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Abstract—In this work, various non-invasive sensors are used
to collect physiological data during subject interaction with vir-
tual reality environments. The collected data are used to recognize
the subjects’ emotional response to stimuli. The shortcomings and
challenges faced during the data collection and labeling process
are discussed, and solutions are proposed. A machine learning
approach is adopted for emotion classification. Our experiments
show that feature extraction is a crucial step in the classification
process. A collection of general purpose features that can be
extracted from a variety of physiological biosignals is proposed.
Our experimental results show that the proposed feature set
achieves better emotion classification accuracy compared to
traditional domain-specific features used in previous studies.

Index Terms—Physiological measurement, emotion recogni-
tion, virtual reality, feature extraction, feature selection.

I. INTRODUCTION

With the continued development of automated systems that
interact closely with humans in a more natural manner, the
ability of such systems to determine the emotional state of
nearby subjects and adapt accordingly is increasingly impor-
tant. Applications include the broad area of affective comput-
ing as well as more specific areas, such as evaluating the effec-
tiveness of virtual reality based treatment for social phobias.
The primary goal of this research is to determine emotional
state of human test subjects through the non-invasive collection
and analysis of physiological data during subject interaction
virtual reality or other immersive audio/visual environments.
This paper covers two elements of the research: the key
findings related to the experimental design, and the results
of the data analysis and emotion recognition.

Early work regarding emotional states includes that by
Ekman and Friesen on universal facial behaviors. This study
used six emotional states: happiness, anger, sadness, disgust,
surprise, and fear [1]. The interactions of the sympathetic and
parasympathetic nervous system cause physiological changes
that are measurable [2], [3]. Work in this area includes
emotion classification based on physiological bio-signals, e.g.
[4]. Image processing and machine learning techniques have
also been used to classify emotion based on facial images and
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voice recordings [5]. More recent studies suggest that emotion
should not be classified into discrete states, and propose a
circumplex model of affect, more widely known as the arousal-
valence model [6]. We adopt that model in this study.

A key pattern that emerges is most studies using physiolog-
ical biosignals for emotion recognition is that a specific set of
biosignals types are used, and a limited set of domain-based
features are extracted, based on the specific type of application
at hand, to maximize accuracy. We hypothesize that with the
blooming of sensors and machine learning, and the generation
of ever larger amounts of data, a more general approach for
data acquisition and feature extraction may be needed. Our
experimental results support our hypothesis.

One of the key challenges in this area is the acquisition
of accurate measurements. In medical settings, such as sleep
studies or brain scans, the subject is typically still and has been
connected to the sensors by a team of trained personnel. For
the purposes of therapy evaluation and ultimately real-world
data collection the subject will be moving, perhaps extensively.
In addition the ease of connecting and unconnecting the
sensors will need to be simplified. There are a number of
aspects that need to be considered. Some are inherent in the
biology of the subjects; these include the fact that the signals
themselves are very small and the body generates a variety
of different electrical potentials in response to brain activity,
muscle activity, and involuntary reactions to stimuli [7].

On the sensor side, there is a constant struggle between the
need for very good electrical conductivity to the skin and the
non-invasive least intrusive goals for a system which would
ideally be used continuously. For example, highly accurate
measurement of muscle activity typically entails the use of a
needle electrode in the muscle itself [8]. For the best non-
invasive signal on the skin surface, skin preparation such as
an alcohol scrub to remove dead cells and a strong adhesive
electrode with pre-applied electrolyte gel is typically used. If
the location has hair it may be shaved beforehand to facilitate
a better connection and lessen the difficulty in removal of the
electrode [9].

Given these hassles, immediate widespread adoption is
unlikely. However, it’s easy to foresee that electrodes will
be incorporated into clothing, jewelry, and other worn ac-
cessories. Currently the signals available through these types



of sensors are far weaker and noisier than securely attached
disposable electrodes [10]. However, technological advances
will probably help overcome these problems. Furthermore, the
current hardware using attached electrodes can still be utilized
in special settings, such as therapy sessions.

