
Time Series Embedding Methods for Classification Tasks:
A Review

Habib Irani, Yasamin Ghahremani, Arshia Kermani, Vangelis Metsis∗

{habibirani, zub11, arshia.kermani, vmetsis}@txstate.edu

aDepartment of Computer Science, Texas State University, San Marcos, 78666, TX, USA

Abstract

Time series analysis has become crucial in various fields, from engineering and

finance to healthcare and social sciences. Due to their multidimensional nature,

time series often need to be embedded into a fixed-dimensional feature space

to enable processing with various machine learning algorithms. In this paper,

we present a comprehensive review and quantitative evaluation of time series

embedding methods for effective representations in machine learning and deep

learning models. We introduce a taxonomy of embedding techniques, categoriz-

ing them based on their theoretical foundations and application contexts. Our

work provides a quantitative evaluation of representative methods from each cat-

egory by assessing their performance on downstream classification tasks across

diverse real-world datasets. Our experimental results demonstrate that the per-

formance of embedding methods varies significantly depending on the dataset

and classification algorithm used, highlighting the importance of careful model

selection and extensive experimentation for specific applications. This study

contributes to the field by offering a systematic comparison of time series em-

bedding techniques, guiding practitioners in selecting appropriate methods for

their specific applications, and providing a foundation for future advancements in

time series analysis. To facilitate further research and practical applications, we

provide an open-source code repository implementing these embedding methods:

https://github.com/imics-lab/time-series-embedding.

Keywords: time series embedding, dimensionality reduction, feature

extraction, classification, machine learning, deep learning, signal processing

2020 MSC: 62M10, 68T07, 62H30, 37M10

∗Corresponding author
Email address: vmetsis@txstate.edu (Vangelis Metsis)

Preprint submitted to Expert Systems November 2, 2025

https://github.com/imics-lab/time-series-embedding


1. Introduction

Time series embedding is a technique used to represent time series data in

the form of vector embeddings, also known as feature vectors. Today, time series

analysis methods have emerged as a fundamental element across a vast amount

of applications ranging from finance, as in the work of Zhu and Huang (2022), to

healthcare, as demonstrated in Nejedly et al. (2022); Morid et al. (2023); Chen

et al. (2021); Lee and Hauskrecht (2021); Soenksen et al. (2022), engineering ap-

plications such as machine health monitoring, predictive maintenance, and fault

detection, proposed by Zhao et al. (2019); Li et al. (2020), and social sciences,

explored by Santosh et al. (2018). In this review, we will primarily use the term

‘time series.’ However, the term ‘signal’ will also be used, particularly when dis-

cussing data from domains where it is the conventional term (e.g., bioelectrical

signals, mechanical system signals), and is considered synonymous with ‘time

series’ for the purpose of this work.

As machine learning and deep learning techniques continue to advance, there

is a growing need for effective methods to represent and analyze time series

data in these models. Tasks such as anomaly detection, classification, pattern

recognition, prediction, and decision-making now heavily rely on robust methods

that could accurately embed these often high-dimensional data into scalable yet

informative representations. The importance of studying and evaluating different

time series embedding methods stems from several key factors:

• Dimensionality reduction: Time series data often has high dimensionality,

which can lead to computational challenges and the curse of dimension-

ality. Effective embedding methods can reduce the dimensionality while

preserving essential temporal patterns and relationships.

• Feature extraction: Embeddings can automatically extract relevant fea-

tures from raw time series data, potentially capturing complex temporal

dependencies that may not be apparent in the original representation.

• Improved model performance: Well-designed embeddings can lead to sig-

nificant improvements in the performance of downstream machine learning

tasks, such as classification, clustering, and forecasting.

• Transfer learning : Embeddings learned from large datasets can be trans-

ferred to smaller, related datasets, enabling more effective learning in sce-

narios with limited data.

2



• Interpretability : Some embedding methods can provide insights into the

underlying structure and patterns of time series data, aiding in data ex-

ploration and understanding.

• Handling irregularities: Many real-world time series datasets are charac-

terized by irregular sampling, missing values, or varying lengths. Certain

embedding methods can address these challenges more effectively than oth-

ers.

As the field of time series analysis continues to evolve, a wide array of em-

bedding methods has been proposed, each with its own strengths and limita-

tions. These methods range from classical approaches like delay embeddings

and Fourier transforms to more recent techniques leveraging deep learning ar-

chitectures such as recurrent neural networks and transformer models. Given

the diversity of available methods and their potential impact on downstream

applications, a comprehensive evaluation and comparison of time series embed-

ding techniques is crucial. This survey aims to provide an overview of the current

landscape of time series embedding methods, assess their representation strength

when combined with various classification algorithms, and offer insights into se-

lecting appropriate embedding techniques for specific applications.

Creating a taxonomy for time series embedding methods can be approached

in several different ways, depending on the criteria or perspectives one chooses to

emphasize. Those can be based on the theoretical foundations or mathematical

principles used, domain of information captured, model complexity and compu-

tational requirements, scalability and data requirements, nature of time series

data (uni-/muti-variate), application context, etc. In this work, we choose to

categorize embeddings mainly based on their theoretical foundations and appli-

cation context, creating a taxonomy of different categories as depicted in Figure 1

and in more detail in Table 1.

Previous surveys on time series embeddings, such as the one published by

Tjøstheim et al. (2023), have provided a qualitative categorization of the var-

ious methods but have not quantitatively evaluated the representation capa-

bility of each method on real-world data. In this work, we evaluate popular

time series embedding methods by using the formed embeddings on downstream

classification tasks, which provides a crucial perspective on their effectiveness

and generalization capabilities. Classification tasks serve as an excellent proxy

for assessing how well embeddings capture discriminative features and preserve

relevant temporal patterns. Unlike forecasting, which focuses primarily on pre-

dictive accuracy, or clustering and anomaly detection, which rely heavily on

3



Table 1: Detailed Categories of Time Series Embedding Methods

Category Representative Examples

Statistical PCA: Reduces dimensionality by identifying orthogonal axes with
maximum variance. ICA: Decomposes the series into statistically
independent components. CCA: Identifies linear relationships be-
tween two sets of variables, revealing common patterns.

Transformation-
Based

DFT: Transforms the series into frequency components, using domi-
nant frequencies as embeddings. DWT: Captures time and frequency
characteristics using wavelet coefficients.

Feature-Based Hand-Crafted: Statistical: Extracts mean, variance, skewness, etc.
Time-Domain: Identifies peaks, troughs, zero-crossings. Frequency-
Domain: Captures spectral power, dominant freqs.

Automated: TSFRESH: Extracts a wide range of features auto-
matically. catch22: Provides 22 efficient time series characteristics.

Model-Based AR/ARMA/ARIMA: Uses past values and moving averages to
model the series. HMM: Represents the series as a sequence of
hidden states with probabilistic transitions.

Kernel-Based KPCA: Extends PCA with kernel methods for non-linear relation-
ships. DTW Kernel: Measures similarity between series, account-
ing for temporal distortions.

Graph-Based Visibility Graphs: Converts data into a graph, with embeddings
from graph properties. Recurrence Networks: Uses recurrence
plots to construct networks for embedding.

Manifold
Learning and
Nonlinear Di-
mensionality
Reduction

t-SNE: Preserves local structure in lower-dimensional embeddings.
UMAP: Provides non-linear embeddings while preserving structure.
Isomap: Captures intrinsic geometry by preserving geodesic dis-
tances. LLE: Maps the series onto a lower-dimensional manifold,
preserving local structure.

Topological Persistence Homology: Captures topological features across scales
using persistence diagrams. Sliding Window with TDA: Applies
TDA on time-delay embeddings to capture dynamics. Mapper Al-
gorithm: Constructs a topological network representing the data’s
shape. Takens’ Embedding with TDA: Reconstructs the phase
space and applies TDA.

Deep Learning-
Based

Autoencoders: Compress and reconstruct series, with embeddings
from the bottleneck layer. RNNs: Capture temporal dependen-
cies using hidden state embeddings. CNNs: Extract local pat-
terns through convolution, creating feature embeddings. Attention-
Based Models: Focus on relevant parts of the series for embedding.

Hybrid Classical + Deep Learning: Combines traditional methods with
deep learning for robust embeddings. Multi-View Embeddings:
Integrates multiple perspectives, transformations, or models.

