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Abstract. Data augmentation is the practice of applying various trans-
formations to existing data to increase their size and diversity without
collecting new data. While augmentation strategies are widely recognized
and implemented in image-based deep learning (DL) workflows, the de-
gree to which they are effective in the time series domain is unclear.
This paper experimentally evaluates the utility of various common time
series augmentation techniques, especially those relevant to the medical
sector where data limitations are prevalent. We thoroughly examine pop-
ular time series augmentation and synthetic data generation methods to
evaluate their effectiveness in downstream classification tasks, encom-
passing both traditional and DL-based approaches. This research aims
to offer insights into the applicability and efficacy of data augmentation
strategies in improving model generalization and mitigating data scarcity
challenges, with a focus on biomedical time-series data.
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1 Introduction

Data augmentation is a technique for enhancing the size and diversity of training
datasets in machine learning. It involves creating modified versions of existing
data or synthesizing new data samples based on the statistical properties of
the original dataset. This method is instrumental across various data types,
including images, audio, video, and text. Our focus, however, narrows down to
the application of data augmentation techniques on time series data, a domain
that presents unique challenges and opportunities, especially within the medical
field.

The infusion of augmented data into the training process of time series models
offers significant advantages. It aids in the development of robust, flexible models
capable of generalizing effectively to new, unseen data. By introducing a variety
of scenarios and patterns through augmentation, models can better learn the
complex, non-linear relationships and temporal dependencies that characterize
time series data. This is particularly crucial in mitigating the risks of overfitting
and enhancing the performance of models trained on limited, imbalanced, or
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noisy datasets. Moreover, by limiting augmentation to the training phase, the
integrity and authenticity of the data during inference are preserved, ensuring
the models’ applicability to real-world scenarios remains uncompromised.

However, these advantages come with their own set of limitations. Despite
not directly affecting the inference phase, the process of data augmentation must
navigate the complexities of medical data’s sensitivity, specificity, and multidi-
mensional nature. The creation of augmented data requires careful consideration
to avoid introducing biases or artifacts that could mislead the learning process or
obscure critical information. Some augmentation techniques that directly apply
to other domains, for example, image flipping or rotating, may be ineffective or
even detrimental for time series data because they distort the inherent temporal
dependencies. Additionally, ethical and privacy concerns are paramount, as the
augmentation process involves manipulating sensitive patient data, necessitating
stringent adherence to data protection and privacy regulations. In conclusion,
while augmenting time series training sets offers a pathway to developing more
capable and generalizable models, it necessitates a careful, ethically mindful ap-
proach.

In this paper, we present a survey of existing time series augmentation tech-
niques and their effectiveness on different types of time series data. We categorize
augmentation techniques into two parts: (1) traditional methods and (2) genera-
tive methods (Fig. 1). Traditional methods involve simple signal transformations
such as jittering, scaling, magnitude warping, time warping, and window slicing.
Augmented copies of the original training samples are added to the training set.
Deep learning-based generative methods introduce new data samples by first
modeling the statistical properties of the dataset and then generating new data
that obey these statistical properties but are not identical to any of the original
samples on which the models were trained. The three most popular categories of
generative methods at the time of writing are Generative Adversarial Networks
(GANs) [7], Variational Autoencoders (VAEs) [1], and Diffusion models [8].

We assess the impact of these augmentation techniques on four distinct time
series datasets – pertaining to human activity recognition, sleep studies, heart
disorder recognition, and epileptic seizure detection (see section 3.1 for more
details) – and use the original and augmented versions of the data for downstream
classification tasks with three popular deep learning time series classification
architectures, namely LSTM [5], CNN [3], Transformer [14].

Our experimental findings underscore the nuanced effects of different aug-
mentation strategies on model accuracy, influenced by the specific characteristics
of the data and the architecture of the classifiers. These insights highlight the
absence of a universally optimal augmentation approach, advocating for a tai-
lored selection of techniques based on the specific requirements of each task. A
detailed discussion of our empirical observations and their implications for ma-
chine learning practice in time series analysis will be elaborated in subsequent
sections of this paper.
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Fig. 1. Overview of various Time series augmentation techniques.

2 Background

The exploration of time series data augmentation techniques has evolved signif-
icantly, with various methodologies being developed to enhance the robustness
and performance of machine learning models. This body of work encompasses
a range of strategies aimed at enriching training datasets, thereby improving
model generalization across diverse applications such as classification, forecast-
ing, and anomaly detection. Previous studies, such as those by Wen et al. [12]
and Iglesias et al. [2], have provided comprehensive overviews of augmentation
methods, discussing their applications, the metrics for evaluation, and the chal-
lenges encountered with each technique. Despite these efforts, a gap remains
in directly comparing the effects of these augmentation methods across differ-
ent types of datasets, particularly those related to human activity and medical
diagnosis.