In this work we attempt to answer the following research
questions:

• Evaluate the extent to which emotional responses caused
by interaction with virtual reality environments can be
measured through physiological biosignals.

• Establish a methodology and discuss the challenges of
biosignal data acquisition using current hardware capa-
bilities.

• Develop a general-purpose feature extraction strategy,
which is independent of the types of signals acquired,
and evaluate the discriminatory power of such features
compared to traditional domain-based features.

In the following sections, we first explain our data collection
methodology in section II. Next, in section III, we discuss
our data preprocessing steps. Subsequently, we introduce our
feature extraction and feature selection approaches and present
the experiment results for emotion classification in section IV.
Finally, we discuss our experimental findings in section V, and
conclude this paper in section VI.

II. DATA COLLECTION METHODOLOGY

The experimental methodology includes two distinct ele-
ments that are detailed in the following sections. The first is the
collection methodology of the physiological signals including
challenges induced by the fact that the subjects were moving
during the data collection. The second is the stimuli based on
the virtual reality sessions along with the annotation of the
subjects’ emotional state to provide label information. Five
male subjects participated in this study, with ages ranging for
20 to 50 years old.

A. Physiological Data Collection

Data collection was limited to non-invasive techniques,
which include disposable adhesive electrodes on the skin,
wearable type sensors, such as respiration straps, finger elec-
trodes, etc. Audiovisual data were also collected to facili-
tate off-line data annotation. The physiological signals were
measured using two BioRadio Wireless Physiology Monitors
and associated peripherals from Great Lakes Neurotechnology
[11]. The BioRadio provides 4 differential inputs that can
be configured for a variety of electrical biosignals and an
additional expansion pod that can be used for temperature
sensing and pulse oximetry. As described in the BioRadio
User’s Guide: “The BioRadio is worn by the person and
is designed for acquiring physiological signals from sensors
attached on the body. Physiological signals are amplified,
sampled, and digitized, which can be wirelessly transmitted
to a computer Bluetooth receiver and/or recorded to onboard
memory for post-analysis.” More details can be found in the
user manual which is available online [11].

TABLE I
PHYSIOLOGICAL SIGNALS MEASURED.

Physiological Signal Location
EEG f4 High right forehead
Electrooculography (EOG) Horizontal Outside of eyes
Electrooculography (EOG) Vertical Above and below right eye
Electromyography (EMG)
Zygomaticus “smile” muscle Right cheek

Electrodermal Activity (EDA) Right index & pointer finger
Electrocardiogram (ECG) Left and right wrists
Chest Respiration (RIP) Chest strap
Abdomen Respiration (RIP) Stomach strap
Peripheral Temperature Right pinkie finger
Heart Rate via PulseOx Right ring finger
Blood Volume (PPG) via PulseOx Right ring finger
Blood Oxygen (SpO2) via PulseOx Right ring finger
Head Acceleration and Rotation Rear of head
Body Acceleration and Rotation Right hip

Fig. 1. Electrode placement.

Respiration was measured using inductive interface cables
and respiratory inductance plethysmography (RIP) belts made
by SleepSense (S.L.P. Inc). The RIP belts and interface module
provide a voltage input to the BioRadio which varies based
on the measured chest and abdomen volume. This technique
has been shown to reliably measure respiration [12]. The
finger based pulse oximeter used was Model 3012LP by Nonin
Technologies. Pulse Oximetry utilizes two types of LEDs to
measure the absorption of light within the finger or earlobe
to determine pulse, SpO2, and peripheral blood volume [13].
A total of 24 signals were measured, including 6 head and 6
body acceleration sensors (linear and angular acceleration in
3 axis). The signals are listed in Table I.

In the following paragraphs we elaborate on the details of
applying the sensors to the test subjects in order to, first,
support the validity of our approach, and second, to facilitate
possible future replication of similar experiments by other
researchers.

