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ABSTRACT
Accurately detecting instances in datasets that have been misla-
beled is a difficult problem with several imperfect solutions. Hand-
reviewing labels is a reliable but expensive approach. Time series
datasets present additional challenges because they are not as easily
interpreted by reviewers. This paper introduces TSAR, as system
for facilitating human review of a small portion of a dataset that it
identifies as the most likely to be mislabeled. TSAR’s use is demon-
strated on real-world time series data.

CCS CONCEPTS
• Computing methodologies → Supervised learning by clas-
sification; • Human-centered computing → Empirical stud-
ies in visualization.
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1 INTRODUCTION
Every instance in a classification dataset has one or more true, ab-
stract classes. A picture taken of a cat will always have the abstract
class "cat" regardless of the processing that is applied to it. But
machine learning models do not learn the true class of an instance,
but rather the label that the instance has been assigned by the anno-
tators of a dataset [5]. Ideally, the labels in a dataset will perfectly
match the true class of every instance but this is not always the
case. Any disagreement between the class of an instance and its
label is called label noise [6]. There is no firm consensus on the
percentage of instances of real-world that5 are mislabeled but good
estimates include 3% [14] and 5% [5].
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There are many sources of label noise in large datasets [6]. Do-
main experts can assign an incorrect label to an instance when
the labels are partly subjective [3] or when classes overlap in a
feature space. Self-reporting by research volunteers can suffer from
subjective labeling, which is a known source of label noise [7]. Elec-
tronic processing of records can also produce mislabeled instances
through coding errors [7] or when a signal is segmented in a way
that does not preserve the event recorded. Finally methods for au-
tomatically or semi-automatically annotating data can introduce
some label noise.

Human activity recognition (HAR) has important application
in assistive technologies and eldercare but is also one of the more
complicated problems in bio-signal analysis [16]. Label noise is one
of the factors that make HAR difficult for classification problems.

One of the simplest methods for detecting and cleaning label
noise in datasets is to have a human review some or all of the
instances in a dataset. Some varieties of data, such as image and
video, lend themselves easily to this process because they are easily
interpretable by human reviewers. However, time series are not
one of the classes of data that can be easily interpreted by humans.
A good feature extractor can make time series more interpretable
and can make relationships in the data more apparent. This feature
extractor must be able to preserve the temporal locality of the sam-
ples in an instance. Deep learning can be applied to signal data to
produce a feature vector which is better suited to visualizing large
datasets [18]. This approach accomplishes several goals simultane-
ously: the dimensionality of the data is reduced to a useful vector,
the feature vectors can produce a distance matrix which reveals
relationship in full-dataset visualizations like tSNE [8], and the
process of domain-specific manual feature engineering is avoided.

This project has developed a system for label review called TSAR
(Time Series Assisted Relabeling). This platform employs a deep
learning model to identify a user-specified percentage of any time
series dataset as being the most likely to be mislabeled. The system
then generates a set of visualizations based on the extracted features
for a human to review. The usefulness of TSAR’s visualization
have been evaluated by means of a survey completed by 15 non-
expert volunteers and have shown that the group collectively was
81.25% accurate in identifying instances taken from real-world data
as being correct or mislabeled. Furthermore the effects of label
cleaning using TSAR is evaluated on several real-world datasets
and it was found that the classification accuracy of models trained
and tested on cleaned data improves from an average of 95.23% to
97.10%.

This paper is organized as follows. In Section 2 we will review
work related to this project. In Sections 3 explains the procedures
for preparing the evaluation of our system, the process of using
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TSAR to remove mislabeled instances, and the method used to test
TSAR on several machine learning models. In Section 4 we present
the findings of the survey and label cleaning tests. In Section 5 we
will consider the meaning and purpose of the results presented in
Section 4. In Section 6 we will summarize our work and elaborate
on future updates to TSAR.

2 RELATEDWORK
Detecting and correcting mislabeled instances is a large problem
with many established approaches. Labelfix [14] from 2019, built
on earlier work [19] that trained a learning model on datasets of
several types and then used the predictions the distance between
the predicted label and the assigned label as a probability of an
instance being mislabeled. However time series data was not well
accommodated by their choice of feature extractor. Another ap-
proach is to train several models [3] and flagging they points that
they disagree on but doing this could be prohibitively expensive
with deep feature extraction.