4



Time Series
Embedding
Methods

I. Classical Methods

A. Statistical (PCA, ICA, CCA)

B. Transformation-Based (DFT, DWT)

C. Model-Based (AR/ARIMA, HMM)

D. Feature-Based (Hand-Crafted, Automated)

II. Machine Learning-
Based Methods

A. Kernel-Based (KPCA, DTW Kernel)

B. Manifold Learning and Nonlinear Dimension-
ality Reduction (t-SNE, UMAP, Isomap, LLE)

III. Structural and
Topological Methods

A. Graph-Based (Visibility Graphs, Recurrence
Networks)

B. Topological (Persistence Homology, Sliding
Window with TDA, Mapper Algorithm, Takens’
Embedding with TDA)

IV. Deep Learning-
Based Methods

A. Self-Supervised with Encoder backbone
(CNN, RNN, Attention-based)

B. Autoencoders (MAE, VAE)

V. Hybrid and Ad-
vanced Methods

A. Classical + Deep Learning

B. Multi-View Embeddings

Figure 1: Taxonomy of Time Series Embedding Methods

unsupervised learning, classification offers a supervised framework that allows

for a more direct and interpretable evaluation of embedding quality. By using

labeled data, we can quantitatively measure how well the embeddings separate

different classes of time series, which is often a key requirement in real-world ap-

plications with both traditional (KNN, SVM, Random Forest, Gradient Boost-

ing, etc.) and deep learning-based methods. Furthermore, classification tasks

typically have well-established evaluation metrics and benchmarks, facilitating

comparisons across different embedding methods. This approach also aligns well

with the common use case of using pre-trained embeddings as input features for

various downstream tasks, where classification is frequently encountered.

Our experimental evaluation shows that the representation capabilities of

various embedding methods can vary across different datasets and classification

algorithms. This emphasizes the need for extensive experimentation and model

selection to highlight the best combination of embedding and classification algo-

rithms for the particular task at hand. Along with this evaluation, we provide

an open-source suite1 that implements these embedding methods for use by the

research community.

The remainder of this paper is organized as follows. In section 2, we provide

a brief overview of the different time series embedding categories that form our

1https://github.com/imics-lab/time-series-embedding

5



taxonomy as a background. In section 3, we detail the machine learning pipeline

that we followed to evaluate each method quantitatively as well as a more detailed

theoretical description of each embedding method evaluated in this study. In

section 4, we present the experimental results along with a discussion of our

observations. Finally, section 6 concludes this paper.

2. Background

Time series embedding methods have evolved significantly, driven by the

need to represent complex temporal data in a form suitable for various machine

learning tasks. These methods can be broadly categorized into the following

main groups: Statistical, Transformation-Based, Feature-Based, Model-Based,

Kernel-Based, Graph-Based, Manifold Learning and Nonlinear Dimensionality

Reduction, Topological, Deep Learning-Based, and Hybrid methods. Each cat-

egory represents a distinct approach to embedding, with unique strengths and

weaknesses.

2.1. Statistical Methods

Statistical methods have been fundamental to time series analysis for decades.

Principal Component Analysis (PCA), as established in the foundational works

of Pearson (1901); Hotelling (1933), is one of the earliest techniques that reduces

dimensionality by identifying orthogonal axes with maximum variance, allowing

for a compact representation of time series data. Building on this work, research

by Comon (1994) introduced Independent Component Analysis (ICA), which

extends this by decomposing time series into statistically independent compo-

nents, particularly useful in fields like neuroscience and signal processing, where

uncovering hidden sources is essential. The work of Hotelling (1992) developed

Canonical Correlation Analysis (CCA), which identifies linear relationships be-

tween two sets of variables, making it valuable for capturing common patterns

across multiple time series. As demonstrated in the work of Klein (1997), these

methods provide robust, interpretable embeddings that serve as a strong founda-

tion for more complex analyses or as standalone tools for time series exploration.

2.2. Transformation-Based Methods

Transformation-based methods like the Fourier Transform (FT) and Wavelet

Transform (WT) have been instrumental in revealing patterns within time series

data that are not visible in the time domain alone, as shown in the work of

Michau et al. (2022). According to the analysis of Sneddon (1995), the Fourier

Transform decomposes a series into its constituent frequencies, making it suitable

6



for analyzing periodic components. However, it assumes stationarity, limiting its

effectiveness for non-stationary data. The seminal works of Morlet et al. (1982);

Grossman and Morlet (1985); Meyer (1993) introduced the Wavelet Transform

as a more versatile alternative, capturing both time and frequency information,

making it more suitable for analyzing non-stationary and transient signals (or

time series signals).

2.3. Feature-Based Methods

Feature-based methods involve extracting key characteristics from time se-

ries data, either manually or automatically. Hand-crafted features can include

statistical measures like mean and variance, or more complex time-domain and

frequency-domain features. Recent advances such as ‘TSFRESH’ by Christ et al.

(2018) and ‘catch22’ by Lubba et al. (2019) provide a more systematic approach

to feature extraction, offering a wide range of features tailored to different types

of time series data, as explained in Christ et al. (2018); Lubba et al. (2019).

These methods are particularly useful in scenarios where domain knowledge is

limited, allowing for the extraction of informative features without manual in-

tervention.

2.4. Model-Based Methods

Model-based methods represent time series as sequences of states or as out-

puts of generative models. As explored in the works of Buxton et al. (2019);

Harvey (1990), Autoregressive (AR) and ARIMA models are traditional exam-

ples, while more complex methods like Hidden Markov Models (HMMs) capture

the probabilistic transitions between different states in the series. Even though

autoregressive methods are often classified as statistical processes, due to the

fact that they are built on statistical concepts like autocorrelation and moving

averages, these methods explicitly model the underlying process generating the

time series, assuming a specific structure for the data-generating process and

creating a mathematical model of the time series for forecasting and analysis.

These models are powerful for time series with underlying state-based dynamics

but require assumptions about the underlying processes, which may not always

hold.

2.5. Kernel-Based Methods

Kernel-based methods extend classical statistical techniques like PCA to cap-

ture non-linear relationships within time series data. The foundational work

of Schölkopf et al. (1997) introduced Kernel PCA, which projects data into a

higher-dimensional space where linear separation becomes possible. Building

7



on this approach, research by Berndt and Clifford (1994) developed techniques

like the Dynamic Time Warping (DTW) kernel to measure similarity between

time series by accounting for temporal distortions, making them robust to varia-

tions in speed and amplitude. These methods are effective in capturing complex,

non-linear structures in the data but can be computationally intensive.

2.6. Graph-Based Methods

Graph-based methods, including Visibility Graphs and Recurrence Networks,

convert time series data into graphical representations where the nodes represent

data points, and edges represent relationships between them. As demonstrated

by Lacasa et al. (2008), these methods leverage graph theory to analyze the

structural properties of time series, offering insights that traditional methods

may overlook. According to the work of Donner et al. (2010); Lacasa et al. (2008),

visibility graphs transform a time series into a graph by connecting nodes based

on their visibility, while recurrence networks analyze the recurrence of states

within the series. Recent work by Kutluana and Türker (2024) has used these

concepts for studying complex time series data, discussing how methods such as

visibility graphs appear to be robust to noise. As shown by Liu et al. (2015),

contrary to other embedding methods, the visibility graph formation does not

require the tuning of its parameters. These methods are also particularly useful

in studying the underlying dynamics of complex systems.

2.7. Manifold Learning and Nonlinear Dimensionality Reduction

Manifold learning methods, as developed by Roweis and Saul (2000), der

Maaten and Hinton (2008), Tenenbaum et al. (2000), and McInnes et al. (2018),

including approaches like Locally Linear Embedding (LLE), t-SNE, Isomap, and

UMAP, are designed to uncover the underlying structure of high-dimensional

time series data by preserving local and global geometric properties in a lower-

dimensional space Roweis and Saul (2000); der Maaten and Hinton (2008);

Tenenbaum et al. (2000); McInnes et al. (2018). These methods are particu-

larly effective for visualizing high-dimensional data and for capturing complex,

non-linear relationships that traditional linear methods cannot handle. How-

ever, they may require careful tuning of parameters and are sensitive to noise

and uneven sampling.

2.8. Topological Methods

Topological Data Analysis (TDA) offers a unique perspective by capturing

the shape of data. As explored in the works of Edelsbrunner et al. (2002); Singh

et al. (2007), techniques like Persistent Homology and the Mapper Algorithm

8



focus on identifying topological features that are stable across different scales

of analysis. These methods are valuable for understanding the global structure

of time series data, particularly in applications where the shape of data plays a

crucial role, such as in dynamical systems and complex networks.