1) Skin Electrode Placement: Each subject was provided
with an instruction sheet guiding them in the skin preparation
and electrode application. They were asked to clean the skin
where the electrode will be attached with an alcohol swab to
remove any oils, lotions, makeup, etc. as well as dead skin.
The electrodes used in this study were MVAP-II Electrodes
containing a Silver/Silver Chloride Sensing Element with
Hydro Gel and manufactured by MVAP Medical Supplies.
Placement locations of the adhesive electrodes are shown in
Fig. 1.



Fig. 2. Left: a picture of a test subject right before starting the VR session.
Right: a picture of the test subject during a VR session.

2) Equipment Mounting and Cabling: A seemingly simple
but significant issue was mounting the BioRadio uniformly and
securely. The BioRadio is equipped with a removable belt clip.
However, since the accelerometer and gyroscope are internal
to the device, a uniform mounting independent of clothing
was desired. The characteristics of the device attached to an
elastic waist band might vary significantly versus one clipped
to a tighter belt.

For the head BioRadio, the first attempts were to simply
clip the device onto the straps of the Oculus DK2. The Oculus
itself is fairly immobile on the head. In this setup, however, the
BioRadio moved significantly. A big improvement in mounting
was made by using a plastic mounting bracket modified from
an inexpensive LED headlamp which was secured to the straps
at the cross point directly in the back of the head.

In order to eliminate the effect of clothing on the motion
capture of the “body” radio, a back supporting belt was
utilized. This belt attaches securely around the waist and
the Velcro closures were used to hold the body radio tightly
against the right side of the waist. Additionally, it was possible
to also use the Velcro flaps to secure the cables and sensor pods
associated with the RIP belts.

Cable management remained somewhat cumbersome, and
this was a problem for several reasons. First the subjects’
movement is somewhat limited. This did not prove to be an
issue for these activities that consisted only of sitting and
standing in a limited area, but it will be a greater problem
as movement is increased. Directly related to this is the fact
that the cables can become snagged and disconnect during
the activities. This required special attention especially with
respect to the ergonomic armrests and adjustment knobs on
the chair. Finally cable movement can induce noise into the
signals. Best practices include taping or affixing the cables
tightly to the body. This however, was not practical in a non-
medical setting. Future setups would benefit from a fixed
harness where the cables are joined into less cumbersome
bundles.

Fig. 2 shows a two pictures of a test subject wearing the
necessary gear for data collection and interaction with VR.

3) Video Collection and Event Markers: All data collec-
tion experiments were recorded with a high definition video
recorder and external microphone. External speakers in par-

allel with the subject’s headphone audio were used to record
the virtual reality audio track. This video and audio record
proved very valuable when labeling the sessions. In addition,
the marker functionality of the BioRadio was used to mark
key segments such as the start of a VR application in the
data set. Care was taken to be very deliberate when hitting
the marker key so that is was both visible and audible on the
video recording.

4) Informed Consent: As this research involved human sub-
jects, the research team obtained Institutional Review Board
approval before performing any data collection or experiments.

All subjects signed an informed consent form prior to the
virtual reality sessions. Immediately before each VR session,
subjects were briefed on the content and approximate duration
of the session. Subjects were periodically reminded that they
were free to stop at any time without repercussion or harm
to the research. Subject were also told to be aware of the
possibility of nausea and read/accepted the in session Oculus
health warning. Only one of five subjects reported nausea and
none requested to stop the VR sessions.

