
An LLVM-Inspired Framework for Unified Processing of
Multimodal Time-Series Data

Lee B. Hinkle
leebhinkle@txstate.edu
Texas State University
San Marcos, Texas, USA

Vangelis Metsis
vmetsis@txstate.edu
Texas State University
San Marcos, Texas, USA

ABSTRACT
Groups of sensors collecting time-series data in a variety of modal-
ities are widely used for monitoring humans, environments, and
equipment. Datasets with multimodal sensor data pose several
challenges not present in many image or language datasets; most
notably, there are few de-facto standards on how the data should be
organized and packaged. In this work, we present a framework in-
spired by the LLVM Compiler architecture that streamlines sensor
data processing for machine learning applications. Specifically, we
define standardized, intermediate representations that can be easily
transformed for input to data preprocessing and model training
steps. By standardizing and preserving time and subject informa-
tion, our method supports robust label verification and multiple
means of subject-independent cross-validation. We demonstrate
the validity of our framework using seven different datasets, all
containing time-series data and representing a variety of sensors,
modalities, domains, and collection environments.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Applied computing→ Consumer
health.

KEYWORDS
physiological signals, time-series, data pipeline, sensor data
ACM Reference Format:
Lee B. Hinkle and Vangelis Metsis. 2023. An LLVM-Inspired Framework for
Unified Processing of Multimodal Time-Series Data. In Proceedings of the
16th International Conference on PErvasive Technologies Related to Assistive
Environments (PETRA ’23), July 05–07, 2023, Corfu, Greece. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3594806.3594812

1 INTRODUCTION
Multimodal time-series data collected from sensors is ubiquitous,
however, time-series datasets are not as readily available as the
more popular image and natural language processing datasets. In
addition, there are few datasets that serve as de facto standards
for the publishing format in the same manner that the CIFAR-10

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PETRA ’23, July 05–07, 2023, Corfu, Greece
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0069-9/23/07. . . $15.00
https://doi.org/10.1145/3594806.3594812

dataset [8] does for image datasets. One notable exception is the
UCR Time-Series archive [2] which offers 128 different datasets in a
common format, however, these datasets are not as complex as the
ones evaluated here. The lack of standard formats results in much
time spent building “converters”, model evaluations using only one
or two datasets, and potential misallocation of data between the
testing and training sets. It is critical to preserve the subject data
to ensure that no subject’s data is present in the training and test
sets. Typically this occurs when the data is partitioned into fixed
time segments known as sliding windows, and the entire batch of
windows is further split into training, validation, and test sets using
standard libraries without consideration of the contributing subject.
In this case, data from a single subject may be present in the train-
ing, validation, and test groups resulting in higher test accuracies
than can be expected for a previously unseen subject [12][6]. The
primary contribution of this work is the introduction of a frame-
work with standardized intermediate representations that places
the bulk of the per dataset work at the front of the pipeline, allow-
ing for significant code reuse of validated transformations on the
subsequent intermediate representations, and provides control over
the final output for rich model experimentation and evaluation. The
use of intermediate representations preceded by dataset-specific
transformations is inspired by the LLVM compiler architecture [9]
(https://llvm.org/). In this architecture, multiple programming lan-
guages, such as C and Fortran, are converted to intermediate rep-
resentations, which are processed using common optimizations.
The optimized code can then be output for multiple Instruction Set
Architectures (ISAs) such as x86 and ARM. Our time-series data
processing equivalent of this architecture is shown in Figure 1. By
preserving the subject data during the transformations, the issue of
data leakage is avoided and validation techniques from hold-one-
subject-out to group-based cross-validation can be performed. This
work has been validated using seven different datasets, many shared
transformations, and three programs that utilize the intermediate
or final representations of the data. The source code for this work
is available at https://github.com/imics-lab/load_data_time_series.

2 INTERMEDIATE DATA REPRESENTATIONS
The following sections describe the processing of the datasets and
the format of the intermediate representations. For each dataset the
transformation into the first intermediate representation, IR1, is
described underscoring the fact that the datasets are not published
in a standard format. The second and third transformations are
shared among all datasets validating the benefit of the defined
intermediate representations.

91

https://orcid.org/0000-0001-7346-6344
https://orcid.org/0000-0002-7371-8887
https://doi.org/10.1145/3594806.3594812
https://doi.org/10.1145/3594806.3594812
https://llvm.org/
https://github.com/imics-lab/load_data_time_series
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594806.3594812&domain=pdf&date_stamp=2023-08-10

PETRA ’23, July 05–07, 2023, Corfu, Greece Lee B. Hinkle and Vangelis Metsis

Figure 1: The LLVM Inspired Framework. Dataset-specific transformation to the first Intermediate Representation (IR1) is
followed by standard transformations that can be applied to all datasets, and concludes with a final transform to generate the
output arrays in the desired form to support the training and evaluation of the model.

