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Abstract—Data generation techniques are critical in various
fields where obtaining real-world data is difficult or expensive.
However, data generators like generative adversarial networks
(GANs) and diffusion-based models depend on training models
using pre-existing data and labels. When the labels are unreliable,
the performance of data generators can suffer. This paper
proposes a novel adaptation of Denoising Diffusion Probabilistic
Models (DDPM) that employs label smoothing to enhance the
reliability of the generated data in the presence of label noise.
Label smoothing mitigates the impact of label noise by preventing
the model from becoming overconfident in mislabeled instances
of data. We demonstrate that DDPM with label smoothing
outperforms both conditional and unconditional DDPM in terms
of the closeness of the generated data to the original data’s
distribution, even when the training data contains instances with
mislabeled labels.

Index Terms—Data generation techniques, conditional DDPM,
label noise, label smoothing.

I. INTRODUCTION

Data generation techniques are essential for machine learn-
ing (ML) approaches, enabling the application of ML models
to datasets that would otherwise have insufficient samples
to train them. Methods for generating signal data include
generative adversarial networks (GANs) [17], denoising dif-
fusion probabilistic models (DDPMs) [8], and statistical tech-
niques [10]. Although both GANs and DDPMs can replicate
the features of existing data, diffusion-based models have been
shown to better replicate all classes of a dataset while GANs
can overfit to the majority class [5]. However, the performance
of ML models can be severely degraded when some labels in
a dataset are misassigned [1]. In this paper, we propose an
application of label smoothing to DDPM, which improves its
performance in the presence of label noise.

Real-world datasets typically have a mislabeling rate of 3%
to 5% [20]. Mislabeled instances of data are assigned a label
(57) that does not reflect the true class of the instance (Y),
with some likelihood P(f’ # Y'), which may vary by class
or within the feature space X. Mislabeled training data have
been shown to have a greater impact on the training of ML
models than their correctly labeled counterparts [23]. This
means that a low occurrence of label noise in training data can
have a disproportionate impact on the performance of models
trained using the noisy dataset. Both GANs and DDPMs rely
on the performance of trained deep learners and are, therefore,
susceptible to label noise in their training data.

Signal data, and time-series data in general, can be more
challenging to interpret than other domains of data like images
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and text, making it easier to mislabel during data collection
and more difficult to correct the labels later on [1]. Time-
series data require special tools for label cleaning [2], making
signal data a particularly interesting domain for considering
ML approaches related to label noise.

The DDPM trains a denoising model with the label of
the instance being de-noised embedded using some positional
encoder. Following training, new instances of data are gener-
ated by feeding samples of Gaussian noise into the denoising
model with a targeted label embedded in the noise. Label
smoothing, which augments the values of one-hot encoded
labels during training, has been shown to mitigate the harmful
effects of label noise by preventing the model from developing
overconfidence in the noisy instances of data [14]. It should
be pointed out that data noise and label noise are two different
types of errors that can occur in a dataset. Data noise refers to
errors in the input data itself that can be caused, for example,
by faulty measurements. Label noise, on the other hand, refers
to errors in the class labels assigned to the input data.

This work has adapted label smoothing to conditional
DDPM to make a data generation technique that is robust to
the presence of label noise in the training data'. We will show
that this technique outperforms conditional and unconditional
DDPM in the closeness of fit to the distribution of the original
data when trained with noisy labels. The contributions of this
paper are as follows:

1) A novel integration of label smoothing with DDPM.

2) An adaptation of Fréchet Inception Distance (FID) [11]
for use with signal data.

3) A first analysis of the impact of label noise on data
generation using DDPM.

II. RELATED WORK

In recent years, there has been a growing interest in using
Generative Adversarial Networks (GANs) for time-series and
sequential data generation. [3] provided a comprehensive
overview of GAN implementations on time-series data and
highlighted the advantages of using GAN as a time-series data
augmentation tool. GANs can solve data shortage issues by
augmenting smaller datasets and generating new, previously
unseen data. They can also recover missing or corrupted data,
reduce data noise, and protect data privacy by generating

'Project  source  code: https://github.com/imics—-1lab/
SmoothConditionalDiffusion
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differentially private datasets that do not contain sensitive
information. [3] presented several state-of-the-art GAN models
and algorithms for generating time-series data, such as ( [18]),
RCGAN ( [4]), TimeGAN ( [26]), and SigCWGAN ( [22]),
which all use recurrent neural networks (RNNs) as the base
architecture of their GAN models. However, RNN-based GAN
models face challenges in producing long synthetic sequences
that are realistic enough to be useful due to the sequential
processing of time steps.