B. Virtual Reality Sessions and Stimuli

The virtual reality sessions were chosen from applications
available for the Oculus Rift [14] that were also compatible
with the Oculus DK2 headset with the following general
criteria:

• Readily available content - free on Oculus web store.
• A range of relaxing to exciting scenarios, while avoiding

disturbing or mature content.
• Both passive (movies, demos) and active (games) subject

involvement.
The generation of intense physiological responses spanning

a range of emotions is a challenge. Ethical aspects and subject
health must be taken into account when planning experiments.
Some of the least upsetting stimuli include colors, music,
and self-directed thought experiments e.g. “Imagine a time
when you were very happy”. With such an experimental
setup the degree to which the emotion is experienced, and
consequently the level of physiological response, is limited
[15]. In order to elicit stronger emotional responses different
and likely more upsetting or deceitful techniques have been
used. Given the immersive potential of the virtual reality
environment extreme content was not included during this
experimentation. Some elements included, such as views from
high vantage points, could be considered startling for people
fear of heights, however the individuals who participated in
this experiment did not report any known phobias which could
elicit a strong emotional response. The virtual reality sessions
used are shown in Table II.

The targeted total time wearing the VR headset was slightly
more than 60 minutes. Early experiments showed that af-
ter approximately 1 hour subjects began to tire of the VR
environment. The last session was a game which could be
terminated at any time based on the subject’s fatigue and
desire to continue. The total time, including the time required
to set up the data collection hardware, describe and launch



TABLE II
VIRTUAL REALITY SESSIONS AND THE CORRESPONDING EXPECTED

EMOTIONAL RESPONSES FROM THE TEST SUBJECTS.

VR Session Expected Emotional Response
Intro to Virtual Reality Demo First-time VR exposure excitement.
The Rose and I Movie Relaxation, mild sadness.
Two Discovery Action Videos Excitement, stress.
InCell Game Arousal due to fast-paced nature.
Lost Movie Stress and surprise.
Oculus Dream Deck Relaxing and exciting videos.
Luckys Tale Game Arousal, concentration.

the application plus the recording of subjects’ responses after
each session added up to a total of about 2 and a half hours
per subject. This included skin preparation and application of
the adhesive electrodes, connection of the electrodes to the
BioRadio, adjusting and donning the RIP belts, and mounting
of both BioRadios, as well as removal of the equipment after
the conclusion of the VR sessions.

Initial experimentation showed that getting consistent and
reliable feedback from the subject is challenging. It is quite
difficult to describe many of the experiences in consistent
emotional terms. Indeed, the question “How did that make
you feel?” is an opened ended one, often used in therapy.
Even members of the research team who were familiar with
the classification of emotion and the arousal-valence model
of affect [6], struggled to enunciate what types of emotion a
specific video or game induced.

The final methodology employed was a simplified version of
the arousal-valence model. Instead of removing the headset to
fill out a form, the subjects were asked verbally the following
questions after each session:

• Did you find this [movie, game, demo] exciting, relaxing,
or neutral?

• Did you find this [movie, game, demo] pleasant, unpleas-
ant, or neutral?

While there was still some hesitation on the subjects’ part,
especially during longer sessions that had multiple scenes, this
simplified oral response method worked much better than the
prior methods.

III. DATA PRE-PROCESSING

A. Data Retrieval, Merge, Cleaning, and Labeling

The collected signals were streamed to a laptop running
Windows 10 and two instances of the BioCapture program,
one for each BioRadio device. For consistency, the recording
was started on the head device first and then on the body
device. The typical offset involved with switching instances
and setting up the second recording was approximately 17
seconds. The keyboard was configured for a marker in the head
radio instance of BioCapture. All marker data was captured in
the head instance.

After the session completion, the files were exported from
the BioCapture program into standard comma delimited text
(.csv) format. Given the 250 Hz sampling rate, each minute
of collected data generated 15,000 rows in the table. The total

number of rows depends on the session length and ranges
from approximately 70,000 to 140,000 rows for sessions 1 -
6. Due to the fact that it was left to the subject as to how long
to continue Session 7 has a broader range and can exceed
250,000 rows if the subject completes the entire game. The
head configuration has 13 columns and the body configuration
has 16 columns, depending on the number of data channels
collected by each device.

