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Abstract. There are many evaluation metrics and methods that can
be used to quantify and predict a model’s future performance on previ-
ously unknown data. In the area of Human Activity Recognition (HAR),
the methodology used to determine the training, validation, and test
data can have a significant impact on the reported accuracy. HAR data
sets typically contain few test subjects with the data from each subject
separated into fixed-length segments. Due to the potential leakage of
subject-specific information into the training set, cross-validation tech-
niques can yield erroneously high classification accuracy. In this work1,
we examine how variations in evaluation methods impact the reported
classification accuracy of a 1D-CNN using two popular HAR data sets.
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1 Introduction

With the advent of inexpensive wearable sensors in recent years, Human Activity
Recognition (HAR) has been a hot topic of research both for medical applications
and in human-computer interaction in general. In HAR, the methodology used
for model evaluation differs from other areas such as image recognition due
to the sequential nature of the data sets. HAR data sets typically consist of
accelerometer and gyroscopic data recorded using a smartphone or wrist-worn
device. Movement patterns specific to given activities such as running, walking,
and sitting are identified using classic machine learning or newer deep learning
approaches. HAR data sets typically differ from image and natural language data
sets because the number of subjects is usually quite small, typical ranges are from
5 to 50 [13], with each subject contributing multiple samples while performing
a range of activities. Traditional cross-fold and train/test split techniques can
result in subject data from the test group being included in the training set.

The goal of trained models is generalized performance which means the per-
formance on independent test data [7]. In the case of HAR the ability of a model
to correctly classify activities for an unknown subject. The primary issue seen
in many accompanying analyses is that samples from a given subject may be

1 Source code of this work: https://github.com/imics-lab/model evaluation for HAR
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present in both the train and test groups. This work examines the impact of
subject assignment on two data sets. The remainder of this section briefly de-
scribes three data sets, their evaluation method, and the reported accuracy to
illustrate the multiple approaches found in the literature. Section 2describes the
two data sets and processing used in this evaluation.

An example of a popular data set and evaluation with subjects preallocated
into train and test groups is the UCI-HAR data set [1] which contains accel-
eration data captured on a waist-worn smartphone. Subjects were randomly
assigned: 21 in the training set and 9 in the test set. The accompanying analysis
reports an accuracy of 96% for six activities. Another example of a model evalua-
tion with preallocated subjects is [5] which contains Android-based Smartphone
data from 100 subjects. The reported accuracy without resampling is 93.8% for
eight different activities. The authors state “the signals of the training set and
test set are collected by different volunteers.” An example of hold-one-subject-
out with individual results is [6] which uses multi-model motion data from the
mHealth data set [2] and reports an average accuracy for 12 activities of 91.94%.

2 Materials and Methods

This section provides a brief overview of the two data sets used, the configuration
of the 1D CNN, and the overall methodology.

The first data set used in this work is the MobiAct data set [12] which
contains smartphone acquired raw accelerometer, gyroscope, and magnetometer
data. 50 subjects were recorded performing nine types of activities of daily living
(ADLs) and four types of falls. The accompanying analysis reports a best overall
accuracy of 99.88% using 10-fold cross-validation. The authors state “we expect
[the accuracy] to decrease when using leave-one-out cross-validation, which is a
more realistic scenario.” The timestamp ‘nanoseconds’ and accelerometer data
(accel x/y/z) for the six Activities of Daily Living (ADL) were imported. The
four types of falls, ‘sit chair’, ‘car step in’, and ‘car step out’ activities are not
used as these are more events than activities. Gyro and magnetometer data are
also not used for simplification. One second was discarded from the start/end
of each record and the remaining data were segmented into 3-second windows.
Prior works, including UCI-HAR [1] have used a 2.56-second window based on
the mechanics and timing of human gait. This window length will yield multiple
steps in each segment [3]. The six activity labels in y were one-hot-encoded.

The impact of the variable sampling rate and benefits of resampling were in-
vestigated using the MobiAct data. Sample timing is very consistent when using
specialized equipment such as the BioRadio2 or the Empatica E4 wristband3.
However, when using a general-purpose device such as a smartphone preemp-
tion by other tasks results in a variation of timing between samples. Figure 1a
shows the delta time between data samples for a 30-second MobiAct walking

2 https://www.glneurotech.com/products/bioradio/
3 https://www.empatica.com/research/e4/
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segment. The Python’s Pandas mean resampling method was used to resample
and downsample the data.

The second data set used is the Smartphone Human Activity Recognition
data set from the University of Milan Bicocca (UniMiB SHAR) [8] which con-
tains both fall and ADL data from 30 subjects that have been preprocessed
into 3-second samples. The subjects are not preallocated into train/test and
the accompanying analysis reports results for both component and total accel-
eration using 5-fold cross-validation and hold-one-subject-out validation. The
highest performing RNN classifier achieves an accuracy of 88.41% using compo-
nent acceleration and 5-fold cross-validation. Each classifier showed a decrease
in accuracy in the Leave-One-Subject-Out validation. The accuracy drops to
73.17% using Leave-One-Subject-Out and 72.67% using total acceleration. The
authors state that human subjects perform tasks in unique ways. The UniMiB
SHAR acceleration data were transformed into a 153 x 3 array and the total
acceleration was calculated. The nine ADL class labels were one-hot-encoded.