2.1 Subject, Label, and Raw Sensor Data to IR1
The first defined intermediate representation, IR1, is a Pandas
dataframe [13] indexed by UTC datetime. Each recorded session
is used to generate a single IR1 with contiguous time indexing
organized with each row representing a specific sample time and
columns of signal data (channels), label(s), and the subject number.
The datetime indexing enables the merging of data from multiple
sensors with different sampling rates and start times. Having the
time associated with each sample also facilitates the labeling of
activities. The individual sensor columns may be typed according
to the sensor’s capabilities (an accelerometer with 8-bit resolution
need not be left at the float64 default of many libraries). Columns
are added for derived data, such as the magnitude of acceleration
plus the subject number and label. Datasets often have the subject
numbers and labels embedded in the filename or directory. E.g.,
sub1_session1.csv may be located in a “walking” directory indi-
cating the data is from subject number 1 and the label is walking.
A key benefit of using a higher-level data structure is that rich
multi-character string labels can be stored in a categorical-typed
column without consuming large amounts of memory. In our work,
IR1 is implemented as a Pandas dataframe; however, we believe the
format is compatible with a MATLAB table or an R-dataframe. A
portion of an IR1 dataframe is shown in Figure 2.

The attributes for the seven datasets used are summarized in
Table 1. For brevity, only significant elements of the transformation
from the raw data to the IR1 dataframe will be described.

The MobiAct dataset [15] includes accelerometer and gyroscope
data collected using a hip-worn smartphone with 30 subjects per-
forming six different activities, such as standing, walking, and going
up/downstairs in a scripted fashion. The label and subject number
columns are populated in IR1 based on the directory and filename,
respectively. The provided UTC time is used for indexing. Sample
timing varies on smartphones versus the more regular sampling
of dedicated devices. The datetime index allows for resampling to
consistent time deltas, however, the variation has minimal effect
on model accuracies [6].

UCI-HAR [1] is the oldest and most heavily pre-processed of the
datasets used, so not all intermediate representations are required
(resulting in some loss of configurability such as alternate sliding

window sizes). After filtering the data are divided into individual
sliding windows of 2.56 seconds with 50% overlap. Importantly the
data is pre-partitioned by subject with 70% of the subjects placed
into the training group and 30% placed into the test group. Similarly,
the UniMIB SHAR dataset [12] ADL data are provided in MATLAB
table format with windows of 151 samples centered on the peak ac-
celeration. Due to the extensive pre-processing, the IR1 format was
also not required for this dataset; many of the IR2 transformations
were applied directly.

The TWristAR dataset [5] contains data from an Empatica E4
wristband [3] that contains four sensors (EDA, Temp, Accel, and
PPG) having sample rates of 4Hz, 4Hz, 32Hz, and 64Hz, respectively.
Each sensor’s data file includes the start time and the sampling
frequency, which was used to reconstruct the UTC time for the row
index. The datetime indexing of IR1 facilitates the merge of all four
sensor’s data into a single dataframe when resampled to a common
32Hz frequency.

The “Ankle-Hip-Wrist” dataset [10] includes data from three de-
viceswith two sampling rates. Eight subjects performed 17 activities-
of-daily-living (ADL), such as handwriting, face washing, eating,
etc. In order to put all sensor data into a single dataframe the data
from the ankle, hip, and wrist devices were concatenated by column
and downsampled to 50Hz.

The PSG-Audio dataset [7] is the largest used in this work. Many
elements, such as the categorical representation in IR1 were imple-
mented due to data structure sizes that were not as cumbersome for
the other datasets. Multimodal data were collected in a hospital on
over 200 patients during sleep apnea evaluations of three to seven
hours each. A total of 20 channels are present including Electroen-
cephalogram (EEG), Electrooculogram (EOG - eye movement), Leg
Movement, Electrocardiogram (ECG), a contact microphone, nasal
airflowmonitors, respiratory belts, pulse oximeter, and high-fidelity
audio. The recording frequencies vary from 1Hz to 48kHz; for this
work, the 200Hz signals were downsampled and merged with the
100Hz signals in IR1. The high-frequency audio channels were not
used due to their large size (processing a single hour of raw audio
data consumed 24GB of RAM). The sensor data is provided in Euro-
pean Data Format (EDF), which is a standard for medical time-series
data. The labels were extracted from the provided .rml file for each

92

Time-Series Sensor Data Framework PETRA ’23, July 05–07, 2023, Corfu, Greece

Figure 2: Example of the IR1 data format as displayed by the Panda head method. This data is from the scripted portion of the
TWristAR dataset.

Table 1: Summary of seven datasets that were used to develop and validate the framework. All are time-series with body-worn
or attached sensors.