After conversion to .csv format, each of the 14 data files
(7 sessions x 2 for Head and Body) was imported in to a
MATLAB table. MATLAB Version R2016a was used for this
analysis. The separate head and body recordings were joined
prior to labeling. Unfortunately, there is no common signal
nor ability to add a marker in each file. There are known
techniques of synchronizing the files based on cross correlation
however given that each of the signals is discrete and the
times involved are based on human reaction the files were
synchronized using the time-stamp label of each data row
available via the BioRadio.

Specifically, an offset was calculated by subtracting the
delay from the start of the head recording to the start of the
body recording and this was used to align the rows prior to
performing a table join. In addition, the start and stop times
were also used to discard the setup and takedown segments of
each session.

A separate table containing column vectors with the subject
and session metadata was also created. The table and its
column vectors were joined to the initial table. The BioRadio
sampling was very consistent during the data collection and
there were no missing data points, however in two cases the
data had to be adjusted. The first case is the PulseOximeter
data where the sensor generates an out-of-range value when it
is unable to get a proper reading which only occurred briefly
during periods of subject movement. In this case the out-
of-range data was replaced with the last known good value.
The second case affected only one subject and was due to
an electrode cable becoming disconnected during the data
collection. In this case the erroneous data was replaced by
an average of the prior readings.

B. Emotional Response and Labeling

The subjects’ responses to the two questions regarding level
of excitement and pleasantness were graphed on a 9 square
grid, a discretized version of the arousal-valence model shown
in Fig. 3. The summed up responses for each VR segment
for all subjects are shown in Fig. 4. The valence scale was
measured as “Unpleasant”, “Neutral”, or “Pleasant” (from left
to right) and the arousal scale was measured as “Relaxing”,
“Neutral”, or “Exiting” (from bottom to top).

The results are very asymmetrical with the majority of the
sessions rated as “Exciting” and “Pleasant”. This is likely
due to the conservative selection of stimuli and the limited
number of subjects. For example, only one subject expressed
any trepidation regarding heights, and therefore the “Pendulum
Swing” and “City Scene which”, which both involved a view
from very high perspective with a large potential drop off



Fig. 3. Subject response graph indicating “pleasantness” and “excitement” as
described by the arousal-valence model of affect [6].

Fig. 4. Subject response results. Each cell shows how many subjects reported
feeling the corresponding level of “pleasantness” and “excitement” for each
VR session.

was not rated as unpleasant. Given the lack of unpleasant
valence results and the limited negative arousal results the
classification was limited to the arousal only during the Rose
and I, Pendulum, and Roller-coaster Movie sessions.

Classification labeling within each segment was much more
manual and required the time information gleaned from the
video. A point was made to include a start mark (by pressing
the ‘S’ button on the laptop) in the head file that was audibly
and visually visible in the video. Since this data was also
clearly present in the data file it served as the alignment
index between the video data and the signal data. For several
of the sessions the activities were further broken down into
segments as previously described in the subject self-reporting
section. The video was viewed and time manually input into
a spreadsheet to convert to elapsed time in the data file.

IV. FEATURE EXTRACTION AND CLASSIFICATION

Three methodologies were employed for feature extraction.
First we tried a simple mean/standard deviation analysis.
Second we performed an analysis using domain specific
knowledge and extracting features known to be relevant to the
specific physiological signals. Finally, a more comprehensive
feature set was generated, extracting 90 different general-
purpose signal descriptors (features) from each signal channel.

For classification, a leave-one-out cross validation approach
was followed, where in each round the data collected from one
subject was used as the test set, and the data collected from
the remaining subjects was used for training the classifier.
This approach ensures that no data samples from the same
subject end up in both the training and testing set, which
would artificially increase accuracy due to over-fitting on the
idiosyncrasies of the absolute signal values collected from each
subject.

In our classification experiments, we segmented the signals
into 10-second non-overlapping windows, and each segment
(window) was labeled and was treated as an independent data
sample. Thus, each session yielded multiple data samples,
depending on its duration.