A fixed 1D-CNN Keras [11] model shown to have good performance on time-
sliced accelerometer data [4] was used for all experiments for consistency. Min-
imal tuning was performed, the primary change was increasing the convolution
kernels to span one second of activity time. For a brief description of the layer
functions with respect to time-series see [9]. The topology of the 1D-CNN is
shown in Table 1.

Table 1: Keras Sequential Model 1D-CNN Layers
Type Input Conv1D Conv1D Dropout Max Pl Flatten Dense Dense

Params [60x1] #f=50
size=1s

#f=50
size=1s

rate=0.5 size=2, act=
relu

act=
softmax

All subject allocation experiments use total acceleration; MobiAct was re-
sampled to 20Hz, UniMiB SHAR remains the published 50Hz. The next section
describes how subjects were allocated to the training, validation, and test groups.

Allocation using Stratification: While is easy to implement using the
Scikit-learn [10] train test split method with stratification enabled a single sub-
ject’s samples are likely to be present in each of the groups.

Allocation of Subjects by Attributes: The UCI-HAR data set preal-
locates subjects but the UniMIB SHAR and MobiACT data sets do not. To
generate a baseline each subject was allocated to the train, validate, or test
group in a 60%/20%/20% ratio. Assuming that height would affect the mechan-
ics of motion more than weight for the ADLs, subjects were sorted by height
and manually allocated. Swaps were made to preserve the male to female ratio
and a mix of age and weight4. The subject allocation is shown in Table 2.

Subject Aware Cross-Validation: Each subject was placed into the test
group with the remaining subjects used for training and validation for hold-one-
subject-out. The process was repeated with two, three, five, and ten subjects

4 Several MobiAct subjects did not complete all ADLs were dropped resulting in a
non-contiguous subject list. E.g. there is no subject number 14.
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Table 2: Subject Numbers: Attribute Based Assignment
Data Set Training Validation Test

MobiAct [2,4,5,9,10,16,18,20,23-28,
32,34-36,38,42,45-54,57]

[3,6,8,11,12,22,
37,40,43,56]

[7,19,21,25,29,
33,39,41,44,55]

UniMiB SHAR [4-8,10-12,14,15,19-22,24] [1,9,16,23,25,28] [2,3,13,17,18,30]

held out. To establish a range of possible results, the best and worst classified
hold-one-out subjects were placed into min and max test groups.

3 Results and Discussion

Figure 1a shows the variation in sampling time for a walking sample. Figure 1b
shows that 5 Hz sampling results in reduced accuracy while 10 Hz and above
were largely the same. Reducing the sampling frequency significantly reduced the
GPU-based5 training time. This was even more pronounced when using CPU-
based training where the resampled 20Hz data required just 4.5% of the training
time required for the 100Hz data. For MobiAct the accuracy increased from
95.3% to 97.5% when using total acceleration and the attribute-based subject
allocation with negligible impact on GPU training time. Table 3 shows that
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Fig. 1: Smartphone data sample fluctuation and impact of resample.

the accuracy when using stratification is extremely high at 99.3% (average of
10 runs, 200 epochs). Using the same model but with subjects allocated based
by attribute, the accuracy drops to 96.9% for an error rate of 3.1% versus the
stratified error of only 0.7%. The allocation of individual subject’s data into both
the train and test groups results in erroneously increased accuracy when using
stratified split. The UniMiB SHAR data results show the same trend.

Figure 2 is a box plot of five runs for each subject and shows the large
variation in accuracy among individual subjects. The overall by-subject cross-
validation results are shown in table 4.

5 GPU model Tesla P100-PCIE-16GB at https://www.colab.research.google.com
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Table 3: Stratified versus attribute-based subject split accuracy

Data set: Train/Validate/Test Split Method Avg Error Delta

MobiAct: Stratified (incorrect) 99.3% 0.7% -

MobiAct: Manual by Subject Attributes 96.9% 3.1% 2.4%

UniMiB SHAR: Stratified (incorrect) 93.9% 6.1% -

UniMiB SHAR: Manual by Subject Attribute 92.3% 7.7% 1.6%
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Fig. 2: Accuracy of each UniMiB Subject Tested Individually

Table 4: Accuracy based on X-fold and best/worst subjects. The delta between
best/worst vs average accuracy narrows as more subjects are placed in a fold.

MobiAct UniMiB SHAR

#subj/fold All Min Max #subj/fold All Min Max

1 95% 78% 100% 1 87% 67% 97%

2 95% 84% 98% 2 86% 72% 94%

3 95% 89% 98% 3 (10-fold-CV) 85% 70% 93%

5 (10-fold-CV) 95% 92% 98% 6 (5-fold-CV) 86% 74% 91%

10 (5-fold-CV) 95% 92% 97% - - - -

4 Conclusion

In this work, we have shown that re-sampling smartphone acceleration data
does not improve accuracy but downsampling can substantially reduce training
time. This is important because consistent with prior work, stratified random
allocation where samples from a single subject are present in both the training
and testing groups generated higher accuracy than can be expected given an
unknown subject. Hold-one-subject out is recommended but requires a train/test
pass for each subject. We have shown that individual subject accuracies can vary
greatly in a hold-one-out scenario and as the number of subjects in each fold
increases the delta between possible min and max folds is reduced. Group-based
5-fold cross-validation can be used and closely matches the accuracy reported
by averaging hold-one-subject-out.
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