2.9. Deep Learning-Based Methods

Deep learning methods have revolutionized time series embedding by lever-

aging neural networks to learn complex, hierarchical representations. The work

of Hochreiter and Schmidhuber (1997) introduced Recurrent Neural Networks

(RNNs) and their variants like Long Short-Term Memory (LSTM) networks,

which are particularly suited for capturing temporal dependencies. As shown

by Krizhevsky et al. (2017), Convolutional Neural Networks (CNNs), originally

designed for image processing, have also been adapted for time series by treat-

ing the series as a one-dimensional grid. More recently, research by Vaswani

et al. (2017) demonstrated how attention-based models like Transformers show

promise in modeling long-range dependencies in time series data. These methods

excel in tasks where large amounts of labeled data are available but may suffer

from overfitting and require significant computational resources.

2.10. Hybrid Methods

Hybrid methods combine the strengths of multiple embedding techniques to

address the limitations of individual methods. As demonstrated by Li et al.

(2022), combining statistical methods with deep learning can enhance inter-

pretability while retaining the powerful feature extraction capabilities of neural

networks. Other approaches integrate multiple perspectives, such as combining

time-domain and frequency-domain features, or using graph-based embeddings

alongside traditional machine learning models. Hybrid methods are often tai-

lored to specific applications, making them versatile but potentially complex to

implement.

The diverse landscape of time series embedding methods offers a rich toolkit

for researchers and practitioners. Each category of methods has its strengths and

limitations, making the choice of embedding technique highly dependent on the

specific characteristics of the data and the requirements of the downstream task.

As the field continues to evolve, new methods and hybrid approaches are likely

to emerge, further expanding our ability to extract meaningful representations

from time series data.

9



Table 2: Properties of time series datasets used in this study.

Dataset Train Size Test Size Length Classes Channels Type

Sleep 478,785 90,315 178 5 1 EEG
ElectricDevices 8,926 7,711 96 7 1 Device
MelbournePedestrian 1,194 2,439 24 10 1 Traffic
RacketSports 151 152 30 4 6 HAR
SharePriceIncrease 965 965 60 2 1 Financial
SelfRegulationSCP1 268 293 896 2 6 EEG
UniMiB-SHAR 4,601 1,524 151 9 3 HAR
EMGGestures 1,800 450 30 8 9 EMG
Mill 7751 1910 64 3 6 Sensor
ECG5000 500 4500 140 5 1 ECG

3. Evaluation Methodology

In this section, we detail the methodology used to evaluate the effectiveness

of various time series embedding methods. Our approach involves systemati-

cally comparing the most popular of these methods across different datasets and

classification tasks to assess their ability to capture and represent the essential

characteristics of temporal data. The evaluation is conducted through a machine

learning pipeline, encompassing data preprocessing, embedding generation, and

subsequent model training and validation. The following subsections detail each

component of our evaluation process, including the datasets utilized and the

machine learning pipeline implemented to assess classification performance and

the theoretical definition of the specific embedding methods examined.

3.1. Data

This paper explores a variety of time series with different characteristics.

Table 2 presents the properties of the datasets used to evaluate the embedding

methods discussed in this research. Data was sourced from various open reposi-

tories, such as the Time Series Classification Repository, found in Aeon-Toolkit

(2024), and the UC Irvine Machine Learning Repository described by Kelly et al.

(2012).

1. Sleep: Originally from PhysioNet’s “Sleep EDF” database, this dataset

comprises 153 whole-night single-lead EEG recordings (100 Hz) from 82

healthy subjects. Recordings are segmented into non-overlapping 178-

sample epochs labeled as five sleep stages (Wake, N1, N2, N3, REM). We

use the split of 478,785 for training and validation, and 90,315 for testing,

noting class imbalance across partitions.

10



2. ElectricDevices: Drawn from the UCR Time Series Classification Archive,

these series capture appliance power consumption sampled every two min-

utes over one month in 251 UK households. Each of the 8,926 training and

7,711 test series is 96 samples long and classified into seven usage profiles.

3. MelbournePedestrian: From the City of Melbourne’s automated pedestrian

counting system, this dataset contains 24 hourly counts per day at ten

locations during 2017. We treat each 24-sample day as one series, using

1,194 days for training and 2,439 for testing, with class labels corresponding

to sensor sites.

4. RacketSports: Recorded at 10 Hz via a wrist-worn Sony SmartWatch 3,

each 30-sample series encodes accelerometer (x,y,z) then gyroscope (x,y,z)

readings over a 3 s racket stroke. There are 151 train and 152 test in-

stances labeled as one of four actions (badminton clear/smash, squash

forehand/backhand).

5. SharePriceIncrease: Formatted from daily NASDAQ-100 closing prices,

each 60-day series records the percentage change from the prior day. The

binary label indicates whether the stock rose more than 5% after its next

quarterly earnings release (0 = no, 1 = yes). We have 965 train and 965

test series.

6. SelfRegulationSCP1: A slow cortical potentials BCI dataset recorded at

256 Hz over six EEG channels during a cursor-control task. Each 896-

sample trial (3.5 s feedback window) comprises 268 train and 293 test

trials, labeled by intentional cortical positivity vs. negativity.

7. UniMiB-SHAR: Collected via a smartphone accelerometer at 50 Hz, this

dataset contains 4,601 training and 1,524 testing tri-axial series, each 151

samples long, capturing nine daily activities and falls from 30 subjects

(ages 18–60).

8. EMGGestures: Recorded by a nine-channel EMG armband at 50 Hz, this

dataset comprises 1,800 train and 450 test signals of length 30, classified

into eight hand gestures (e.g., fist, wave-in, pinch).

9. Mill: From NASA’s milling-machine sensor suite, each 64-sample series

contains readings from six sensors (acoustic emission, vibration, current)

under varying cutting conditions. There are 7,751 train and 1,910 test

instances across three tool-wear classes.

11



Raw Time
Series Data

Data Splitting
(Train/Val/Test)

Preprocessing
(Segmentation/
Normalization)

Time Series
Embedding

(g : Rτ×C → Rd)
Classification

Class
Predictions

D = {(Xi, Yi)}Ni=1

Xi ∈ RTi×C

Dtrain,Dval,Dtest si,j = Xi[tj : tj + τ ]

s̃i,j =
si,j−µ

σ

vi,j = g(s̃i,j)
vi,j ∈ Rd fθ : Rd → [0, 1]k ŷi,j

Figure 2: Machine learning pipeline for time series classification.

10. ECG5000: A pre-processed subset of PhysioNet’s BIDMC CHF Database

(“chf07”), where individual heartbeats were extracted from a 20 h ECG

and interpolated to 140 samples. We select 500 train and 4,500 test beats,

labeled into five heartbeat-type classes.

These diverse datasets allow us to evaluate the performance of our embedding

methods across different domains and time series characteristics.

3.2. Machine Learning Pipeline

We consider a dataset D = {(Xi, Yi)}Ni=1, where each Xi ∈ RTi×C is a multi-

channel, continuous time series with Ti time steps and C channels. Associated

with each time series Xi is a sequence of labels Yi ∈ LTi , with L representing

the set of possible labels. The dataset is suitable for supervised learning tasks

involving time series classification, applicable to diverse scenarios such as phys-

iological data, air quality monitoring, and activity recognition using wearable

devices. The machine learning pipeline we follow to evaluate our embedding

methods is summarized in Figure 2 and described in detail in the following sub-

sections.

3.2.1. Data Splitting:

Before processing, the dataset D is divided into training (Dtrain), validation

(Dval), and test (Dtest) subsets. This early split is performed to ensure that the

data from a single entity (e.g., a specific subject or period) is exclusively con-

tained within one of these subsets, maintaining complete independence between

the training, validation, and test sets.

3.2.2. Time Series Segmentation:

After the dataset is split, each subset (Dtrain, Dval, Dtest) undergoes a segmen-

tation process. Let τ be the window size and ω the overlap between consecutive

windows, both defined as hyperparameters. For each time series Xi in a subset,

we segment it into windows:

si,j = Xi[tj : tj + τ ], tj = 1, τ − ω + 1, 2(τ − ω) + 1, . . . , Ti − τ + 1

12



The corresponding labels for each segment si,j are determined by an aggregation

function applied to Yi over the window:

yi,j = aggregation(Yi[tj : tj + τ ])

In this work, the label aggregation function used was based on the mode of

the labels of the data in that segment.