Finally, due to the small number of responses in the “relax-
ing” and “neutral” arousal categories, during classification, the
latter two categories were merged into one, thus, leading to a
simplified binary classification problem of “high-arousal” or
“moderate/low arousal”.

Naive Bayes (NB), K-Nearest Neighbor (KNN) and Support
Vector Machine (SVM) classifiers were tested, with SVM
yielding the highest accuracy in most cases.

In the following subsections we present the arousal classi-
fication accuracy results for each approach.

A. Mean and Standard Deviation Features

For an initial analysis, and to establish a baseline, simple
mean and standard deviation features were extracted from each
signal channel, with a 10 second (2500 sample) sliding non-
overlapping window. The resulting MATLAB table contained
48 features, 2 for each of the 24 time based input signals.
For the simple mean and standard deviation feature set only
a few feature selection experiments were run and did not
yield significant improvement to the classification accuracy.
For the mean and standard deviation feature set utilizing all 48
features (without feature selection) the leave-one-out accuracy
was 74% using a Support Vector Machine classifier.

B. Domain-Based Feature Extraction

Feature extraction algorithms were developed based on
existing knowledge regarding the behavior of the physiological
signals with respect to emotional response, similar to ones
found in previous studies, e.g. [4]. The 15 features that were
computed are described briefly below.

• meanHR - the mean of the heart rate as reported by
the pulse oximeter was calculated for each segment and
was normalized by subtracting the mean of the subject’s
heartrate for the entire dataset (the base heart rate).

• magPPV - the magnitude of the peripheral blood volume
as reported by the pulse oximeter was calculated for
each segment by subtracting the minimum value from
the maximum value.

• slopeGSR - the slope of the electrodermal activity (EDA)
or skin resistance was calculated by subtracting the value
of the last sample in the segment from the value of the
first sample in the segment.



• meanGSR - the mean value of the skin resistance was
calculated as the average of all samples within each
segment.

• slopePT - the slope of the peripheral skin temperature
(SKT) was calculated for each segment by subtracting
the minimum value from the maximum value.

• mECGHR - the mean heartrate based on the ECG signal
was calculated by counting the number of peaks which
were greater than 0.5 seconds apart during each segment.

• HRV - heart rate variability is a better predictor of
emotion than raw heartrate [3]. The variability of the
heart rate was computed by taking the maximum distance
between adjacent peaks minus the minimum distance
between adjacent peaks divided by the average distance
between peaks for a given segment.

• minHRV - is calculated as HRV except the min peak
distance only is used.

• maxHRV - is calculated as HRV except the max peak
distance only is used.

• respA, respC - a similar peak counting method as
mECGHR is applied with a 2 second peak to peak
minimum for the abdomen and chest RIP signals.

• respVA, respVC - the minimum peak to peak distance
divided by the mean peak to peak distance is computed
for each segment from the abdomen and chest RIP
signals.

• meanfR - the mean value of the f4 EEG signal is
computed. This signal is previously normalized by subject

• magEMG - the magnitude of the EMG signal is calculated
by subtracting the minimum value in the segment from
the maximum value in the segment.

Multiple combinations of features were run during the
development of the domain based features as well as some
automated testing. The accuracy was found to be highest with
the following set of features: meanHR, magPPV, slopeGSR,
mECGHR, HRV. When each feature was evaluated individu-
ally the top 3 performing features were meanHR, magPPV, and
HRV. The highest overall leave-one-out accuracy of 80% was
achieved using a Support Vector Machine and the following
five features: meanHR, magPPV, slopeGSR, mECGHR, HRV.

C. General Purpose Feature Extraction

For the last round of analysis, we utilized a multitude
of general purpose signal descriptors, subsets of which have
been previously used in various signal processing applications,
but to the best of our knowledge, have not been previously
combined and tested in physiological biosignal analysis appli-
cations. From each signal, the 90 features shown in Table III
were extracted resulting in 2160-dimensional feature vectors.
The signal descriptors used as features here are only listed by
name. The reader may refer to the literature for details about
each descriptor type.