The transformer architecture, which relies on multiple self-
attention layers ( [24]), has recently become a prevalent
deep learning model architecture. Since the transformer was
invented to handle long sequences of text data and does not
suffer from a vanishing gradient problem, theoretically, a trans-
former GAN model should perform better than RNN-based
models on time-series data. [12] introduced a transformer-
based GAN model (TTS-GAN) to generate synthetic time-
series data that achieves more realistic synthetic data quality
than previous RNN-based GANSs. Furthermore, [13] also intro-
duced a conditional transformer GAN model that can generate
multi-category multi-variable arbitrary length time series.

It is noteworthy that the diffusion model has recently out-
performed GANSs in image synthesis, and more data synthesis
researchers are starting to employ diffusion models instead of
GANSs. The utilization of the diffusion model in time-series
synthesis has also demonstrated significant improvements,
such as in audio synthesis, time-series forecasting, and time-
series imputation.

To the best of our knowledge, our work is the first to
employ label noise mitigation techniques in the process of
signal generation to create a platform that is resilient to the
presence of uncertainty in the label of the original data. Label
smoothing has been shown to enhance the separation of classes
in the learned feature spaces of deep classification models [21]
by allowing the model to learn representations that recognize
other labels as possibilities. Intuitively, a technique that can
alleviate label noise during classification [14] could also be
utilized to enhance the separation of classes in generated data.

III. METHODOLOGY
A. Data Generation

Denoising diffusion probabilistic models (DDPMs) generate
new data samples that simulate training samples by learning
to iteratively add noise and then remove it from the example
data. The denoising model learns to estimate the added noise
between time steps as noise is added. For a noise model
that increases the noise in a data sample from time step ¢ to
t + 1, the denoising model learns to estimate a noise pattern
that would take the sample from time step ¢ + 1 back down
to t. Since the added noise follows a Gaussian distribution,
and the sum of any Gaussian distribution is also a Gaussian
distribution, a sample can be placed at time step t during
training with iterative noise addition [8].

Conditional DDPM incorporates the signal’s label during
training and sampling using a positional embedding function.
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Fig. 1: Waveforms of sample signals from the MIT-BIH, [19]
dataset. An original signal has been plotted in blue, and below,
generated signals from each diffusion model are plotted in red.
Every column shares a label, but otherwise, is not intended to
be visually similar. The column labels are Normal (N), Atrial
Premature (S), and Ventricular Premature (V). while the rows
are Unconditional, Conditional, and Smoothed Conditional
Diffusion.

In this project, we have utilized Sinusoidal Positional Embed-
ding. The supplied label to the embedding function can be
categorical, one-hot encoded, or smoothed.

Unconditional diffusion modeling can still be leveraged
to generate new data samples targeting specific labels from
the example dataset by employing an ensemble of diffusion
models, with each model being dedicated to a particular class.
However, this reduces the availability of training data for each
instance and badly degrades the performance of the denoising
model. For a balanced dataset of n instances in c classes, each
model will only train on n/c instances. In unbalanced datasets,
it is possible that one denoising model might only train on a
few instances, making a very poor data generator.

Label smoothing is a regularization technique that augments
the label of each instance following the assumption that every
instance will have some likelihood of having been sampled
from each class. Label smoothing has been shown to improve

1301



Input

Embedding -

AUOD Al

Time t

Conditional Emb

Jake uonuspy

%00/g 16NSoY

Repeat 4x

00/g 19NSoY

Down Sample 1/2

%00Ig 18NSy

J1eke uopueny
32019 JeNs8y

Output

AUOD AL

- Embedding

%00Ig 18NSy

Time t-1

Conditonal Emb

Up Sample 2x

Repeat 4x

Jake uonuapy

00|19 18NSy
%00Ig 18Nsey

Fig. 2: A 1D-Unet Architecture was used as the denoising model in all three DDPMs. This model is fitted to a noise distribution
during training and is used to synthesize new examples from random input afterwards.

