of data, such as images or text. The phrase time series refers to “[a] set
of observations arranged chronologically”, or in more charming terms from the
same author a “wiggly record” [42]. Time series can be modeled as the output
of a continuous function on some set of time steps. This continuity makes time
series different from other ordered, sequential data. A feature extractor working
on time series data must preserve the temporal relationships between nearby
samples in the data.

(a) NCAR (b) NAR (c) NNAR

Fig. 1: A visual taxonomy of label noise adapted from [25]. (a) shows noise completely
at random (NCAR), (b) shows noise at random (NAR), and (c) shows noise not at
random. Y represents true classes of instances, E the error (or mislabeling) rate, X the
features, and Ỹ the assigned label. Arrows indicate a dependency between elements.

Label noise is an old and long-standing problem discussed since the early days
of digital data analysis [19]. Section 2 of this paper will summarize recent works
in noise detection. Section 2 is subdivided following a taxonomy of detection
techniques defined in [30]. This work distinguished detection techniques based
on the type of learning as: local learning, ensemble learning, or single model
learning.

Section 3 will document recent approaches to feature extraction and visual-
ization for time series data. Human review of labels is an effective technique for
cleaning noisy labels [69]. But, the ability of human annotators to clean labels
in time series data is largely dependent on their ability to visualize that data
meaningfully.

Section 4 will explore techniques for mitigating the effect of classifier per-
formance with noisy labels. Broadly the approaches to improve a model are:
data cleansing, robust learning algorithms, and model hardening [25]. Section 5
concludes with a discussion of the material presented and our main observations.

2 Detection of Label Noise

Following the work presented in [30], label noise detection platforms can be
divided into local learning methods, ensemble learning methods, and single clas-
sifier learning methods. This division is based on the method used to distinguish
one instance as being mislabeled. Local learning methods compare instances to
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(a) Local Learning (b) Ensemble Learning (c) Single Classifier

Fig. 2: A summary of the three noise detection approaches defined in [30]

their nearest neighbors using methods such as K-Nearest Neighbors (KNN). En-
semble learning methods train multiple classifiers and identify mislabeled points
based on a vote of those classifiers on the correct label for each instance. Sin-
gle model learning methods train a single classifier (often a neural network) on
some data and use the labels predicted by that classifier to distinguish mislabeled
instances in the data. These three methods are summarized in Figure 2.

2.1 Local Learning

Local learning methods assume that instances that are close in the feature space
should share a label [30]. They frequently employ K-Nearest Neighbors which has
the advantage of not needing to be trained. KNN is identified in [40] and [20] as
being exceptionally robust to label noise. This particular property of that model
will be discussed more in section 4 but it should be sufficient for now to say
that this observation makes it a reliable choice for a noise detection system. A
demonstration of the use of KNN for identifying label noise is shown in Figure 2a.

Several adaptations have been made to the basic KNN algorithm (identified in
some older source as Instance-based Learning [2]) to make it suited to the task of
identifying mislabeled instances. Edited nearest neighbor (ENN) automatically
removes all instances misclassified by KNN from a training set [58] while its
cousin Repeated-ENN iteratively applies ENN until all instances share a label
with their nearest neighbors [58]. An advancement on Repeated-ENN, called All-
KNN, was presented in [55] that used increasing values for K across iterations.

Later work applied Gabriel Graphs [56] and Relative Neighbourhood Graphs
[34] to improve on the ability of KNN to recognize mislabeled instances in over-
lapping class regions of a dataset. The technique used a proximity graph to refine
the set of neighbors used in order to mitigate occurrences of label noise in the
set of neighbors used by a KNN classifier [45].

Biclusters, selections of features and instances that demonstrate high coher-
ence of values across attributes and labels [21], have also been applied to the
problem of identifying label noise. These selections are learned in an unsuper-
vised manner. BicNoise [24] computed a mean square residue value (a measure
of error between real and calculated values) of sets of instances as instances were
experimentally inserted into highly coherent subsets from the training data. In-
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stances that caused the MSRV to rise over some threshold were removed as
noise.