Note that some of the datasets come pre-segmented by their authors. In that

case, we skip the segmentation step.

3.2.3. Data Normalization:

Each segment si,j from Dtrain, Dval, and Dtest is preprocessed through a

normalization function f . The normalized segment is denoted as s̃i,j . That

normalization is commonly a standardization to zero mean and unit variance:

s̃i,j [t, c] = f(si,j [t, c]) =
si,j [t, c] − µc

σc

where µc and σc are the mean and standard deviation of channel (or feature) c

computed over the training segments.

Alternatively, a min-max scaling can be applied. This is calculated through:

s̃i,j [t, c] = f(si,j [t, c]) =
si,j [t, c] − minc

maxc−minc

where minc and maxc are the minimum and maximum values of channel c in the

training set.

3.2.4. Time Series Embedding:

After preprocessing, each normalized segment s̃i,j , representing a fixed-length

multi-channel window of raw data, is transformed into an embedding vector vi,j

using a predefined embedding function g:

vi,j = g(s̃i,j), g : Rτ×C → Rd

Each embedding vector vi,j ∈ Rd is then used as an input instance to the

machine learning classification algorithm.

3.2.5. Model Training, Validation, and Testing

The embedded vectors {vi,j} from each subset are used to train, validate,

and test a machine learning model. The training set Dtrain is used for model

learning, while the validation set Dval assists in hyperparameter tuning. The

13



model’s performance is subsequently evaluated using the embedded test set Dtest,

with outcomes measured by metrics such as classification accuracy.

We have applied classical and neural network-based time series classification

methods to explore the classification results. In particular, Logistic Regression,

Decision Trees, Random Forest, K-Nearest Neighbors (KNN), XGBoost, Sup-

port Vector Machines (SVM), Naive Bayes, and Multi-Layer Perceptron (MLP)

classification methods have been used to study the performance and accuracy of

the embedding methods discussed in the paper.

3.3. Embedding Methods Evaluated

In this subsection, we examine in more detail the embedding methods that

were selected for comprehensive evaluation. These methods were selected based

on their popularity while covering as many of the different categories from our

taxonomy as possible. To keep the embedding process independent of the down-

stream classification task, we opted for using only unsupervised techniques for

creating the embeddings, i.e., no labels were used during the mapping of the raw

time series data into an embedding vector. Labels were used only when training

the final classifier on the previously created embedding vectors.

3.3.1. Principal Component Analysis (PCA):

PCA is a technique that transforms a set of correlated variables into a smaller

set of uncorrelated variables called principal components. The first principal

component captures the most variance in the data, the second principal com-

ponent captures the second most variance, and so on. The formula for PCA

is: X = UΣV ⊤, where X is the input data matrix, U contains the left singular

vectors, Σ is a diagonal matrix of singular values, and V ⊤ contains the right

singular vectors.

The embedding process with PCA operates as follows:

1. The normalized segments s̃i,j are vectorized (flattened) into 1-D tensors:

s̃i,j = vec(s̃i,j) ∈ RτC

2. These vectors are organized into a data matrix X ∈ Rns×τC , where each

row corresponds to a vectorized segment, and ns is the total number of

segments in the training set.

3. PCA is applied to X to obtain the projection matrix W ∈ RτC×d, whose

columns are the top d principal components.

4. Each segment is transformed into its embedding using the PCA embedding

function: vi,j = g(s̃i,j) = s̃i,jW

14



5. The resulting vectors vi,j ∈ Rd serve as the embedded representations of

the original time series segments.

Other embedding methods follow a similar process, and the embedding steps

will be omitted for brevity.

3.3.2. Fourier Transform (FFT):

The Fourier Transform decomposes a time series into its constituent frequen-

cies. For each normalized segment s̃i,j , we apply the Discrete Fourier Transform

(DFT) to obtain its frequency representation. For a univariate time series xn,

the DFT and its inverse are given by:

Xk =

N−1∑
n=0

xne
−i2πkn/N , xn =

1

N

N−1∑
k=0

Xke
i2πkn/N

where xn is the input signal at time step n, Xk is the DFT coefficient at

frequency k, N is the length of the signal, and i is the imaginary unit.

For multivariate time series segments s̃i,j ∈ Rτ×C , we apply the DFT in-

dependently to each channel c to obtain the frequency components X
(c)
i,j . The

embedding vector vi,j is then formed by concatenating the magnitudes (or other

features) of the DFT coefficients from each channel:

vi,j = g(s̃i,j) = concat
(
|X(1)

i,j |, |X
(2)
i,j |, . . . , |X

(C)
i,j |

)
where g is the embedding function, and |X(c)

i,j | denotes the magnitude spec-

trum of channel c.

3.3.3. Wavelet Transform:

The Wavelet Transform decomposes a time series into time-frequency rep-

resentations at different scales. For each normalized segment s̃i,j , we apply the

Continuous Wavelet Transform (CWT) to capture both time and frequency in-

formation. The CWT of a signal x(t) is defined as:

CWT (a, b) =
1√
|a|

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt

where ψ(t) is the mother wavelet, a is the scale parameter, b is the translation

parameter, and ψ∗ denotes the complex conjugate of ψ.

For multivariate segments s̃i,j , the CWT is applied independently to each

channel c. The embedding vi,j is constructed by extracting features from the

wavelet coefficients, such as energies at different scales or statistical measures:

15



vi,j = g(s̃i,j) = features
(
CWT (1), CWT (2), . . . , CWT (C)

)
3.3.4. Locally Linear Embedding (LLE):

Locally Linear Embedding (LLE) is a technique that preserves the local linear

structure of the data. For our vectorized normalized segments s̃i,j = vec(s̃i,j) ∈
RτC , LLE operates by reconstructing each segment from its nearest neighbors.

The steps are as follows:

1. Find the set of K nearest neighbors Ni,j for each segment s̃i,j .

2. Compute weights Wi,j,k that minimize the reconstruction error:

min
Wi,j

∥∥∥∥∥∥s̃i,j −
∑

k∈Ni,j

Wi,j,ks̃k

∥∥∥∥∥∥
2

, subject to
∑

k∈Ni,j

Wi,j,k = 1

3. Compute the embeddings vi,j ∈ Rd by minimizing:

min
vi,j

∑
i,j

∥∥∥∥∥∥vi,j −
∑

k∈Ni,j

Wi,j,kvk

∥∥∥∥∥∥
2

This process results in embeddings that preserve local neighborhood struc-

tures of the original data.

3.3.5. UMAP:

Uniform Manifold Approximation and Projection (UMAP) is a dimensional-

ity reduction technique that maps high-dimensional data into a lower-dimensional

space while preserving both local and global structures. For the vectorized seg-

ments s̃i,j , UMAP operates as follows:

1. Compute the fuzzy simplicial set representation of the high-dimensional

data based on a distance metric d(̃si,j , s̃k).

2. Optimize the low-dimensional embeddings vi,j ∈ Rd by minimizing the

cross-entropy between the fuzzy simplicial sets of the high-dimensional

and low-dimensional representations.

The embedding function g is defined implicitly through this optimization:

vi,j = g(̃si,j), g : RτC → Rd

16



3.3.6. Graph Embedding:

Graph Embedding learns low-dimensional representations of graphs by cap-

turing their structural properties. For time series data, we construct a Visibility

Graph (VG) from each segment s̃i,j .

In a Natural Visibility Graph (NVG), an edge between nodes ni and nj exists

if:

x(tk) < x(ti) +
(x(tj) − x(ti))

tj − ti
(tk − ti), ∀tk ∈ (ti, tj)

The weight of the edge is: wij =
∣∣∣x(tj)−x(ti)

tj−ti

∣∣∣
From the constructed graph Gi,j = (Ni,j , Ei,j), we extract features such as

degree distributions, clustering coefficients, or apply graph embedding techniques

like node2vec to obtain the embedding vi,j .

3.3.7. Persistent Homology:

Persistent Homology captures topological features by analyzing the birth and

death of homological features across different scales. For each segment s̃i,j , we

combine properties from Visibility Graphs and persistence diagrams.

The Horizontal Visibility Graph (HVG) condition is:

x(ti), x(tj) > x(tk), ∀tk ∈ (ti, tj)

We compute persistence diagrams Di,j from sublevel filtrations of s̃i,j . Fea-

tures extracted include: Bottleneck distance to a reference diagram; p-Wasserstein

distances; Betti curves: Bi,j(x) =
∑

(bk,dk)∈Di,j
δ[bk,dk](x); Persistence entropy;

Norms of the persistence landscape.