Several other works have tackled the problem of removing or
relabeling mislabeled instances in time series datasets. One ap-
proach [20] worked with datasets that included videos that had
been recorded of volunteers performing activities. The videos were
used by reviewers on Amazon’s Mechanical Turk to correct the
label of instances in HAR datasets, which included some signal
data. This team’s previous work [2] used a the output of a machine
learning model to identify mislabel instances in time series data in
a similar fashion to TSAR but did not allow for the inclusion of a
human reviewer in the loop. In this fashion, suspicious instances
had to be removed from the dataset altogether rather than correct-
ing their label. Other works have focused on producing learning
models for time series data that are robust to label noise [10, 15],
rather than removing or relabeling the noisy instances.

Data visualization is a very widely considered problem but some
recent contributions have been made which specifically incorporate
deep feature extraction on time series data. The work in [18] uses
a sparse autoencoder as a feature extractor for signal data and then
uses tSNE as a method for visualizing large datasets composed of
time series data. Convolutional Neural Networks have been in use
since 1998 [11] and have demonstrated an ability to preserve the
temporal locality of samples when extracting features from signal
data. This functionality has been adapted to HAR [4] problems with
good success. A good catalog of visualizations techniques based on
data mining can be found in [17].

HumanActivity Recognition as a tool for assistive technologies is
now commonly included in commercial products like smart watches.
Our watches can now encourage us to exercise and alert medical
responders that an elderly person has fallen. SmartFall [12] is one
example of the latter application.

The contribution of this work is that it combines automatic
detection of possiblymislabeled instances with human interpretable
visualizations of time-series, so that a human can have the final
decision of whether the labels is incorrect and what the new label
should be. A second contribution is a short exploration of the ability
of human reviewers to recognize mislabeled instances in time series
datasets using combined visualization techniques.

2.1 Data Sets
This project has used two real-world datasets which deserve an
introduction. The first of them is the UniMiB SHAR dataset[13]
which was collected at the University of Milano Bicocca in 2017.
Their data were collected from volunteers carrying commercial
smartphones in their front trousers pockets at a sample rate of
50Hz. The dataset is well segmented into slices 151 samples wide,
which makes them easy to use with neural networks that require a
fixed-length input vector. Several label sets are provided for various
applications. We have used the ADL (Activities of Daily Life) which
offers inertial data for 7,359 instances with the labels: Standing Up,
Getting Up, Walking, Running, Going Up, Jumping, Going Down,
Lying Down, and Sitting Down.

The second dataset we have relied on is UCI HAR [1]. This set
was collected at the Universitat Politecnica de Catalunya in 2012.
Samples were collected at 50 Hz using commercial smartphones
mounted at the waist. The instances are tri-axial inertial measure-
ments measurements with 128 samples. Only one set of labels is
offered with these being: Walking, Upstairs, Downstairs, Sitting,
Standing, and Laying. Like the UniMiB set, UCI HAR is neatly seg-
mented and ideal for processing with models that require a fixed
input length.

3 METHOD
A label review survey was prepared to test the ability of human
reviewers to recognize intentionally mislabeled instances in real
world, time series datasets. 96 visualizations were made using the
visualization tools in TSAR. Of these, 48 had labels which were
intentionally altered but reassigning the label to be any other class
with all classes being equally likely. This was done by selecting a
new label equally at random from the set of all labels other than
the original. One of three methods of feature extraction was ap-
plied to each instance before its visualization was generated. These
methods were supervised using the upper layers of a trained CNN,
unsupervised using the embedding layer of a convolutional au-
toencoder, and a vector derived from signal processing techniques.
Table 2 presents the values that were included in this vector. Finally
48 of the points were produced with 5% label noise having been
added to the data before feature extraction. Table 1 summarizes
the number of visualization produced for each combination of the
three variables.

Table 1: A summary of the variables covered by the label re-
view survey. An equal number of points were generated for
each combination of variables: dataset, feature learner, the
amount of added noise, and whether the instance was mis-
labeled or correctly labeled. The visualizations produced for
these instances were inserted into the survey in random or-
der.