Cluster validation measures provide a quantitative metric for the fit of a data
partitioning. These measures have also been employed as a label noise filter [13].
This approach treated the dataset labels as clusters and calculated several cluster
validity measures for each instance, following the intuition that poorly clustered
points would be more likely to be mislabeled [13]. The measures employed were:
the Silhouette Index, Connectivity, and the Average Intracluster gap.

2.2 Ensemble Learning

Ensemble learning can improve the performance of machine learning techniques [30].
Comparing the outputs of several classifiers can also be a useful approach for
identifying mislabeled data [30]. This can either be several classifiers of different
types (e.g. a decision tree, KNN, and a neural network) or several classifiers of
the same type trained on different manipulations of the training data [30].

Employing sets of classifiers as a noise detection platform was shown to im-
prove classification accuracy for noise levels up to 30% [18]. The technique pre-
sented in [18] developed a noise filter based on the residual error of classifiers
trained on noisy data. This work was able to demonstrate the residual noise
from ensemble classifiers was superior to residual noise from a single classifier
and majority voting by ensemble classifiers.

Data partitioning is one strategy for ensemble learning approaches. The Par-
titioning Filter [70] was one technique that used data partitioning by dividing
large datasets into several subsets, developing a good rule set to classify each
partition, merging the rule sets into a single set for the full dataset, and filter-
ing instances that are misclassified by the new ruleset. Partition Filtering was
showed to be effective on datasets with up to 40% label noise [70]. Another ap-
plication of data partitioning separated a full dataset into several overlapping
partitions, trained several classifiers of each partition, and then tested combina-
tions of majority voting and consensus voting on the label predictions from the
classifiers [31]. Mislabeling rates of up to 40% were also tested in this paper but
in some datasets, the accuracy of the noise detector fell below 50% when the
mislabeling rate was higher than 30% [31].

Repeated labeling was applied in [48] to improve the label quality of chosen
sets of low-quality instances. This work focused on cheap and crowd-sourced
human labelers and developed analytical measures of label quality to determine
instances that should be relabeled. The output of a model trained on the labeled
instances was used to compute uncertainty of labeled datasets, and that measure
was used to inform the relabeling process [48].

An adaptation of 10-fold Cross Validation is presented in [38] that used an
ensemble of machine learning classifiers to filter mislabeled instances. Although
the ML models employed in this approach were comparatively simple, this team
reported classification accuracies in datasets with up to a 20% mislabeling rate
can be increased to the same rate of accuracy as a classifier trained on data with
no mislabeled instances using their filter [38].
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2.3 Single Classifier Learning

Single classifier learning detection methods are more suitable for highly dynamic
noisy data [30]. This approach can also be more efficient than ensemble learning
approaches [30] but newer single classifier learning approaches tend to utilize
deep learning models with powerful feature extraction techniques, which can
easily require more time and computing power to train than an ensemble of
simpler models.

It has been observed that mislabeled points do not necessarily behave like
outliers in datasets [57]. Support vector machines (SVM) have been employed in
a single classifier learning approach using a form of data partitioning to address
this issue [57]. In this approach, a subspace of the full feature space was selected
using domain expertise to train a classifier that would better identify the true
class of the classified instances.

Label noise identification can also be incorporated as a portion of a classi-
fication model. The authors in [17] designed and implemented a model which
included a sparse Bayesian Logistic Regression algorithm that was used to iden-
tify mislabeled instances. This training algorithm alternated between training
the classifier and estimating label noise probabilities. The output of this ap-
proach is both a robust classifier and a list of suspect instances that could be
addressed later.

Selecting an appropriate feature extractor can have a substantial effect on
the efficacy of a classifier (a point that will be discussed further in Section 3). La-
belfix [39] is a platform that automatically selected a deep feature extractor and
trained a classifier using the learned features. Instances were then sorted based
on the distance between the assigned one-hot label vector and the predicted
label vector. This detection technique can also be built into a model training
pipeline [44].

Our previous work has also expanded on the approach of sorting instances
based on the distance between assigned and predicted labels [6, 7]. A convolu-
tional neural network (CNN) is applied as a feature extractor that is well-suited
to time series data and the extracted features are used to produce interpretable
visualizations for human reviewers. Human review is an effective technique for
noise removal but is generally too expensive to be applied to a full dataset [69].