Using all 2160 features the leave-one-out accuracy was
57%. The low classification accuracy is justified by the fact
that many of the features included could be just introducing

TABLE III
LIST OF GENERAL PURPOSE FEATURES EXTRACTED.

# Signal Descriptor
1 Average
2 Standard deviation

3-8 PSD1 - peaks frequency
9-14 PSD - peaks amplitude
15 Energy
16 Zero crossing rate
17 Energy entropy
18 Spectral centroid
19 Spectral spread
20 Spectral entropy
21 Spectral Rolloff point [16]

22-26 MODWT2 - Energy of Wavelet [17]
27-31 MODWT - Percentage of Energy of Wavelet
32-36 MODWT - Standard deviation of Wavelet
37-41 MODWT - Mean of Wavelet

42 Tsallis entropy [18]
43 Renyi entropy
44 Shannon entropy

45-54 RSP3 of sub-bands
55 RSP - Slow wave bands-spectral bands Delta
56 RSP - Slow wave bands-spectral bands Theta
57 RSP - Slow wave bands-spectral bands Alpha

58-72 Harmonic parameters [19]
73 Hjorth parameters – Activity
74 Hjorth parameters – Mobility
75 Hjorth parameters – Complexity
76 Skewness
77 Kurtosis

78-87 Autoregressive parameters
88-90 Percentile 25, 50, 75 amplitude

unnecessary noise, and also by the fact that the vector dimen-
sionality is high compared to the number of available data
samples.

Apparently, a feature selection step is necessary in this
situation to reduce the dimensionality and eliminate noisy
features. To that end, we experimented with a variety of feature
selection methods including two embedded feature selection
methods, RFS [20] and HSSL [21], as well as MSVM-RFE
[22], mRMR [23] and ReliefF [24]. Table IV summarizes
the best accuracy that was achieved by each feature selection
method. The embedded feature selection methods in combi-
nation with SVM were clear winners in this case, with the
method found in [20] (RFS) achieving slightly better accuracy,
with a smaller number of features compared to the method
found in [21] (HSSL). The best accuracy achieved in this
experiment was 89.19%. For the winning feature selection
method, in Table V we present in more detail the accuracy
achieved for different amounts of selected features.

It should be noted that some feature selection methods, like
SVM-RFE and mRMR return the actual subset of best features
selected, whereas other methods, like the two embedded
methods used here and Relief-F, only return a ranking of all the
features from best to worst. For the latter case, we performed
a two-step incremental search to determine the best number of

1PSD: Power Spectral Density (multiple frequency ranges (sub-bands)).
2MODWT: Max overlap discrete wavelet transform (mult. sub-bands).
3RSP: Relative Spectral Power (multiple sub-bands).



TABLE IV
CLASSIFICATION ACCURACY RESULTS USING THE GENERAL PURPOSE
FEATURES EXTRACTED AND A COMBINATION OF FEATURE SELECTION

AND CLASSIFICATION ALGORITHMS.

Feature Selection
Algorithm

Classification
Algorithm

Best %
Accuracy

Optimal #
of Features

RFS [20]
NB 76.12 20
SVM 89.19 42
KNN 77.11 20

HSSL [21]
NB 82.65 30
SVM 88.2 60
KNN 76.76 20

MSVM-RFE [22]
NB 77.42 287
SVM 77.72 211
KNN 73.18 6

mRMR [23]
NB 59.55 2
SVM 63.42 7
KNN 58.18 2

Relief-F [24]
NB 77.78 10
SVM 80.34 46
KNN 73.14 12

TABLE V
CLASSIFICATION ACCURACY RESULTS FOR A VARYING NUMBER

SELECTED FEATURES USING THE RFS [20] FEATURE SELECTION METHOD.