Variable Values
Dataset UniMiB SHAR, UCI HAR
Feature Extractor Traditional, Supervised, and Unsupervised
Added Noise 0%, 5%
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Figure 1: A visualization of one of an instances included
in the candidate list generated from UniMiB SHAR. This
instance was removed from the dataset by the review. The
tSNE plot shows that the point is in a boundary region of
the feature space so either label Walking or Going Down is
likely to be correct. But the waveform of the instance looks
somuchmore like the Going Down neighbor than theWalk-
ing neighbor that the reviewer judged this point mislabeled.

The visualizations produced by TSAR display several pieces of
information for the reviewer. To review one instance, TSAR first de-
termines the label of of the nearest point in the feature set that does
not share the label of that instance using the Ball Tree algorithm to
generate the list of nearest neighbors. A tSNE plot of the feature
set for all points that share the instance’s label and all points which
share the label of the nearest differently-labeled neighbor. tSNE
is a technique for dimensionality reduction based on stochastic
neighbor embedding[8] which is commonly used when visualizing
large datasets. Only two classes are ever represented in the plots
used in our survey to keep clutter to a minimum. Alongside the
tSNE plot the reviewers are shown three waveforms: the instance
they are reviewing, the nearest same-label neighbor in the feature
set, and the nearest differently-labeled neighbor in the feature set.
An example visualization is shown in Figure 1.

A survey was produced using the 96 visualizations. For each
instance the reviewer was asked to indicate if the visualization
appeared to be correctly labeled or mislabeled. The reviewers were
given a four paragraph explanation of their task but otherwise
received no training on label review or HumanActivity Recognition.
They were also shown one example of an instance with the correct
labeled assigned to it and one instance of a mislabeled instance. The
reviewers were all students in an undergraduate computer science
class.

The mislabeled instances for the survey were hand-generated
rather than being automatically selected for review by TSAR. In
order to test this capability of the system, TSAR was directed to
generate a candidate list of 5% of the UniMiB and UCI HAR datasets
using its supervised extractor. 5% was chosen as the size of the can-
didate list following the observation[5] that this is a rough estimate
for the prevalence of label noise in real-world datasets. TSAR then

generated a visualization for each instance in the candidate list.
These were produced using the same procedure described for the
survey visualizations. One author reviewed the candidate list and
removed every instance that appeared to be mislabeled. Several
machine learning models were trained and tested on uncleaned
and cleaned data and their accuracies were computed. The models
selected were: an SVM, a 3-Nearest Neighbors classifier, a deci-
sion tree trained using C4.5, and Naive Bayes. These models were
selected because TSAR uses the output of a deep neural network
to identify the instances in a feature set which are most likely to
be mislabeled. Using a neural network to clean a dataset and then
testing the system using another neural network might only demon-
strate that our systems reinforces the biases of a single model, but
for completeness a 3-layer and 6-layer dense neural network are
included in the models tested. Our hypothesis is that cleaning a
dataset using TSAR will produce model-agnostic improvements in
accuracy.

3.1 Feature Extraction
The goal of a feature extractor in this context is two-fold. First, it
should minimize the overlap between classes in the visualization
of the feature set. Ideally, the two-label visualization will be two
crisply divided blobs on far ends of the chart. Second, the feature
extractor should preserve the visual characteristics of the signal.
The nearest neighbor in the feature set should be the most similar
in visual appearance to the measured signal.

These requirements make preserving the chronological ordering
of samples during the process of feature extraction even more
important. Convolutional Neural Networks produce features based
on small, sliding windows which are convoluted across an instance.
This makes features which preserve the temporal locality of samples
in the instance, and makes them a good choice of feature extractor
for TSAR. Other works [4] have demonstrated the power of CNNs
as feature learners on bio-signal data.

There are, broadly speaking, two ways that a CNN can be trained
as a feature extractor. A supervised method is to train a CNN clas-
sifier on the label set and then discard the layers closest to the
output. This leaves the earlier trained convolutional layers to serve
as the feature extractors. An unsupervised method for creating a
convolutional feature extractor is to construct an autoencoder [9]
which trained to reproduce the input vector through a series of
convolutional and dense layers. The decoder portion of the trained
model is discarded leaving the middle (embedding) layer as the new
output. The structure of the extractor is demonstrated in Figure 2.