3 Feature Extraction and Visualization

Time series are a class of data that covers many different applications: financial,
medical, engineering, scientific, social, and military [49]. Many of these fields can
produce attribute vectors that can be very large [4]. Consider 10 second sound
clips recorded at 44,100 Hz, or a minute of a 64-channel electroencephalogram
(EEG) collected at 1000 Hz. Either example would be untenable as an input
layer for a neural network, or as an input vector for another model (e.g. an SVM
or decision tree).

The human brain is a very powerful tool for recognizing and finding connec-
tions between time series but this ability depends on the visual appearance of
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the data [33]. Like the classifiers mentioned earlier, the human mind can benefit
greatly from techniques of data abstraction that preserve the temporal proper-
ties of the original signal. The size of contemporary data is a significant challenge
for time series visualization and analysis [49].

A good feature extractor is often enough by itself to help reduce the impact
that label noise can have on a classifier [43]. What’s more, extracted features
that have captured the temporal relationships of samples in a time series can be
processed as numerical data using many of the techniques presented in Sections 2
and 4 that were not specifically crafted for temporal data.

Dimensionality reduction techniques can reduce the size of attributes with-
out sacrificing the information they have captured. Principal component analysis
(PCA) [35] is one approach to reduce the size of an attribute vector by selecting
the most impactful channels from the full attribute set. PCA has been success-
fully applied to time series data [11, 61]. PCA can be used to aid a task of
visualization by selecting the two or three most meaningful features to plot in a
flat figure [23].

Autoencoders were introduced as a method for dimensionality reduction [37]
but have also been used effectively as feature extractors for signal visualiza-
tion [62,63]. By mapping attributes into lower dimension embedding spaces, au-
toencoders can produce features that capture the relationship between instances
in a way that is learn-able. This set of features can be further projected into 2
or 3 dimensions using a technique such as tSNE [32] to make the full dataset
visually interpretable [7, 12,63].

Convolutional neural networks have been used as part of label noise detection
platforms [6,39] and have also been shown to be particularly effective as feature
learners for time series data [23]. CNNs train nodes on small clusters of samples
in the original attribute set. This process effectively captures the temporal rela-
tionship between samples in time series data. CNN layers can be incorporated
smoothly feature learners in single model learning noise detection platforms [39]
or built into autoencoders. Features extracted from signal data in [23] showed
reliable separation of classes in 2-dimensional visualizations of data collected
from audio sources and inertial measurement units (IMUs).

Segmentation divides time series instances into contiguous runs of samples
that share some trend. A good technique for segmentation is one of the funda-
mental approaches to time series analyses [27]. A method for segmenting signals
based on binary tree representations was presented in [27] and a similar tech-
nique followed in [67]. Both approaches build binary trees of samples whose root
is a Perceptually Important Point(PIP) [22]. A simplified demonstration of signal
segmentation based on PIP is presented in Figure 3.

Prarzen notes that any time series data can be thought of as some function
or sum of functions whose domain is a set of time steps [42]. Several feature
extractors have been constructed around approaches that approximate the fun-
damental functions of time series. Fourier transforms represent arbitrary signals
in the frequency domain, and [1] demonstrated that only a few fundamental
frequencies can effectively abstract time series data while reducing the size of
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Fig. 3: A simplified demonstration of SB-Tree segmentation as outlined in [27]. PIPs
are identified, built into a tree (the first and last point are generally excluded), and the
roots of each tree are considered first to be a cut point for segmentation.

the representation. [60] presented a method for online approximation of a time
series using polynomials.

Clustering has been applied to the problem of feature extraction. VAFLE,
an approach based on spectral clustering, was able to reduce the dimensionality
of data while identifying points of interest [28]. Another work has used Haar
wavelet transformation to inform the dimensionality of a feature vector which
was then clustered using hierarchical K-means [66].