# of features NB SVM KNN
10 66.27 69.6 70.51
20 76.12 73.8 77.11
30 75.79 86.56 68.28
40 54.37 88.86 73.19
42 54.05 89.19 72.53
50 52.73 88.86 71.23
60 53.4 82.96 63.71

features to keep. In the first step, we added features (stating
from the best) in batches of 10, and re-trained and tested the
classifier with each round. In the second step, we performed
a more refined search, around the multiple of 10 that gave the
best result in step 1, by adding one new feature at a time.

V. DISCUSSION AND FUTURE CONSIDERATIONS

Experimental design is critical to the success of this re-
search. Testing the stimuli and subject self-reporting responses
prior to the more complex experiments with the full sensor
setup would be beneficial. Unfortunately, this will likely
require a much larger subject population as some level of
desensitization will occur, therefore, it would be best to
perform the data collection on subjects who have not pre-
viously participated in the virtual reality simulations. In order
to better cover the relaxing portion of the arousal-valence
space, calming or meditative segments should be added. More
challenging will be the identification of emotionally unpleasant
stimulus. Given the immersive nature of the virtual reality
environment care must be taken not to cause undue stress with
explicit or unsettling content. A thorough IRB review of the
stimulus, subject selection, and procedures would be warranted
with this type of content.

Some physiological signals varied significantly between
subjects, with no universal telltale markers found. If possible,
selecting subjects based on presence or absence of sensitivity

to the intended stimuli would be beneficial. For example, a
dataset with 50% of the subjects expressing a fear of heights
and 50% having no fear of heights engaged in a virtual reality
simulation that involves height and drop simulations would be
very interesting.

In order to increase the number of subjects several elements
will need to be improved. Less cumbersome equipment with
better cable management and/or wireless sensors along with
sensors built into headset or other wearable type garments
instead of adhesive type electrodes would make the simu-
lations much more pleasant and also decrease the required
setup time. Event marking should be as automated as possible.
Video recording with remote audio capabilities was invaluable
for this preliminary research but reviewing each video to
determine event label start and stop points required a large
amount of time. Additionally, this manual technique increases
the risk of error and timing inaccuracies.

Feature extraction seems to play a significant role in the
outcome, however, there are no standard feature types univer-
sally acceptable for physiological biosignal analysis. Domain
knowledge will likely need to be combined with general
purpose features for each type of signal to further improve
accuracy. For example, the rise and recovery of a GSR event
is well documented and fairly easy to spot visually on a
graph however specific feature extraction will be required to
form a marker for this type of event in the feature table. In
addition, motion is likely not relevant for the direct prediction
of emotional response, however it could prove to be valuable
in detecting and eliminating noise and motion related artifacts
from the signals that are relevant.

Furthermore, a qualitative examination of the types of
features that are consistently ranked low by feature selection
algorithms may indicate that they are inappropriate for the
task at hand. If such signals tend to come from certain
physiological channels, it may be possible to eliminate those
channels altogether, without significant loss in accuracy, thus
reducing the obtrusiveness of the data collection process.

With the continued progress in sensing technology and
through the application of machine learning on large datasets,
the classification of human emotion will help guide therapy,
training, and the development of improved experiences with
automated systems that include affective computing capabili-
ties.

VI. CONCLUSION

In this work we presented our findings and observations
towards emotion recognition from physiological biosignals
collected during user interaction with virtual reality envi-
ronments. As emotion is a subjective concept, the task of
automating emotion recognition is a particularly challenging
one due the inherent difficulty of generating reliable ground
truth data. Furthermore, the current sensor technology for
physiological signal acquisition has certain limitations which
extend to both the inconvenience for the user and the quality
of the data collected.



Nevertheless, significant effort has been put by researchers
towards the goal of emotion recognition from physiological
data with varying degrees success. One of the limiting factors
is the absence of a universally acceptable methodology for
feature extraction from a variety of physiological biosignals.
Our work shows that analysis of biosignals does not require
domain specific knowledge and that a generic set of features
can be extracted from a variety of biosignals. This general
purpose features in combination with strong feature algorithms
can exceed the performance achieved by developing and using
domain specific features.
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