TSAR offers both extractor training methods. The supervised
extractor has generally been more effective in our experiments, but
in sets with a high prevalence of label noise, it may not be possible
to reliably train a supervised model. This will be discussed further
in Section 5.

A feature extractor based on traditional signal processing and
hand-crafted features was included in the list of feature extractors
used to produce the visualizations for the survey. The types of
values used by this feature extractor are listed in Table 2. This
feature extractor was included only as a baseline for comparison to
the two feature learners. A feature engineering approach to signal
processing would require cumbersome tweaking to fit particular
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Figure 2: A visualization of TSAR’s convolutional feature ex-
tractor that was prepared based on a Tensorboard of the un-
supervisedmodel during training. This network has had the
lower classification layers removed. The upper layers of the
two deep feature extractor (supervised or unsupervised) are
identical.

data domains (e.g. EEG vs IMU data), so deep feature learners are
much more portable.

Table 2: The list of features extracted from signals by the
traditional feature extractor. These features were selected
for being broadly used in signal processing and for being
easily computed.

• Mean • Standard Deviation • Absolute Energy • Sum of Changes
• Auto Correlation • Count of Values Above Mean • Count of Values
Below Mean • Kurtosis • Longest Strike Above Mean • Zero Crossing
Rate • Number of Peaks • Sample Entropy • Welch Spectral Density (6
coefficients)

3.2 Candidate List Generation
Manually reviewing data can be an incredibly time-consuming pro-
cess. Ideally, all incorrect labels could be altered or removed by
manually reviewing the smallest candidate list of uncertainly la-
beled points possible. TSAR implements a Single Learnermethod [7]
to identify the instances in a dataset that are most likely to be mis-
labeled. A deep neural network is trained on the extracted features
and used to predict a label for every instance. The dot product is
calculated for the one-hot encoding of the predicted label and as-
signed label. This method of generating distances between assigned
labels and predicted labels has been used [14] previously. The list of
instances is sorted by the value of the dot product. The top of this
list is now more likely to be mislabeled. The user of TSAR requests
some small percentage of the list and visualizations ore generated
for review. The pipeline employed by TSAR is presented in Figure 3.

4 RESULTS
4.1 Human Review
A label review survey was prepared using images generated by
TSAR to test the effectiveness of human review of noisy labels in

Noisy 
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Cleaned 
Dataset

Train Feature 
Extractor

Train 
Classifier

Sort Dataset By
Label Distance

Generate
Visuals

Predict Labels

Reviewer Flags
Noisy Instances

Remove Noisy
Instances

Figure 3: Process pipeline used by TSAR to identify and re-
move the mislabeled instances from datasets.
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Figure 4: The confusion matrix of all individual responses
to the label review survey.

time series data as described in Section 3. This section summarizes
the responses of the volunteer reviewers. 15 untrained undergradu-
ate students responded to the 96 question survey making a total of
1440 responses. Of these 562 correctly indicated that an instance
was mislabeled, 407 correctly indicated that an instance was cor-
rectly labeled, 313 misidentified an instance as mislabeled, and 158
misidentified a point as being correctly labeled. A confusion matrix
of these results is presented in Figure 4.

If we consider only the responses to visualizations produced
with a deep feature extractor, the reviewers correctly identified
661 out of 960 visualizations giving them an accuracy of 68.9%.
Out of their 960 responses to this set of instances 569 marked a
point as mislabeled. 375 of these responses correctly identified the
instance as mislabeled and 194 misidentified the instance as being
mislabeled. This gives the individual responses a precision of 65.9%.
The accuracy of the reviewers was higher using the visualizations
produced with the supervised extractor: 72.9% from the supervised
extractor vs. 61.9% from the unsupervised extractor. A confusion
matrix for the 480 responses to the supervised instances is presented
in Figure 5a and the 480 responses to the unsupervised instances in
Figure 5b. The accuracies and precisions of responses to the various
extractors are presented in Table 3.
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(b) Unsupervised Feature Extraction

Figure 5: The collected individual responses to all survey vi-
sualization generated using a deep feature extractor.

Table 3: The accuracies and precisions of subsets of the 1440
individual responses to the label review survey. Filtering the
responses to represent particular variables (e.g. the feature
extractor) eliminates many responses, so the number of re-
sponses used to calculate these accuracies and precisions is
listed.