the generalization of models [21] and is closely related to the
broader family of loss-correction techniques [14]. Smoothed
labels are calculated by counting the frequency of each label
in the dataset. Each label is assumed to have a likelihood
equal to its frequency times some scaling factor «, with the
exception of the assigned label which is given likelihood 1—avx
frequency. For a label y with scaling factor « and frequencies
fo to f,, for n classes, the smoothed label is computed as:

1—(axf)ifi=y
a * f; otherwise

< Yooy Yn >= { (1)

Our technique integrates label smoothing into the reverse
diffusion process, which learn to predict the noise model
that has been introduced into examples during training, or
from samples of Gaussian noise during sampling. Under
conditional DDPM, the label is embeded with the signal as
an input to the denoising model. We smooth the label before
embedding, preventing the denoising model from developing
overconfidence in noisy labels.

B. Experimental Design

To demonstrate the advantages of Smooth Conditional Dif-
fusion, three diffusion models were prepared, and their outputs
were compared. The investigated data generation models were:
unconditional DDPM, conditional DDPM, and smoothed con-
ditional DDPM. The denoising model utilized for all three
approaches was a 1D-UNet model [9] with eight ResNet
blocks. The complete architecture of the diffusion models is
illustrated in Figure 2. During the training of the model and
for data generation, 1,000 time-steps of noise addition were
employed. The denoising models were fitted using 150 training
epochs. For smooth conditional diffusion, an « value of 0.1
was used.

These three diffusion models were trained on various
datasets of signal data: one synthetic, one for arrhythmia
detection, and two for human activity recognition. Following

training, each of the three diffusion models was used to gen-
erate additional instances of data for each dataset, equivalent
to the size of the original training dataset.

The synthetic dataset was generated using the techniques de-
scribed in [10]. This technique emulates the characteristics of
real-world signal datasets but cannot be adjusted to examples
of data and cannot be utilized to imitate samples of a specific
dataset. Instead, this technique is useful for generating data for
training other techniques without any chance of mislabeling.
A total of 5,001 instances of artificial data were generated in
five classes.

The MIT-BIH dataset [19] was obtained from the Beth
Israel Hospital between 1975 and 1979 from 47 subjects
using electrocardiography at a rate of 360 samples per second.
Two cardiologists manually labeled the dataset as containing
healthy heartbeats or presenting one of four forms of arrhyth-
mia.

The UniMiB SHAR dataset [16] contains accelerometer
data gathered from 30 subjects executing one of nine com-
mon activities using commercial smartphones. The phone was
carried in the right hip pocket of the subjects. The data were
segmented into three-second windows centered around signal
peaks.

The TWristAR dataset [7] was gathered at Texas State
University in 2022. Three subjects wore an Empatica E4 wrist-
band on their left wrist while executing one of six physical
activities. Acceleration data was collected at a frequency of
32 Hz. Video data with timestamps was provided alongside
the accelerometer data to confirm the labels.

The datasets were subjected to symmetric label noise,
with a uniform 5% mislabeling rate. Labels were randomly
selected and reassigned with equal probability to any other
label. This type of label noise occurs frequently in real-world
applications [1] and was chosen for its ease of introduction at
exact mislabeling rates across multiple types of signal data.

To demonstrate that the diffusion models learned to repro-
duce the distribution of the example data, we adapted the
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Fig. 3: 2D projections of original UniMiB SHAR data plotted in blue against the output of three DDPM data generators in red.
The greater overlap in the Smooth Conditional plot shows that the generated data is closer to the distribution of the examples.

Fréchet Inception Distance (FID) [6], a common metric for
evaluating synthetic image data. FID measures the distance
between the feature distributions learned from the example
data and those from synthesized data with the Inception
v3 model [25] for generating features to compute FID for
consistency with image generation. For this project, we have
selected a pre-trained 1D feature extractor that is appropriate
for signal processing.

Previous work has shown that FID adaptations are valid
even when substituting the pre-trained model with another one
that is more appropriate for a different data domain, such as
audio [11]. Following this concept, we selected a published
feature learner that is suitable for time-series data collected
from wearable sensors. Wave2Vec [27] was developed for
speech recognition and audio processing, but its feature ex-
tractor’s sampling rate can be adjusted to an appropriate range
for arbitrary signals. Our team’s work has demonstrated the
suitability of Wave2Vec for ECG and accelerometer data, and
it may also be applicable to a broad range of signals for
comparing signal generation techniques using FID.