These features are combined with those from the visibility graphs to form

the embedding vi,j .

3.3.8. Autoencoder:

Autoencoders learn compressed representations of data through unsupervised

learning as proposed in Ahmadi et al. (2025). For each normalized segment s̃i,j ,

the autoencoder consists of:

• Encoder : hi,j = fencode(s̃i,j)

• Decoder : ˆ̃si,j = fdecode(hi,j)

The embedding vi,j is the encoded representation hi,j . The autoencoder is

trained to minimize the reconstruction loss:

17



min
fencode,fdecode

∑
i,j

∥∥∥s̃i,j − ˆ̃si,j

∥∥∥2
3.3.9. Contrastive Learning CNN Embedding (C-CNN):

Note: To obtain unsupervised embeddings using CNN and RNN-based mod-

els, we implement the nearest neighbor contrastive learning (NNCLR) approach

introduced by Dwibedi et al. (2021), adapted for time series data. Therefore, we

use the abbreviations C-CNN and C-RNN to refer to these embedding methods.

Each normalized segment s̃i,j is transformed into an embedding vector vi,j

using a one-dimensional Convolutional Neural Network (1D-CNN). The CNN

applies convolutional filters across the time dimension to extract temporal fea-

tures.

The embedding process is defined as:

vi,j = CNN(s̃i,j), CNN : Rτ×C → Rd

where CNN includes convolutional layers, activation functions, and pooling

layers designed to capture hierarchical patterns in the data.

3.3.10. Contrastive Learning RNN Embedding (C-RNN):

Each normalized segment s̃i,j is processed using a Recurrent Neural Network

(RNN) to capture temporal dependencies. The RNN updates its hidden state

hi,j,k at each time step k:

hi,j,k = fRNN(si,j,k, hi,j,k−1), si,j,k ∈ RC , hi,j,k ∈ Rh

with hi,j,0 initialized appropriately. The final hidden state after process-

ing the entire segment serves as the embedding: vi,j = hi,j,τ . This embedding

captures sequential information from the entire window s̃i,j . In this work, an

LSTM-based backbone was used as a recurrent neural network.

3.3.11. Contrastive Learning Transformer Embedding (C-Tran):

Each normalized segment s̃i,j is processed using a transformer encoder with

learnable positional encoding, as proposed by Irani and Metsis (2025), to preserve

temporal order. The self-attention mechanism captures long-range dependencies

by computing attention weights between all time step pairs simultaneously, as

described by Vaswani et al. (2017):

vi,j = Transformer(s̃i,j + PE), Transformer : Rτ×C → Rd

18



where PE represents positional embeddings and the final embedding is obtained

through global average pooling of the output sequence. This approach cap-

tures complex temporal relationships and long-range dependencies that may be

missed by convolutional or recurrent architectures, while maintaining the parallel

processing advantages that make Transformers computationally efficient during

training.

For the deep learning models (C-CNN, C-RNN, and C-Tran), specific archi-

tectural details, hyperparameters, and data augmentation strategies are provided

in the Appendix to ensure full reproducibility.

3.4. Classification Algorithms

To evaluate the effectiveness of the various embedding methods in capturing

useful representations, we employ a range of widely used classification algorithms,

as implemented in the Scikit-Learn library, introduced by Pedregosa et al. (2011).

These algorithms were chosen to represent different approaches to classification,

allowing us to assess how well the embeddings perform across various learning

paradigms. The classification algorithms used in this study are:

1. Logistic Regression (LR): A linear model that estimates the probability of

an instance belonging to a particular class.

2. Decision Trees (DT) : A non-parametric method that creates a model that

predicts the target variable by learning simple decision rules inferred from

the data features.

3. Random Forest (RF) : An ensemble learning method that operates by

constructing multiple decision trees during training and outputting the

class that is the mode of the classes of the individual trees.

4. K-Nearest Neighbors (KNN): A non-parametric method that classifies a

data point based on how its neighbors are classified.

5. XGBoost (XGB) : An optimized distributed gradient boosting library de-

signed to be highly efficient, flexible, and portable.

6. Support Vector Machines (SVM): A method that finds a hyperplane in an

N-dimensional space that distinctly classifies the data points.

7. Naive Bayes (NB) : A probabilistic classifier based on applying Bayes’ the-

orem with strong (naive) independence assumptions between the features.

19



8. Multi-Layer Perceptron (MLP): A class of feedforward artificial neural net-

works that consists of at least three layers of nodes: an input layer, a hidden

layer, and an output layer. An MLP, also known as a fully connected or

dense neural network, usually forms the last few layers of a classification

neural network (a.k.a., classification head), whereas previous layers act as

complex feature extractors or feature learners. Using an MLP to classify

an embedding essentially simulates this behavior.

Each of these classification algorithms was applied to the embedded repre-

sentations of the time series data produced by the various embedding methods.

We used standard implementations of these algorithms in their respective li-

braries. To ensure that the best results per dataset and embedding method are

considered for comparison, we used the Optuna library in Python, introduced by

Akiba et al. (2019), to tune the most important parameters of the classification

methods.

As shown, the results indicate the average and standard deviation as a result

of running the experiments for each time series embedding method and relative

dataset.

3.5. Embedding Dimension Selection

The dimension of the final embedding vector, d, is a critical hyperparame-

ter that fundamentally impacts the representational capacity of an embedding

method. A single, fixed dimension for all experiments would be inappropriate, as

different methods and datasets have vastly different requirements. For example,

PCA may capture sufficient variance in a few dozen dimensions, whereas a deep

learning model may require a larger capacity (e.g., 128 or 256 dimensions) to

learn effective features.

To ensure a fair and robust comparison where each method could perform

optimally, we did not use a fixed dimension. Instead, we treated the embedding

dimension as a key hyperparameter that was tuned for each combination of em-

bedding method and dataset. Our process involved first selecting a scientifically

plausible range of dimensions for each method and then using empirical test-

ing within our hyperparameter optimization framework to identify a value that

yielded strong performance for the downstream classification task. This tailored

approach ensures that the comparisons in this study are between well-tuned,

representative models, rather than arbitrarily constrained ones. The exact di-

mensions used in the final experiments are available in our open-source code

repository.

20



Table 3: Comparison of classification accuracies based on the embedding method. Each
value shows the average accuracy and standard deviation that the embedding method
yielded for all classification algorithms on the corresponding dataset.

Dataset PCA Wavelet FFT LLE UMAP Graph TDA AE C-CNN C-RNN C-Tran

Sleep 0.685 0.715 0.698 0.645 0.665 0.673 0.638 0.625 0.667 0.651 0.732

ElectricDevices 0.572 0.563 0.568 0.542 0.555 0.548 0.535 0.525 0.542 0.532 0.605

MelbournePedestrian 0.662 0.655 0.685 0.625 0.648 0.652 0.592 0.585 0.602 0.590 0.693

Racketsport 0.708 0.728 0.715 0.675 0.685 0.690 0.622 0.638 0.672 0.639 0.715

SharePriceIncrease 0.695 0.679 0.689 0.621 0.636 0.679 0.683 0.643 0.661 0.657 0.717

SelfRegulationSCP1 0.745 0.782 0.762 0.705 0.728 0.698 0.685 0.675 0.715 0.719 0.796

UniMib 0.754 0.777 0.709 0.761 0.650 0.650 0.633 0.551 0.664 0.523 0.745

EMGGestures 0.615 0.668 0.642 0.592 0.605 0.622 0.585 0.562 0.635 0.611 0.684

Mill 0.899 0.826 0.909 0.809 0.851 0.812 0.766 0.776 0.834 0.792 0.902

ECG5000 0.923 0.925 0.927 0.911 0.901 0.920 0.681 0.741 0.902 0.895 0.931

Avg Rank 3.5 3.1 2.7 7.2 6.5 6.0 9.5 10.4 6.5 8.6 1.6

4. Results

Our experimental evaluation encompasses eleven distinct time series embed-

ding methods tested across ten diverse datasets using various classification al-

gorithms. The classification accuracies are presented in Table 3, with averaged

performance across all classifiers for each embedding method and dataset com-

bination. The table also shows the average rank of each method. The rank

was computed by our experimental evaluation, which encompasses eleven dis-

tinct time series embedding methods tested across eleven diverse datasets using

various classification algorithms. The classification accuracies are presented in

Table 5, with averaged performance across all classifiers for each embedding

method and dataset combination. The table also shows the average rank of each

method. The rank was computed by first ranking the embedding methods within

each dataset based on their classification accuracy, where rank 1 corresponds to

the highest accuracy and rank 11 to the lowest. For each dataset, ties in accu-

racy received the same rank, and the subsequent rank was adjusted accordingly

(e.g., if two methods tied for rank 1, the next best method would receive rank

3). The average rank for each embedding method was then calculated by taking

the arithmetic mean of its ranks across all ten datasets. This ranking approach

provides a robust measure of overall performance that accounts for the relative

effectiveness of each embedding method across diverse signal types and applica-

tion domains, with lower average ranks indicating better overall performance.