In this context, our paper endeavors to bridge this gap by offering a detailed
experimental comparison of traditional and deep learning-based generative aug-
mentation techniques. Figure 1 provides an overview of the augmentation tech-
niques compared in this work. We assess their impact on datasets pertinent
to human activity recognition and medical diagnosis, employing various model
architectures to evaluate the effectiveness of each augmentation method.

2.1 Augmentation Techniques Overview

In this section, we delve into several common augmentation techniques examined
in this work and provide a brief formal definition of each.

Rotation: Rotation augmentation involves applying a transformation matrix to
the original time series data to generate new samples. This method is mathe-
matically represented as: Xrotated = R(θ)X where X is the original data, R(θ) is
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the rotation matrix defined by the rotation angle θ, and Xrotated is the rotated
data.

Jittering: Jittering introduces small, random variations to the data, effectively
modeled as: Xjittered = X +N (0, σ2) where X is the original data and N (0, σ2)
represents Gaussian noise with mean 0 and variance σ2.

Flipping: Flipping reverses the time series data, mathematically described by:
Xflipped[t] = X[N−t] where X is the original series, N is the length of the series,
and t is the time step.

Scaling: Scaling adjusts the amplitude of the data either by magnifying or by
shrinking the data point range of values. Xscaled = multiplier×Xoriginal where X
is the original data and multiplier is a scaling factor which can be either greater
or less than 1.

Permutation: Permutation reorders the data points randomly: Xpermuted =
X[π(i)] where X is the original data and π represents a permutation of the
indices i.

Window Slicing: Window slicing segments the data into windows, formally:
Xslice = X[t : t+w] where X is the original series, t is the starting point, and w
is the window size.

Time Warping: Time warping alters the temporal scale: Xwarped(t) = X(λt)
where X is the original series and λ is the warping factor.

Window Warping: Window warping applies localized transformations:
Xwindow warped = Transform(Xwindow) where Xwindow is a segment of the original
series and Transform denotes the applied warping.

Magnitude Warping: Magnitude warping modifies the amplitude:
Xmagnitude warped = X · λ where X is the original series and λ is the warping
factor.

Fourier Transform: Fourier Transform augmentation modifies the frequency
components: F(Xaugmented) = F(X) + ∆F where F(X) is the Fourier trans-
form of the original data, and ∆F represents the modifications in the frequency
domain.

Generative Adversarial Networks (GANs): GANs generate synthetic data
by training a generator G to produce data that a discriminator D cannot distin-
guish from real data, represented as: G(z) ≈ X where z is random noise input
and X is the real time series data.

Variational Autoencoders (VAEs): VAEs generate synthetic data by en-
coding input data X into a latent space z and then decoding it, shown as:
Xsynthetic = Decoder(Encoder(X))

Diffusion Models: Diffusion models represent a class of generative models that
gradually transform data from a simple distribution (e.g., Gaussian noise) into
complex data distributions by learning to reverse a diffusion process, Xt−1 =
f(Xt, θ), where Xt represents the data at step t, Xt−1 is the data at the previous
step, and f is a learned function parameterized by θ. In the context of time series
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data augmentation, diffusion models can be employed to generate synthetic time
series data that captures the intricate temporal dynamics and distributions of
the original dataset.

3 Methodology

Our methodology encompasses a rigorous approach to evaluating the efficacy of
various data augmentation techniques applied to time series datasets, ensuring
the integrity of our experimental setup and the reliability of our results. To
address the challenges inherent in time series data analysis, particularly the
risk of data leakage, we meticulously partition the datasets based on subjects.
This strategy guarantees that each subject is exclusively included in either the
training or testing set, thereby preserving the independence of our test data and
ensuring it remains unseen during training.

In our analysis, we explore both traditional and deep learning-based aug-
mentation methods. Traditional techniques such as jittering, scaling, magnitude
warping, time warping, window warping, and window slicing are systematically
evaluated. Each technique is parameterized to quantify the extent of augmenta-
tion, with experiments conducted across a spectrum of parameters using 10-fold
cross-validation. This process allows us to identify the parameter setting that
maximizes mean accuracy for each augmentation method. Using the selected
parameter, we augment the training data doubling the size of each class. Thus
the entire training data is doubled and the class ratios remain unaltered. Using
the best augmentation hyperparameter, we again shuffle the data 10 times and
calculate the accuracy for each shuffle. Using the 10 accuracies, we calculate the
technique’s average accuracy and 95% confidence intervals.