We computed the FID of each diffusion model by comparing
the Wave2Vec features learned on the example data to those
learned from the synthesized data. Additionally, we prepared
UMAP [15] projections by overlaying the example and syn-
thetic data in two dimensions. These projections show how
closely each generator’s output aligns with the distribution of
its example data.

IV. RESULTS

Our findings demonstrate that label smoothing enhances the
capability of conditional DDPM to generate new data samples
that closely conform to the distribution of the example data,
even when some instances in the example data are mislabeled.

As shown in Figure 1, all three DDPM models generate
acceptable signal data. The ECG signals depicted in this figure
share the same label, and the synthetic instances (in red) have
been overlaid on an example from the original data. All six
signals in the figure share the same label. It can be observed
that the unconditional DDPM has overfitted to mislabeled

instances in the example data and is reproducing features that
do not correspond to the depicted class.

In Figure 3, we present 2-dimensional projections of the
UniMiB dataset plotted against synthetic data generated by
three DDPM approaches. UMAP is used to learn a lower-
dimensional projection while preserving the relative distances
of each instance in the projection. Since instances that are
close in these projections are also close in the original feature
space, we can infer the structure of the raw data by observing
the plots. Data points generated using Smooth Conditional
DDPM overlap more extensively with the real example data
(plotted in blue), indicating that the distribution of the two
samplings of data is closer. These figures can be challenging
to interpret, but a data generator can be considered effective if
the synthetic points in the plot (in red) are generally situated
on or near the blue points, and very few areas of blue points
remain uncovered.

Table I displays the Fréchet Inception Distance (FID) of the
output of each diffusion model. Lower FID values indicate
that the output of a generator is closer to the distribution of
the example data. The two conditional DDPMs consistently
outperform the unconditional DDPM. Moreover, the FID of
the output of the conditional DDPM is, on average across
all four datasets, 3.5% lower than the unconditional DDPM,
while the output of the smooth conditional DDPM is, on
average, 14.6% closer to the example data. These results
demonstrate that label smoothing improves the performance of
conditional DDPM in the presence of label noise by preventing
the denoising model from overfitting to mislabeled instances
in the example data.

It is noteworthy that the unconditional DDPM takes substan-
tially longer to train since an ensemble of denoising models is
trained following the approach described in Section III. One
denoising model is trained for each class represented in the
example dataset, making the difference noticeable in the five to
nine class data used in this project. However, larger numbers
of classes could create increasingly unwieldy ensembles of
denoising models when using unconditional DDPM.
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Dataset Uncon. FID Con. FID S. Con. FID Delta Con. FID Delta S. Con. FID
Synthetic 1.51 1.60 1.39 +6.0% -7.9%
MIT-BIH 7.85 6.91 6.82 -12.0% -13.1%
UniMiB 0.81 0.85 0.62 +4.9% -2.3%
TWristAW 2.53 2.20 2.18 -13.0% -13.8%
Average 3.18 2.89 2.75 -3.5% -14.6%

TABLE I: The FID of the output of each diffusion model on each dataset. This value represents the Wasserstein distance of
the output of the Wave2Vec feature learner for features from the example data and the synthetic data. Smaller values show
that the output of a generator is closer to the distribution of the original data. The two right columns show the percent change
from the FID of the unconditional diffusion model. The last row shows the average across all datasets.

The additional difficulty of training an ensemble of denois-
ing models makes conditional DDPM a preferable choice to
unconditional when class-targeted data generation is needed.
It is safe to assume that some label noise will exist in real-
world data used as examples for the generator. Time series
data, in particular, is susceptible to label noise [1], making
label smoothing a broadly applicable tool for generating
signals. Table I demonstrates that conditional DDPM with
label smoothing produces synthetic labels in a distribution that
is closer to that of the original data than conditional DDPM
without label smoothing.

V. CONCLUSION

This work has demonstrated a new data generation tech-
nique based on conditional DDPM, which incorporates label
smoothing to improve the resilience of the generation tech-
nique to label noise. We have shown that this new technique
generates new instances of data that more closely fit the distri-
bution of the original example data than existing techniques.
Finally, we have shown that FID can be made appropriate
for use with signal data by substituting a pre-trained feature
learner from the time-series domain.
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