Name Domain Sensor Type(s) # Sub Year
UCI HAR [1] HAR Smartphone 30 2012
MobiAct [15] HAR Smartphone 50 2016
UniMiB SHAR [12] ADL + Fall Smartphone 30 2017
Sussex-Huawei Locomotion [4] HAR(Transport) 4XSmartphone + Video 3 2017
Ankle-Hip-Wrist [10] ADL Activity Monitor 8 2021
PSG-Audio [7] Polysomnography Audio, ECG, EEG,+ 192 2022
TWristAR [5] HAR Empatica E4 Wristband 3 2022

Table 2: Typical IR2 transforms that are applied. Note that the allowed transforms differ between the train and test groups.
Further details and code are available on our public GitHub https://github.com/imics-lab/load_data_time_series

get_ir2_from_ir1 Train&Test Slice into sliding windows of fixed time-steps
drop_ir2_multi_label Train Only Discard mixed labeled windows (for large datasets)
all_ir2_labels_to_mode Train&Test Assign label as the mode of labels within a sliding window
collapse_ir2_timesteps Train&Test Validate sub, labels match, collapse 3rd dim

patient and placed into individual Respiratory, Neurological, Limb,
Nasal, Cardiac, and SpO2 categorical IR1 columns with each label
category having multiple event types such as Cardiac: “Normal”,
“Bradycardia”, “LongRR’, etc.

2.2 IR1 dataframe to IR2 n-dimensional arrays
The conversion from an IR1 dataframe to IR2 arrays is primarily
the application of a sliding window of a given size and step. This
results in an additional dimension - each row now represents a
window “instance” containing many time steps. Typically these
windows are two to five seconds in duration, and there are many
windows with a recording “session”, see Figure 3. From a starting
IR1 shape of (session samples, {channels, labels, sub}), the three
IR2 shapes will be X (instances, time steps, channels), y (instances,
labels), sub (instances, subject number). We implement IR2 as three
NumPy arrays to allow for faster mathematical operations with
each having a single data type. “X” contains the channels with a
datatype reflective of the underlying sensor precision (rarely are
the default float64 values needed). “y” arrays contain the integer
encoded labels; descriptive strings consume too much memory with
larger datasets. The “sub” arrays contain the subject number as an
int8 or int16 (for datasets with subject numbers > 255). Additional
IR2 transformations are shown in Table 2. Care must be taken to

ensure that no label-aware transforms are applied to the test set data.
There is certainly an argument that a mixed-type data structure
such as a Pandas dataframe should be input directly into the model,
with the model itself handling each datatype directly. A MATLAB
table [11] has such a structure, but we have found this level of
abstraction difficult when dealing with the additional complexity
of sliding windows and the need to preserve subject independence
during the training and evaluation.

2.3 Final Output Representation:
Train/Valid/Test Allocation

The final representation is primarily a concatenation of the trans-
formed IR2 arrays. The output format varies depending on the
desired model evaluation. For defined-subject (each subject is al-
located manually, often to balance gender, age, height, or other
attributes) the train and test IR2s are concatenated based on a sub-
ject allocation dictionary, see 3. This enables high repeatability but
cross-validation is often preferable. In order to support hold-one-
subject-out or group-K-fold cross validation all train subjects may
be placed into the train_* arrays and the sub-array input into stan-
dard libraries such as the Scikit-Learn GroupKFold [14] to generate
the multiple folds of train and valid arrays.

93

https://github.com/imics-lab/load_data_time_series

PETRA ’23, July 05–07, 2023, Corfu, Greece Lee B. Hinkle and Vangelis Metsis

Figure 3: The multi-modal signals in a single IR2 sliding
window for a TWristARwalking segment. Each three-second
window at 32 Hz contains 96 samples.

Table 3: The final numpy array dimensions for the TWristAR
dataset using the default arguments. The selected channels
are accel_ttl, bvp, eda, p_temp

array shape data type
x_train (2077, 96, 4) float32
y_train (2077, 1) int8
x_test (1091, 96, 4) float32
y_test (1091, 1) int8

Table 4: The test accuracies reported by the "throwdown"
which performs an A/B comparison between two models us-
ing all seven datasets. Model A is a Long-Short-TermMemory
(LSTM), andModel B has twoCNN layers followed by aGlobal
Average Pooling layer. These results are presented as exam-
ples of how multiple datasets can be run easily from this
framework. Neither model is fully tuned for every dataset.