For the task of classification, we leverage three distinct classifier models:
LSTM, CNN, and Transformer-based models, utilizing the TSAI library [11]
for state-of-the-art implementations. Specifically, we employ the LSTM-FCN
architecture [5] for the LSTM model, the Inception Time model [3] for the CNN,
and the TST architecture [14] for the Transformer model, as implemented in the
TSAI library [11].

Data preprocessing forms the initial phase of our methodology, where data
from four distinct datasets are prepared for analysis. This involves loading data
from various channels, processing it through data loaders, and splitting it into
training, testing, and validation sets based on subjects. This subject-based split-
ting is critical for avoiding data leakage in time series analysis.

Our augmentation pipeline is depicted in Figure 2 for traditional methods.
In contrast, the pipeline for deep learning-based methods differs in the final
step by eliminating the need for multiple shuffling iterations, instead requiring
only a single iteration of data generation. We apply six traditional augmentation
methods, sourcing implementations [4]. For deep learning-based augmentation,
we investigate three techniques: a Transformer-based GAN [7], a Variational
Autoencoder [1], and a Diffusion model [8], each implemented from recent liter-
ature.
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Fig. 2. Overview of augmentation and testing pipeline for traditional time series aug-
mentation techniques.

Through this comprehensive methodology, we aim to provide a detailed com-
parison of the impact of various augmentation techniques on time series datasets,
focusing on human activity recognition and medical diagnosis. Our approach en-
sures a robust evaluation framework, leveraging advanced classification models
to assess the effectiveness of each augmentation technique in enhancing dataset
quality and model performance.

3.1 Dataset Description

The four datasets described below were selected as representative of typical
biomedical applications using machine learning models.

Human Activity Recognition: The UniMiB SHAR [9], is a dataset of ac-
celeration samples acquired with an Android smartphone designed for human
activity recognition and fall detection. The dataset includes 11,771 samples of
both human activities and falls performed by 30 subjects of ages ranging from 18
to 60 years. The dataset contains 9 types of daily living activities. The 9 types
of daily living activities include: Standing Up From Sitting, Standing Up From
Laying, Walking, Running, Going Upstairs, Jumping, Going Downstairs, Lying
Down From Sitting, Sitting Down.
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Sleep Event Detection: The Polysomnography (PSG) dataset [6] used in this
work contains data recorded on 212 individuals in a hospital setting for sleep
apnea syndrome (SAS) diagnosis. Five categories of abnormal events were anno-
tated by a medical team (“respiratory”, “neurological”, “limb activity related”,
“nasal”, and “cardiac”). In this study, we detect only the respiratory events,
thus forming a binary classification task. We use only the 12 signal channels
that are most relevant to the respiratory events. Nine of the channels (3 x EEG,
2 x EMG, 2 x EOG, 2 leg sensors, and ECG) were downsampled from 200 Hz to
100 Hz to match the remaining three sensors used (flow thermistor plus thoracic
and abdominal respiratory belts).

Heart Disorder Detection: The MIT-BIH disorder dataset [10] contains 48
snippets of ambulatory ECG recordings spanning half an hour each from 47
subjects across five heart conditions. The samples, originally recorded at 125Hz,
have been adjusted to 187 in length for U-Net compatibility. The training set has
87554 samples, with the majority class having 72471 samples and the smallest
class having 641. The test set includes 21892 samples, ranging from 162 to 18118
samples per class. The majority class of both the training and testing set was
reduced to 10% to prevent class imbalance.

Epileptic Seizure Recognition: This dataset [13] consists of 5 different fold-
ers, each with 100 files, with each file representing a single subject/person. Each
file is a recording of brain activity for 23.6 seconds. The corresponding time-
series is sampled into 4097 data points. Each data point is the value of the EEG
recording at a different point in time. So we have a total of 500 individuals, with
each having 4097 data points for 23.5 seconds. The five different folders repre-
sent five different situations in which the EEG signal is recorded from the brain.
The folders include eyes open, and eyes closed, recordings from healthy brain
areas with a tumor in the brain, recordings from the part of the brain with the
tumor, and the last folder, recordings of seizure activity. A binary classification
is performed with this data for recording of seizures against others.

4 Results

In Figure 3, we show the downstream classification of each combination of aug-
mentation technique and classification architecture on the four datasets used
in this study. Each of the four plots shown in the figure corresponds to a dif-
ferent dataset, as indicated by the label on the top of the plot. Each plot is a
bar chart, with the bars separated into three groups corresponding to the three
deep-learning classification architectures. Each bar within a group corresponds
to a different augmentation technique, showing the mean accuracy accomplished
when applying that augmentation technique to data. Along with the accuracy,
a 95% confidence interval range is shown at the top of each bar. The order is
maintained across groups and plots for comparison consistency.