A good visualization should be easily interpretable by a user. Even with a
simple graph like a line plot (or waveform, or “wiggly record” [42]) there are
choices that need to be made with interpretability in mind. Bertin Indexing
has been shown to produce line plots from time series financial data that is
easier to use than line plots prepared using linear scale juxtaposition and log
scale juxtaposition [3]. Bertin Indexing scales heterogenous time series to make
comparisons easier [10].

One consideration of time series datasets is that the data are not always
exclusively time datasets. An example would be geo-referenced sensor data being
collected from a sensor network. One system to address this example focuses
on giving the user a “big picture” understanding of the sensor network over
time [51]. This system allowed the user to view a 2D map of signals which was
clustered by similarity with each region have a representative waveform overlayed
on it.

There are many standard techniques for visualizing time series data. A collec-
tion of these techniques are presented in the early works of [4] and [50]. VisInfo
is a more recent product whose goal is to provide visual access to time series
data [9]. Some common and accepted methods for presenting time-oriented data
are presented in Figure 4.

4 Label Correction

Detecting label noise is only the first step in improving the performance of
supervised classifiers when working with noisy data. Some method also needs to
be adopted for dealing with that noise. Three main approaches exist for dealing
with label noise: training noise-tolerant models, cleansing data sets, and crafting
noise-tolerant learning algorithms [25]. Techniques do not always fit neatly into
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(a) Juxtaposed Line (b) Superimposed Line (c) Cyclic

(d) River (e) Bar Chart (f) tSNE

Fig. 4: A selection of plotting techniques suited to time series data. The juxtaposed
and superimposed line plots are useful for comparing linear signals, as is the bar chart.
The cyclic plot is best used for finding periodicities in cyclic series. River plots can be
used for percentage estimation. tSNE allows full dataset exploration. (f) shows a tSNE
plot of two classes of data juxtaposed with line plots of an instance from each class.

only one of the three categories so each body of work will be discussed in the
section that best fits it, but might overlap with work discussed in other sections.

4.1 Data Cleansing

Having identified some of the mislabeled instances in a dataset, data cleansing
techniques will either remove or relabel those instances. The first approach is
easier to implement, but re-labeling has the advantage of not removing training
data that could improve the performance of a classifier.

TimeCleanser [29], an approach based on visual analytics, capitalized on the
documented efficacy of the human eye [49] to analyze large datasets. As the
name suggests, this platform focuses on temporal data, which the authors note
has very specific challenges which make it distinct from other classes of data [29].
Users of this product can select from several good graphics to visually interpret
datasets. Instances which the user identifies as noise are removed from the data.

Another approach that relied on human analysis for data cleansing is pre-
sented in [68]. This platform used crowd-sourced reviewers to re-annotate sam-
ples of IMU data that had been selected from a human activity recognition
dataset. This approach used video recorded of the instances to allow human re-
viewers to correct the label of instances in the dataset which an active learner
had had trouble labeling correctly.

A pair of techniques that did not rely on human reviewers were introduced
in [41]. The first of the two was named Self-Training Correction, which uses



Dealing with Noisy Labels in Time Series Data 9

a classification model with an integrated noise filtering algorithm. The second
technique employs K-Means clustering repeatedly using weights based on the
assigned label for each instance. The labels in datasets are updated using a
technique which these authors have named Polishing Labels in tribute to the
data polishing algorithm described by Cho-Man Teng [53].

Similar to the Self-Training Correction described above was the earlier work
Automated Data Enhancement(ADE) [64]. This approach used a neural network
that was repeatedly re-trained on a noisy dataset, each time assigning or updat-
ing a probability vector representing each class to each instance. As the model
was re-trained the probability vector gradually drifts away from the mislabelled
class and towards the true class.

Probabilistic labeling can be used as part of a label cleaning platform. By
assuming that there is some hidden probability of each point having a true class
distinct from the assigned label Bootkrajang and Kaban developed an analysis
which they called robust Normal Discriminant Analysis (rDNA) [15]. Labels in
the dataset are flipped based on a function that calculates the probability of the
instance being in each class of the dataset.