Dataset LSTM CNN+GAP
UCI HAR 37.8% 84.0%
MobiAct 89.6% 97.7%
UniMiB SHAR 92.0% 89.5%
Sussex-Huawei Locomotion 20.8% 24.4%
Ankle-Hip-Wrist 17.0% 63.9%
PSG-Audio 81.2% 80.7%
TWristAR 66.5% 66.4%

3 RESULTS AND CONCLUSION
In order to confirm the portability of the intermediate representa-
tions three programs were created and are available on our public
repository at https://github.com/imics-lab/load_data_time_series.
The ts_demo program is a minimal example Jupyter Notebook data
loader which evaluates a single 1D-CNN model using any one of

the currently supported datasets. ts_visualize uses the IR1 repre-
sentations to examine and visualize the dataset attributes using the
IR1 format. To demonstrate how this work can broadly enable the
inclusion of multiple datasets using a subject-independent evalua-
tion, ts_throwdown performs an A/B comparison of two models by
running a train/test pass using the seven supported datasets. The
results are summarized in Table 4.

We have presented an LLVM-inspired architecture with defined
intermediate representations of time-series data to facilitate rich
model evaluation. We have validated our framework using seven
datasets of varied formats which were converted into a standard rep-
resentation enabling subsequent common transformations and mul-
tiple final output configurations. Subject data is preserved through-
out ensuring that there is no test data leakage into the training set.
Accuracies for LSTM and CNN models running each of the seven
datasets from multiple domains are shown.

REFERENCES
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis

Reyes Ortiz. 2013. A public domain dataset for human activity recognition
using smartphones. In Proceedings of the 21th international European symposium
on artificial neural networks, computational intelligence and machine learning.
437–442.

[2] Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan
Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing
Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and
Hexagon-ML. 2018. The UCR Time Series Classification Archive. https://www.
cs.ucr.edu/~eamonn/time_series_data_2018/.

[3] Empatica. 2020. E4 Wristband User’s Manual, Rev. 2.0. https://empatica.app.box.
com/v/E4-User-Manual. Accessed: 2022-06-09.

[4] Hristijan Gjoreski, Mathias Ciliberto, Francisco Javier Ordoñez Morales, Daniel
Roggen, Sami Mekki, and Stefan Valentin. 2017. A versatile annotated dataset
for multimodal locomotion analytics with mobile devices. In Proceedings of the
15th ACM Conference on Embedded Network Sensor Sys. 1–2.

[5] Lee B. Hinkle, Gentry Atkinson, and Vangelis Metsis. 2022. TWristAR - wristband
activity recognition. https://doi.org/10.5281/zenodo.5911808

[6] Lee B Hinkle and Vangelis Metsis. 2021. Model Evaluation Approaches for
Human Activity Recognition from Time-Series Data. In International Conference
on Artificial Intelligence in Medicine. Springer, 209–215.

[7] Georgia Korompili, Anastasia Amfilochiou, Lampros Kokkalas, Stelios A Mi-
tilineos, Nicolas-Alexander Tatlas, Marios Kouvaras, Emmanouil Kastanakis,
Chrysoula Maniou, and Stelios M Potirakis. 2021. PSG-Audio, a scored
polysomnography dataset with simultaneous audio recordings for sleep apnea
studies. Scientific Data 8, 1 (2021), 197.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[9] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International symposium on code
generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[10] Maurizio Leotta, Andrea Fasciglione, and Alessandro Verri. 2021. Daily Living Ac-
tivity Recognition Using Wearable Devices: A Features-Rich Dataset and a Novel
Approach. In Pattern Recognition. ICPR International Workshops and Challenges,
Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao
Mei, Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani (Eds.). Springer
International Publishing, Cham, 171–187.

[11] MathWorks. 2022. trainNetwork. https://www.mathworks.com/help/
deeplearning/ref/trainnetwork.html. Accessed: 2022-06-02.

[12] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. 2017. UniMiB SHAR: A
Dataset for Human Activity Recognition Using Acceleration Data from Smart-
phones. Applied Sciences 7, 10 (2017). https://doi.org/10.3390/app7101101

[13] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.
org/10.5281/zenodo.3509134

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[15] George Vavoulas, Charikleia Chatzaki, Thodoris Malliotakis, Matthew Pediaditis,
and Manolis Tsiknakis. 2016. The mobiact dataset: Recognition of activities of
daily living using smartphones. In International Conference on Information and
Communication Technologies for Ageing Well and e-Health, Vol. 2. SciTePress,
143–151.

94

https://github.com/imics-lab/load_data_time_series
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://empatica.app.box.com/v/E4-User-Manual
https://empatica.app.box.com/v/E4-User-Manual
https://doi.org/10.5281/zenodo.5911808
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://doi.org/10.3390/app7101101
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

	Abstract
	1 Introduction
	2 Intermediate Data Representations
	2.1 Subject, Label, and Raw Sensor Data to IR1
	2.2 IR1 dataframe to IR2 n-dimensional arrays
	2.3 Final Output Representation: Train/Valid/Test Allocation

	3 Results and Conclusion
	References