4.1. Overall Performance

The experimental results demonstrate that C-Transformer achieves the best

overall performance with an average rank of 1.6, representing a significant break-

through for deep learning approaches in time series embedding. FFT maintains

21



strong performance (average rank 2.7), followed by Wavelet Transform (average

rank 3.1) and PCA (average rank 3.5). This marks the first instance where a

neural network-based method outperforms classical techniques in overall ranking

across diverse time series classification tasks.

Among the deep learning approaches, C-Transformer significantly outper-

forms C-CNN (average rank 6.5) and C-RNN (average rank 8.6), demonstrating

that attention mechanisms are superior to convolutional and recurrent architec-

tures for capturing discriminative temporal patterns in time series data. The

substantial performance gap highlights the importance of architectural choice in

deep learning-based time series embedding.

4.2. UMAP Projection Analysis

For an initial visual qualitative overview of the embeddings produced by each

method, we have plotted UMAP projections for all eleven embedding methods on

the UniMiB SHAR dataset in Figure 3. The data points are color-coded by their

class label. Better visual separation of the data points from different classes likely

means that the downstream classifier will have an easier time correctly classifying

the data. However, it should be noted that the separability also depends on

the ability of the UMAP projection to preserve the embedding properties when

projecting from d-dimensions to two dimensions.

The visual analysis reveals distinct patterns that correlate with quantitative

performance. Wavelet Transform (subplot b) demonstrates exceptional class

separation with nine clearly distinct activity clusters, directly supporting its

superior 77.7% classification accuracy. Classical methods show varying degrees

of separation: PCA (subplot a) exhibits moderate clustering with some overlap,

while FFT (subplot c) displays good separation for most classes but with some

boundary ambiguity.

Deep learning embeddings present contrasting characteristics. The NNCLR

CNN method (subplot i) produces remarkably compact and well-separated clus-

ters with clear inter-class margins, explaining its competitive classification per-

formance. The NNCLR Transformer (subplot k) demonstrates exceptional clus-

ter formation with tight, well-separated groups, supporting its top-ranking quan-

titative performance, while the NNCLR LSTM (subplot j) shows more dispersed

clustering patterns. In contrast, autoencoder embeddings (subplot h) show in-

termediate separation quality. Graph-based methods (subplot f) create complex

non-linear boundaries that capture subtle activity relationships, while topologi-

cal methods (subplot g) exhibit fragmented clusters, consistent with their mod-

erate quantitative performance.

22



Manifold learning approaches demonstrate mixed results. LLE (subplot d)

preserves local neighborhood structures but shows significant class mixing, sug-

gesting limitations in capturing the global structure of activity patterns. The

UMAP method’s own projection (subplot e) serves as a reference, showing the

inherent structure when the embedding and visualization methods are aligned.

Importantly, the strong correlation between visual cluster quality and classi-

fication accuracy validates the utility of embedding visualization for preliminary

method assessment. Methods with clear visual separation consistently outper-

form those with mixed or fragmented clusters, providing practitioners with a

valuable tool for embedding quality evaluation and method selection.

4.3. Dataset Complexity Analysis

The effectiveness of embedding methods shows a strong correlation with

dataset characteristics, particularly dimensionality and sequence length. For

datasets with high dimensionality (more than 5 channels), such as EMGGestures

and RacketSports, Wavelet Transform consistently outperforms other meth-

ods, achieving accuracies of 66.8% and 72.8%, respectively. This suggests that

Wavelets’ multi-resolution capabilities are particularly beneficial for capturing

complex relationships across multiple channels. Conversely, for univariate time

series such as ECG5000 and ElectricDevices, FFT and PCA demonstrate supe-

rior performance, with accuracies reaching 92.7% and 57.2% respectively.

4.4. Domain-Specific Performance

Across all domain categories, C-Transformer demonstrates remarkable con-

sistency, achieving the best performance on 7 out of 10 datasets. This broad

applicability distinguishes it from classical methods that show domain-specific

strengths, such as FFT’s excellence in mechanical systems or Wavelets’ superi-

ority in bioelectrical signals.

4.4.1. Bioelectrical Signals

In EEG datasets (Sleep, SelfRegulationSCP1), C-Transformer demonstrates

optimal performance, achieving accuracies of 73.2% and competitive results re-

spectively. Wavelet Transform also demonstrates strong performance, achieving

accuracies of 71.5% and 78.2% respectively. Both methods effectively capture

the complex temporal dependencies characteristic of bioelectrical signals, with

C-Transformer’s attention mechanism and Wavelet’s multi-resolution analysis

providing complementary approaches to temporal pattern recognition. For ECG

data (ECG5000), FFT achieves the highest accuracy (92.7%), closely followed

by C-Transformer (92.1%) and Wavelet Transform (92.5%) and PCA (92.3%).

23



Figure 3: UMAP projections of different embedding methods on the UniMiB-SHAR dataset.
Each subplot shows 2D projections of embeddings colored by activity class (9 classes total).
Clear class separation indicates more discriminative embeddings: (a) PCA, (b) Wavelet, (c)
FFT, (d) LLE, (e) UMAP, (f) Graph, (g) TDA, (h) Autoencoder, (i) NNCLR CNN, (j) NNCLR
LSTM, (k) NNCLR Transformer. Visual separability correlates with classification performance.

24



These results suggest that frequency-domain representations are particularly ef-

fective for capturing the quasi-periodic components characteristic of bioelectrical

signals.

4.4.2. Biomechanical and Motion Signals

For biomechanical signals (UniMiB-SHAR, RacketSports, EMGGestures),

Wavelet Transform achieves the highest accuracies (77.7% for UniMiB-SHAR,

72.8% for RacketSports, 66.8% for EMGGestures, respectively). The multi-

resolution capability of wavelets appears particularly beneficial for analyzing the

hierarchical temporal patterns in human movement data. UMAP also performs

strongly on these datasets, indicating that manifold learning approaches can ef-

fectively capture the underlying nonlinear dynamics of biomechanical systems.

Graph Embedding (62.2% for EMGGestures) demonstrates moderate effective-

ness in representing the structural relationships in muscle activation patterns,

while deep learning approaches struggle to match the performance of classical

methods in this domain.

4.4.3. Electrical and Mechanical System Signals

For electrical system datasets (ElectricDevices) and mechanical system datasets

(Mill), FFT and PCA demonstrate superior performance, with FFT achiev-

ing the highest accuracy on Mill data (90.9%). This confirms the efficacy of

frequency-domain analysis for systems with characteristic spectral signatures

and harmonic components. PCA’s strong performance (89.9% for Mill) suggests

that linear subspace projection methods can effectively capture the dominant

modes of variation in mechanical system signals. Graph Embedding also shows

competitive performance on electrical system data (54.8% for ElectricDevices),

indicating that structural approaches can effectively represent the temporal state

transitions in these systems. The relative underperformance of topological meth-

ods (76.6% for Mill) suggests limitations in capturing the specific periodicity and

harmonic structures of mechanical systems through persistence features alone.

4.4.4. Economic and Environmental Signals

For economic signals (SharePriceIncrease) and environmental signals (Mel-

bournePedestrian), PCA achieves the highest accuracy for financial data (69.5%),

while FFT performs best for pedestrian traffic (68.5%). The effectiveness of lin-

ear methods for economic time series suggests that dimensional reduction tech-

niques can effectively isolate the latent factors driving financial markets. Graph

Embedding shows comparable performance on financial data (67.9%), poten-

tially capturing the complex state transitions and regime shifts characteristic

25



Table 4: Computational Analysis of embedding methods on the ElectricDevices dataset.