4.2 Robust Learning

Boosting is a machine learning method that gives greater weight to instances
that a classifier struggles with during training [47]. The method, including the
popular AdaBoost optimizer, greatly improves the training rate of machine learn-
ing models but can be particularly susceptible to the presence of label noise in
training data [36]. Bagging, by contrast, partitions the dataset into subsets and
trains a classifier on each [8] outperforms boosting on data that have noisy la-
bels [36]. Boosting can be modified to make it more robust to label noise by
adding probabilistic factors representing uncertainty in the assigned labels [16].
The process of label flipping has been expanded by the same author in later
work [14].

Ensemble classifiers can be trained with resilience to label noise in mind.
One approach is to use a principle of minimum-variance during the combined
training of the several classifiers [71]. This approach minimizes the error rate of
the ensemble by minimizing the sum of the variances of the collected classifiers.
This technique was demonstrated to be effective in tasks of active learning from
noisy, stream data [71].

Skeptical Supervised Machine Learning introduces a confidence measure that
is used to represent the reliability of annotations made by human labelers [65].
Labels are generated both by human input and by the predictions of an en-
semble of machine learning classifiers. The models are trained iteratively on the
human input and conflict resolution is applied to decide the correct label for
each instance.

Rather than removing mislabeled instances from datasets, we can omit them
while training a classifier. A loss function has been proposed that skips confusing
samples from training in order to improve the performance of deep neural net-
works on noisy data [54]. Instances with high cross-entropy error are driven into
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the abstention category in this platform, which the authors call a deep abstaining
classifier.

Rather than completely abstaining from training on uncertain points, a model
can weigh down the high uncertainty points and weight up low uncertainty
points. This approach was demonstrated as reducing both the bias and variance
when added as part of the loss function in neural networks [5]. The measure of
certainty is calculated by means of comparison to k nearest neighbors (with k=5
in the presented experiment).

4.3 Model Hardening

Some machine learning models inherently more robust to certain classes of noise.
One study identified Naive Bayes and KNN as being more robust to label noise
than support vector machines and decision trees [40]. More recent work has
reached the conclusion that KNN and SVM were comparatively robust to label
noise [20]. When considering these two results it is important to remember that
there are many varieties of SVM and that the earlier result is experimentally
derived while the later work is based on asymptotic analysis. Researchers working
with data that are known to have some rate of mislabeling might be best served
by sticking to models that are less sensitive to label noise.

As mentioned in Section 3, CNNs are an excellent tool for working with time
series data. Expectation-Maximization has been applied to CNNs to increase
their robustness to label noise and to integrate a model of noise distribution in
the training of a CNN [59]. The noise model is learned as the CNN trains.

5 Conclusion

This work summarized the most common label noise detection and correction
approaches. Many of these approaches are not exclusively used with time series
data, but are general platforms for use with arbitrary, numeric data. A good
feature extractor is often sufficient to process time series for use with these
general approaches.

Without a standardized testing procedure or data set, it is difficult to say
which of the many approaches discussed here are the “best” way to process
data with noisy labels. Single classifier learning can incorporate deep feature
extractors which makes them a good approach for time series data. For the time
it also appears that human review is going to remain an important component
of data cleansing.

Analysts who are going to employ human reviewers as part of a label cleaning
method should take care to use visualizations that are suited to the data. The
type of data and target application should inform the choice of visualization.
Segmentation and dimensionality reduction can reveal relationships in data and
help produce more interpretable abstractions for reviewers.

Data cleaning comes with some risks. Removing instances from a dataset
can increase classifier bias and degrade its accuracy, especially when instances
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near the borders between classes are removed. Cleaning a training dataset can
also harm a classifier when label noise will still be present in the test data. A
model that is going to be tested on noisy data will perform better with a robust
learning algorithm. But this comes at the risk of knowingly leaving incorrect
instances in a dataset.

Intelligent problem-solving methods with pre-collected data are impressive
but truly responsive systems require some ability to process online, streaming
data. Such data will always have temporal properties, and so intelligent systems
(artificial or otherwise) will always have to wrestle with the problems of time
series data. Data collected in the real world will always have some noise, label, or
otherwise. But with attention and good practices, machine learning with noisy
labels is possible and reliable.
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