Due to space limitations, only the plots are shown here. For the detailed
numeric results in tabular format and specific parameter values used by each
augmentation technique, the reader should refer to the Appendix of this paper.
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Fig. 3. Classification accuracy results for the combination of four datasets, three clas-
sifier architectures, and ten augmentation techniques explored in this study.
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5 Discussion

Our investigation into data augmentation’s impact on time series classification
accuracy has elucidated several crucial insights. Notably, while augmentation
typically boosts classification accuracy, the effectiveness of specific techniques
varies depending on the dataset and classification architecture used.

Traditional augmentation methods, such as jittering and scaling, generally
enhance model performance across various datasets by introducing necessary
variability without significantly distorting the time series’ inherent dynamics.
However, the mixed results observed with window warping and slicing highlight
the context-sensitive nature of augmentation effectiveness, indicating that a tai-
lored approach, possibly involving a combination of techniques, might yield the
best results.

The effectiveness of generative deep learning-based augmentation methods
also varies. It appears that the addition of synthetic examples with class ratio
distribution equal to the original dataset does not significantly boost the overall
accuracy. However, the boost in performance may be more pronounced when
the class distribution is imbalanced and synthetic examples are introduced to
the minority class(es) to mitigate the class imbalance.

Furthermore, our findings reveal that multi-channel datasets tend to benefit
more from augmentation than single-channel datasets, likely due to the richer
information content that provides more scope for effective augmentation without
loss of signal integrity. Conversely, the application of augmentation techniques,
especially in datasets with low signal-to-noise ratios like EEG data, requires
careful consideration to avoid degrading the classification accuracy.

Interestingly, the impact of augmentation appears to be relatively consis-
tent across different classification architectures, indicating that the benefits of
data augmentation transcend architectural differences and largely depend on the
quality and diversity of the training data.

In summary, data augmentation emerges as a valuable tool for improving
time series classification models, with its effectiveness highly contingent on the
dataset characteristics, augmentation technique, and classification architecture.
A judicious, context-aware application of augmentation techniques is essential
to optimize model performance, highlighting the need for ongoing research to
refine these strategies for diverse applications.

6 Conclusion and Future Work

Our comprehensive exploration of data augmentation strategies for time series
classification in the biomedical domain has illuminated their varied impacts on
model performance. We have shown that the effectiveness of augmentation tech-
niques is highly context-specific, with no one-size-fits-all solution. This under-
scores the necessity for a tailored approach, informed by the dataset’s charac-
teristics and the model’s requirements.

Moving forward, the development of more sophisticated, adaptive augmen-
tation methods that can autonomously determine the most effective strategies
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for a given dataset and task is an exciting area for further exploration. While
this study has focused on biomedical time series data, the insights gained are
broadly applicable across various domains, pointing towards the broader goal of
improving model robustness and generalization through strategic data augmen-
tation.
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Appendix

The tables below show the detailed classification accuracy results for each dataset,
augmentation technique, and classification algorithm architecture. The LSTM,
CNN, and Transformer table headers correspond to the LSTM-FCN [5], the
Inception-Time CNN [3], and the TST [14] architectures respectively, as imple-
mented in the TSAI library [11]. The “Par.” table header indicates the tuned
hyperparameter value used for that particular augmentation technique in the
corresponding experiment. For example, a jittering value of 0.03 corresponds to
the standard deviation value of the added Gaussian noise, a scaling value of 0.7
corresponds to the scaling factor multiplier, etc. For the generative models, the
default hyperparameters recommended by the original model authors were used
without tuning.

More implementation details can be found in the public source code page of
the project: https://github.com/imics-lab/time-series-augmentation

Table 1. Results for Human Activity Recognition dataset.

Augmentation Par. LSTM Par. CNN Par. Transformer

Original Null 80.54% ± 0.1 Null 88.68% ± 0.61 Null 90.85% ± 0.71

Jittering 0.03 85.91% ± 0.6 0.05 89.58% ± 0.43 0.8 91.09% ± 0.43

Scaling 0.7 86.01% ± 0.58 3 91.23% ± 0.45 3 93.22% ± 0.47

Mang. Warp. 0.1 84.8% ± 0.5 0.1 88.62% ± 0.34 0.3 90.04% ± 0.29

Time Warp. 0.1 83.38% ± 1.19 0.1 89.02% ± 0.64 0.1 91.38% ± 0.52

Window Warp. 0.01 85.62% ± 0.62 0.9 90.28% ± 0.46 0.01 91.43% ± 0.54

Window Slic. 0.9 88.14% ± 1.13 0.9 91.62% ± 0.44 0.9 93.37% ± 0.22

TTS GAN Null 74.21% ± 1.05 Null 86.22% ± 0.57 Null 89.59% ± 0.25

VAE Null 79.37% ± 0.45 Null 85.41% ± 0.56 Null 88.06% ± 0.44

Diffusion Null 80.14% ± 0.67 Null 84% ± 0.47 Null 87.6% ± 0.54

Table 2. Results for Sleep Event Detection dataset.