Method Training (s) Inference (s) Training Complexity Inference Complexity GPU Benefit

PCA 0.443 0.064 O(n2d+ d3) O(d) Low

Wavelet 0.010 0.005 O(n log n) O(d) Moderate

FFT 0.103 0.090 O(n log n) O(d) High

LLE 23.377 1.604 O(kn2) O(kd) Low

UMAP 21.719 15.000 O(n1.14) O(n log n) Low

Graph 364.340 309.867 O(n2 log n) O(n2) Low

TDA 204.619 176.771 O(n3) O(n2) Low

Autoencoder 38.609 1.181 O(E ·B · P ) O(P ) High

C-CNN 680.504 0.139 O(E ·B · Cops) O(Cops) Very High

C-RNN 703.063 0.150 O(E · T ·H2) O(T ·H2) High

C-Tran 579.639 0.157 O(E ·B · T 2 ·D) O(T 2 ·D) Very High

Legend: n: number of samples, d: feature dimension, k: neighbors, E: epochs, B: batch size, P :

model parameters, Cops: convolution operations, T : sequence length, H: hidden dimension size.

of economic systems. For traffic flow signals, which exhibit both periodic and

stochastic components, the frequency-domain representation offered by FFT ap-

pears particularly effective at isolating seasonal and daily patterns. The overall

modest performance across methods for these domains highlights the inherent

challenge in modeling systems with both deterministic and stochastic compo-

nents.

4.5. Computational Efficiency Analysis

While the representational power of embedding methods is a primary consid-

eration, computational efficiency is also a critical factor for practical signal pro-

cessing applications. Our analysis reveals significant variations in computational

requirements across methods. Classical methods like PCA and FFT are highly

efficient, requiring minimal computational resources even for long sequences.

In contrast, manifold learning methods (LLE, UMAP) and deep learning ap-

proaches incur substantially higher computational costs, with self-supervised

deep learning methods requiring up to 1,600× longer training times than PCA

for the electricDevices dataset. Table 4 demonstrates the computational trade-

offs across embedding methods on the ElectricDevices dataset, revealing that

while deep learning models achieve excellent inference speeds (0.14-0.15s), they

require substantial training investments of approximately 11-12 minutes each.

Graph Embedding and TDA methods show moderate to high computational re-

quirements but process all data identically without traditional training/inference

distinctions.

26



4.6. Classification Algorithm Impact

The effectiveness of the classification algorithm as shown in table 5 varies

significantly depending on the downstream classification algorithm, highlighting

the importance of considering the entire signal processing pipeline. Tree-based

methods (Random Forest and XGBoost) consistently outperform other classi-

fiers across most embedding methods, with Random Forest achieving particu-

larly strong results on frequency-domain embeddings (FFT) with an average

rank of 1.9. SVM also demonstrates competitive performance, particularly with

manifold learning embeddings like LLE and UMAP. These results highlight the

importance of considering the entire pipeline when selecting embedding methods

for time series classification tasks.

Table 5: Comparison of classification accuracies based on the classification algorithm.
Each value shows the average accuracy and standard deviation that the classification
algorithm yielded for all embedding methods on the corresponding dataset.

Dataset LR DT RF KNN XGB SVM NB MLP

Sleep 0.665 0.651 0.697 0.677 0.691 0.678 0.556 0.654

ElectricDevices 0.553 0.539 0.565 0.558 0.581 0.560 0.498 0.552

MelbournePedestrian 0.572 0.558 0.618 0.602 0.632 0.621 0.515 0.592

Racketsport 0.655 0.632 0.710 0.683 0.718 0.723 0.588 0.631

SharePriceIncrease 0.694 0.647 0.684 0.671 0.661 0.692 0.594 0.670

SelfRegulationSCP1 0.715 0.702 0.749 0.723 0.752 0.732 0.655 0.695

UniMib 0.640 0.620 0.701 0.693 0.708 0.710 0.549 0.628

EMGGestures 0.595 0.582 0.665 0.618 0.658 0.625 0.538 0.610

Mill 0.711 0.893 0.925 0.907 0.929 0.797 0.596 0.803

ECG5000 0.856 0.874 0.904 0.876 0.902 0.887 0.825 0.843

Avg Rank 5.1 6.3 2.1 3.9 2.0 2.7 8.0 5.9

5. Discussion

5.1. Impact of Signal Characteristics

Our comprehensive analysis reveals that the effectiveness of embedding meth-

ods is fundamentally influenced by time series characteristics, particularly their

dimensionality, sequence length, and application domain. For high-dimensional

multivariate signals (or time series), C-Transformer and Wavelet Transform con-

sistently excel, likely due to attention mechanisms’ ability to focus on relevant

temporal relationships and wavelets’ ability to capture both time and frequency

information across multiple channels simultaneously. C-Transformer achieves

particularly strong performance on Sleep data (73.2%), demonstrating the effec-

tiveness of learned attention patterns for complex bioelectrical signals.

27



Conversely, for univariate or low-dimensional signals, simpler methods like

PCA and FFT often achieve comparable or superior performance to more com-

plex approaches. This is evident in ECG5000 data, where FFT (92.7%), C-

Transformer (92.1%), and Wavelet (92.5%) perform similarly, suggesting that

for datasets with simpler structures, the additional complexity of advanced em-

bedding methods may not translate to proportionate performance gains. The

strong performance of FFT across multiple domains indicates that frequency-

domain representations remain highly effective for a wide range of time series

classification tasks, particularly those involving periodic or quasi-periodic sig-

nals.

The relationship between time series length and embedding method effec-

tiveness also reveals important patterns. For longer time series (or signals),

methods that can effectively compress information, such as PCA and Wavelet

Transform, demonstrate advantages over methods that struggle with the curse

of dimensionality. This pattern becomes particularly evident in datasets like Sel-

fRegulationSCP1, where dimensionality reduction becomes essential for effective

classification.

5.2. Method Selection Guidelines

Based on our comprehensive evaluation, we synthesize our findings into a

set of guidelines and a detailed recommendation matrix (Table 6). The rec-

ommendations primarily reflect the classification performance observed in our

experiments, but practitioners must weigh this against the computational trade-

offs discussed previously (see Table 4).

For example, while the C-Transformer is highly recommended across all do-

mains due to its state-of-the-art accuracy, its significant training time may make

classical methods like FFT or Wavelet Transform, which also earn top recom-

mendations in specific domains, a more pragmatic choice for applications with

limited computational resources. The table should therefore be used as a guide

to creating a shortlist of methods, with the final selection being informed by the

specific constraints of the application at hand.

5.3. Methodological Considerations

The comparative analysis across embedding categories reveals distinct ad-

vantages and limitations that have important implications for method selection.

Classical methods (PCA, FFT, Wavelet Transform) offer robust performance,

computational efficiency, and interpretability, making them valuable baseline

approaches for many applications. Their consistent performance across diverse

28



Data Type P
C
A

W
a
v
e
le
t

F
F
T

L
L
E

U
M

A
P

G
ra

p
h

T
D
A

A
E

C
-C

N
N

C
-R

N
N

C
-T

ra
n

Bioelectrical
Signals

✓✓ ✓✓ ✓✓ ∼ ✓ ✓ × ∼ ✓ ✓ ✓✓

Biomechanical
and Motion

Signals
✓ ✓✓ ✓ ✓ ✓ ✓ × ∼ ✓✓ ∼ ✓✓

Electrical and
Mechanical

System Signals
✓✓ ✓ ✓✓ ∼ ∼ ∼ × ∼ ✓ ∼ ✓✓

Economic and
Environmental

Signals
✓✓ ✓ ✓✓ × ∼ ✓ ∼ ∼ ∼ ∼ ✓✓

✓✓= Highly Recommended, ✓= Recommended, ∼ = Acceptable, × = Not Recommended

Table 6: Embedding method recommendation matrix showing suitability for different signal
categories based on performance and computational efficiency.

datasets underscores that they should be considered first as strong candidates

before implementing more complex methods.

Manifold learning-based methods (LLE, UMAP) excel at capturing non-

linear relationships and complex manifold structures, but their performance

varies significantly across datasets. These methods show particular promise for

datasets with complex underlying geometries, such as human activity recogni-

tion, but may struggle with noisy or irregularly sampled time series. Their higher

computational requirements also present challenges for large-scale applications.

Structural and topological methods (Graph Embedding, TDA) show mixed

results, with performance varying substantially across signal types. Graph-based

approaches demonstrate particular strengths for signals with distinct state tran-

sitions or regime shifts, suggesting potential applications in anomaly detection

and change point analysis. However, their overall performance lags behind clas-

sical methods for standard classification tasks, indicating that structural features

alone may not provide sufficient discriminative power for many signal types.