Feature Extractor Added Noise Resp. Acc. Prec.
All Deep Combined 960 68.9% 65.9%
Supervised 0% 240 80.0% 77.7%
Supervised 5% 240 65.8% 63.6%
Supervised Combined 480 72.9% 70.4%
Unsupervised 0% 240 65.4% 64.3%
Unsupervised 5% 240 64.2% 60.0%
Unsupervised Combined 480 64.8% 61.9%

The above results are based on individual responses but we can
also consider the viewers as "voting" on the correctness of each label.
Of the 96 responses, 61 were marked as mislabeled by 8 or more of
the 15 reviewers and 35 were marked as correctly mislabeled. The
confusion matrix for the voting responses is presented in Figure 6
and the accuracies of the deep feature extractors is re-computed in
Table 4. Most notably the accuracy of the reviewers on the instances
with the supervised feature extractor rises to 90.6%.

4.2 Label Cleaning
Six commonmachinemodels were trained and tested on the cleaned
and uncleaned supervised feature sets: a Support Vector Machine,
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Figure 6: The confusion matrix of the collaborative re-
sponses to the survey instances. All three feature extractors
are represented in these results.

Table 4: The accuracies and precisions of collective re-
sponses. These values are computed based on whether a ma-
jority of reviewers believed a point was mislabeled.

Extractor Noise Instances Acc. Prec.
All Combined 96 76.0% 70.5%
All Deep Combined 64 81.3% 76.3%
Supervised 0% 16 100.0% 100.0%
Supervised 5% 16 81.3% 77.8%
Supervised Combined 32 90.6% 88.2%
Unsupervised 0% 16 75.0% 75.0%
Unsupervised 5% 16 68.8% 61.5%
Unsupervised Combined 32 71.9% 66.7%

K-Neareast Neighbors, a C4.5 decision tree, Naive Bayes, a three-
Layer ANN, and a six-Layer ANN. The accuracies of these models
are presented in Table 5. The values presented are the averages
from repeating the same process of training and testing on features
generated from the UniMiB SHAR and UCI HAR datasets using
TSAR’s generated features. In no case did the performance of the
model degrade after label cleaning. The arithmetic mean accuracy
of the six models was 95.2% before cleaning and 97.1% after cleaning.
This is an improvement of 1.9% in the average accuracy which is
indicates that the error rate of the models is 60.4% of what it was
before cleaning.

As described in Section 3, the feature sets was extracted from
UniMiB SHAR and UCI HAR using the supervised, deep feature
learner. The nine-class ADL label set was used for UniMiB SHAR in
this experiment. These feature sets were then used to generate visu-
alizations which were identified as correctly labeled or mislabeled
by a human reviewer. The six listed models were trained and tested
on the noisy feature set, and then six new models were trained and
tested in the cleaned feature set. The improved accuracies are not a
consequence of re-train any models.

It is a curious artifact of this experiment that the SVM and KNN
classifiers outperform the two neural networks. When interpreting
this result, it is important to keep in mind that the feature sets being
classified are the output of deep, convolutional networks. The high
accuracy of the KNN classifier demonstrates that TSAR’s feature
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Table 5: The accuracies of several machine learning models
trained and tested on uncleaned feature sets compared to
identical models trained and tested on cleaned feature sets.

Model Uncleaned Acc. Cleaned Acc.
SVM 96.4% 97.8%
KNN 96.7% 97.8%
Decision Tree 94.6% 96.6%
Naive Bayes 93.3% 96.2%
3-Layer NN 95.2% 97.3%
6-Layer NN 95.3% 97.1%

extractor is generating a feature set wherein instances generally
share a label with their nearest neighbors.

5 DISCUSSION
There is always some risk involved in label cleaning. Cleaning a
training set can degrade the performance of a model if the test set
also contains label noise [3]. For this reason we have chosen to
clean both the training and testing data for our experimental model
evaluations. This may not be appropriate for some circumstances
but shows that TSAR will be useful for models that are going to
be trained and then deployed in the real world (e.g. a fall detecting
smart watch). However that are going to be trained and then tested
on pre-collected data, it would be better to clean either both or
neither.