Augmentation Par. LSTM Par. CNN Par. Transformer

Original Null 68.72% ± 2.35 Null 63.43% ± 4.2 Null 75.49% ± 1.12

Jittering 0.01 66.04% ± 1 0.03 63.51% ± 2.3 0.07 77.39% ± 0.86

Scaling 11 78.04% ± 0.29 11 73.15% ± 4.09 9 77.94% ± 1.37

Magnitude Warping 3 77.39% ± 2.44 11 77.92% ± 0.02 9 75.62% ± 1.42

Time Warping 3 73.06% ± 2.04 11 74.91% ± 2.6 0.1 76.63% ± 1.33

Window Warping 0.9 68.36% ± 1.69 0.7 69.69% ± 3.94 0.09 74.7% ± 2.3

Window Slicing 0.2 75.48% ± 1.21 0.1 74.55% ±1.88 0.7 72.89% ± 1.93

TTS GAN Null 63.3% ± 3.68 Null 68.8% ± 2.8 Null 71.09% ± 3.18

VAE Null 67.87% ± 2.19 Null 75.25% ± 0.77 Null 76.47% ± 1.6

Diffusion Null 62.29% ± 2.89 Null 65.23% ± 4.6 Null 72.57% ± 2.43

https://github.com/imics-lab/time-series-augmentation
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Table 3. Results for Heart Disorder Detection dataset.

Augmentation Par. LSTM Par. CNN Par. Transformer

Original Null 94.32% ± 0.1 Null 94.5 % ± 0.09 Null 95.01% ± 0.08

Jittering 0.01 94.91% ± 0.07 0.01 94.87% ± 0.05 0.03 95.23% ± 0.1

Scaling 0.1 94.97% ± 0.09 0.1 94.92% ± 0.08 0.1 95.28% ± 0.08

Mang. Warp. 0.1 94.92% ± 0.14 0.1 94.93% ± 0.13 0.1 95.26% ± 0.09

Time Warp. 0.1 93.84% ± 0.12 0.1 94.08% ± 0.08 0.1 94.82% ± 0.1

Window Warp. 0.01 95 % ± 0.08 0.03 95.09% ± 0.15 0.03 95.47% ± 0.07

Window Slic. 0.01 93.88 % ± 0.12 0.01 94.24% ± 0.15 0.01 95.26% ± 0.09

TTS GAN Null 94.2% ± 0.09 Null 94.33% ± 0.12 Null 94.87% ± 0.08

VAE Null 93.61% ± 0.06 Null 94.23% ± 0.12 Null 95.03% ± 0.11

Diffusion Null 93.73% ± 0.08 Null 94.69% ± 0.07 Null 95.09% ± 0.08

Table 4. Results for Epileptic Seizure Detection dataset.

Augmentation Par. LSTM Par. CNN Par. Transformer

Original Null 97.16% ± 0.17 Null 97.21 % ± 0.13 Null 96.53% ± 0.2

Jittering 0.2 97.32% ± 0.07 0.4 97.14% ± 0.2 1 96.67% ± 0.2

Scaling 0.1 97.27% ± 0.11 0.1 97.12% ± 0.11 0.1 96.81% ± 0.24

Magnitude Warping 0.1 97.16% ± 0.17 0.1 97% ± 0.1 0.1 96.81% ± 0.15

Time Warping 7 97.13% ± 0.16 3 97.07% ± 0.14 0.1 96.69% ± 0.17

Window Warping 0.07 97.36 % ± 0.13 0.7 97.26% ± 0.14 0.1 96.85% ± 0.23

Window Slicing 0.3 97.39 % ± 0.12 0.3 97.34% ± 0.05 0.9 96.48% ± 0.27

TTS GAN Null 96.71% ± 0.22 Null 96.42% ± 0.12 Null 97.06% ± 0.12

VAE Null 97.3% ± 0.09 Null 97% ± 0.13 Null 96.03% ± 0.31

Diffusion Null 96.95% ± 0.2 Null 96.78% ± 0.17 Null 95.81% ± 0.37
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