Another risk of label noise detection is that if poorly imple-
mented it can degrade to outlier detection. An instance might fall
into an unusual region of the feature space but still not be mis-
labeled. To help avoid the the candidate list generated by TSAR
considers only the distances between assigned labels and the pre-
dicted labels. But of course the predicted labels are dependent on
the features, so the candidate list is in no way independent of the
feature set. Some good judgement will have to be exercised by re-
viewers to avoid removing correctly labeled but unusual examples
from the feature set. Figure 7 shows a good example of an instance
that will come down to a judgement call on the part of the reviewer.

One curious result from the survey is worth bringing up. Out of
the 1440 responses from the 15 reviewers, 875 responses indicated
that the instance was mislabeled as compared to 565 indicating that
an instance was correctly labeled. Keeping in mind that an equal
number on the instances in the survey were correctly labeled and
mislabeled (48 of each), it is surprising to see that the reviewers were
about 50% more clicks on the ’Mislabeled’ button as compared to
the ’Correct’ button. This effect is even more pronounced when the
reviewers vote on instances with 61 out of the 96 being identified as
mislabeled by 8 ormore of the reviewers, or 63.5% of the 96 instances.
This might be an artifact of our visualizations, an expression of
some psychological phenomenon, or a coincidence born of a small
sample size. In any case, this effect will be considered as TSAR is
refined.

It was mentioned in Section 3 that both a supervised and an
unsupervised feature extractor are included in TSAR, but that only
the supervised feature extractor was used for label cleaning before
model testing. This decision was motivated by the results of the
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Figure 7: An example point from the UniMiB SHAR dataset.
The tSNE plot shows that this instance is in a sparse re-
gion of the feature and the waveforms show that this signal
shares similarties to the Sitting Down and Lying Down ex-
amples. Difficult instances like this should be left in during
label cleaning.

survey, which indicated that the responses on the visualizations pre-
pared using the unsupervised extractor were at best 71.9% accurate
as compared to the 90.6%. It was assumed that the unsupervised
feature extractor would be less affected by added label noise in the
datasets, and that this might make it overall the more reliable fea-
ture extractor. While the survey results show that the unsupervised
feature extractor is indeed less affected by the addition of 5% label
noise, the supervised feature extractor was the more reliable tool
even with the added noise. So there might be some amount of label
noise where the unsupervised extractor becomes the more reliable
extractor (a linear interpolation from the survey results indicates
that that is 34.3% of instances being mislabeled) but at the levels
of label noise that can reasonably be expected in the UniMiB and
UCI datasets, the supervised extractor was clearly a better choice.
But that’s only meaningful for these feature extractors on these
datasets with these visualization techniques. That choice is by no
means a broad conclusion.

6 CONCLUSION AND FUTUREWORK
TSAR is very much still a work in progress but the initial results
show that can be used to reliably improve the performance of ma-
chine learning classification models on real-world data. In every
case the performance of a model that was trained and tested on
cleaned data is better than the same model trained and tested on
uncleaned data. Human Activity Recognition is one of the more
difficult classification problem [16] in biosignal analysis and re-
searchers should be conscious of any technique that could make
their models more reliable. The usefulness of HAR classifiers in
assistive technologies is well understood. Any decrease in the error
rate of the models that drive these systems will have a real world
impact.

This project has also demonstrated the limitation of human re-
view in label cleaning. Human review is a powerful tool but we can
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never assume that a human reviewer will perfectly accurate. We
have shown that our 15 reviewers were colllectively 90.6% accurate
in identifying mislabeled instances in real world data using a su-
pervised extractor but individually only 72.9% accurate. Research
teams who are using any system for label review that involves hu-
man review should be conscious that using several reviewers in a
voting system could be a much better choice than one reviewer act-
ing alone. Having said that, our models were tested using features
that were cleaned by a single reviewer and still showed a reliable
increase in performance.

At this time, TSAR completely removes the instances that the
human reviewers indicates from the training and testing set. A
more sophisticated approach might be to relabel those instances
rather than removing them. Machine learning models generally
perform better when they have more data to train on, so it would be
reasonable to assume that an approach that leaves more instances
in the training set will be better. Using this approach will require
that safeguards be put in place to avoid biasing the model towards
the researcher’s assumptions about the data.
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