The performance of deep learning-based methods reveals critical insights into

architectural synergy. While the C-Transformer delivered state-of-the-art re-

sults, other methods showed surprisingly modest performance. The substantial

performance gap between the C-CNN, C-RNN, and C-Transformer highlights

that architectural choices within a self-supervised framework are paramount.

29



A particularly insightful finding is the underperformance of the C-RNN

model. Despite the theoretical strength of LSTMs for sequential data, their core

inductive bias appears to conflict with the contrastive learning objective. An

LSTM’s state is highly path-dependent; data augmentations like time warping

fundamentally disrupt the temporal sequence that the model relies on, making

it difficult to learn invariant representations. In contrast, the CNN’s local motif

detection and the Transformer’s global self-attention are inherently more robust

to these augmentations. This result is not an indictment of RNNs for time series,

but rather a crucial finding that model architecture must be co-designed with

the self-supervised task to ensure their objectives are compatible.

5.4. Classification Algorithm Synergies

The interaction between embedding methods and classification algorithms re-

veals important synergistic effects that significantly impact overall system per-

formance. The consistently strong performance of tree-based methods across

multiple embedding types suggests that these classifiers possess intrinsic advan-

tages for time series classification, likely stemming from their ability to identify

discriminative features from diverse representations and their robustness to ir-

relevant or noisy dimensions.

The particular synergy between manifold embeddings and SVM classification

highlights the value of geometric preservation in the embedded space. By main-

taining the topological structure of the original signal manifold, methods like

LLE and UMAP provide representations that align well with SVM’s margin-

based optimization, resulting in superior classification boundaries. This geo-

metric perspective offers valuable insights for signal classification system design,

suggesting that preserving the intrinsic structure of the signal manifold may be

more important than maximizing variance or minimizing reconstruction error.

These synergistic relationships highlight the importance of considering the

entire signal processing pipeline when developing classification systems. Rather

than evaluating embedding methods in isolation, optimal performance requires

joint optimization of both representation and classification components, with

particular attention to their mutual compatibility. This system-level perspective

aligns with modern signal processing frameworks that emphasize end-to-end op-

timization rather than individual component excellence.

5.5. Practical Guidelines for Signal Processing Applications

Based on our comprehensive evaluation, we propose the following practical

guidelines for selecting time series embedding methods in signal processing ap-

plications:

30



1. Prioritize classical methods for strong baselines: For the majority of

time series classification tasks, classical methods like Wavelet Transform,

FFT, and PCA should be evaluated first due to their robust performance,

computational efficiency, and interpretability. However, when optimal per-

formance is required and computational resources permit, C-Transformer

provides state-of-the-art results across diverse domains.

2. Select methods based on signal characteristics: For signals with

strong harmonic components or clear spectral signatures (e.g., ECG, me-

chanical vibrations), FFT and C-Transformer both provide excellent re-

sults. For non-stationary signals with transient features (e.g., EEG, speech),

C-Transformer and Wavelet Transform offer superior performance. For

signals with complex nonlinear dynamics (e.g., human motion, fluid dy-

namics), consider C-Transformer or manifold learning approaches despite

their higher computational costs.

3. Match techniques to application domains: For bioelectrical signal

processing, C-Transformer and wavelet-based representations consistently

excel. For mechanical and electrical system analysis, frequency-domain

representations (FFT), C-Transformer, and principal component analysis

(PCA) provide the most effective embeddings. For biomechanical signal

analysis, consider C-Transformer and Wavelet Transform.

4. Optimize the full processing pipeline: Consider both the embedding

method and the classification algorithm when designing signal processing

systems. Tree-based methods (Random Forest, XGBoost) offer robust per-

formance across most embedding approaches. For manifold embeddings,

SVM typically provides superior classification. For powerful embeddings

like those from C-Transformer or Wavelets, a range of classifiers, from

tree-based models to MLPs, can be effective.

These guidelines aim to assist signal processing practitioners in navigating the

complex landscape of time series embedding methods, enabling more informed

decisions based on specific signal characteristics and application requirements.

6. Conclusion

This comprehensive study evaluates various time series embedding methods

across different datasets and classification tasks, revealing important insights into

their relative strengths and limitations. Our analysis demonstrates that while

31



embedding method performance varies significantly based on dataset character-

istics and downstream tasks, classical methods like PCA and Fourier transforms

consistently offer robustness and interpretability for datasets with prominent

global patterns. In contrast, complex methods such as deep learning-based em-

beddings excel at capturing non-linear patterns in datasets with intricate struc-

tures, though at higher computational costs.

The selection between classical and complex embedding methods inherently

involves trade-offs between simplicity, interpretability, computational efficiency,

and pattern-capturing ability. Our findings emphasize the importance of adopt-

ing a tailored approach that carefully considers the specific characteristics of the

data and intended analysis goals. The varying effectiveness of topological and

graph-based methods across different applications suggests promising avenues for

future development, particularly in handling complex, multi-dimensional time

series data.

Through the provision of an open-source suite implementing these embed-

ding methods, we aim to facilitate further advancements in time series analysis

across various fields. Future research directions include developing hybrid and

adaptive embedding methods, improving the interpretability of complex tech-

niques, and extending the evaluation to other domains, ultimately contributing

to the broader understanding and application of these tools.

References

Aeon-Toolkit, 2024. Available online: https://timeseriesclassification.com/.

Ahmadi, H., Mahdimahalleh, S.E., Farahat, A., Saffari, B., 2025. Unsupervised
time-series signal analysis with autoencoders and vision transformers: A re-
view of architectures and applications. URL: https://arxiv.org/abs/2504.
16972, arXiv:2504.16972.

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A next-
generation hyperparameter optimization framework, in: Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 2623–2631.

Berndt, D.J., Clifford, J., 1994. Using dynamic time warping to find patterns in
time series, in: Proceedings of the 3rd international conference on knowledge
discovery and data mining, pp. 359–370.

Buxton, E., Kriz, K., Cremeens, M., Jay, K., 2019. An Auto Regressive Deep
Learning Model for Sales Tax Forecasting from Multiple Short Time Series,
in: 2019 18th IEEE International Conference On Machine Learning And Ap-
plications (ICMLA), pp. 1359–1364. doi:10.1109/ICMLA.2019.00221.

32

https://arxiv.org/abs/2504.16972
https://arxiv.org/abs/2504.16972
http://arxiv.org/abs/2504.16972
http://dx.doi.org/10.1109/ICMLA.2019.00221


Chen, H., Lundberg, S.M., Erion, G., Kim, J.H., Lee, S.I., 2021. Forecasting
adverse surgical events using self-supervised transfer learning for physiological
signals. NPJ digital medicine 4, 167. doi:10.1038/s41746-021-00536-y.

Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W., 2018. Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package).
Neurocomputing 307, 72–77.

Comon, P., 1994. Independent component analysis, a new concept? Signal
processing 36, 287–314.

Donner, R.V., Zou, Y., Donges, J.F., Marwan, N., Kurths, J., 2010. Recurrence
networks—a novel paradigm for nonlinear time series analysis. New Journal
of Physics 12, 033025.

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A., 2021. With
a little help from my friends: Nearest-neighbor contrastive learning of visual
representations, in: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9588–9597.

Edelsbrunner, Letscher, Zomorodian, 2002. Topological persistence and simpli-
fication. Discrete & computational geometry 28, 511–533.

Grossman, A., Morlet, J., 1985. Decomposition of functions into wavelets of
constant shape, and related transforms. Mathematics and Physics: Lectures
on Recent Results 11, 135–165.

Harvey, A.C., 1990. Arima models, in: Time Series and Statistics. Springer, pp.
22–24.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural com-
putation 9, 1735–1780.

Hotelling, H., 1933. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology 24, 417.

Hotelling, H., 1992. Relations between two sets of variates, in: Breakthroughs
in statistics: methodology and distribution. Springer, pp. 162–190.

Irani, H., Metsis, V., 2025. Positional encoding in transformer-based time series
models: a survey. arXiv preprint arXiv:2502.12370 .

Kelly, M., Longjohn, R., Nottingham, K., 2012. Available online:
https://archive.ics.uci.edu/ml/datasets. the UC Irvine Machine Learning
Repository .

Klein, J.L., 1997. Statistical visions in time: a history of time series analysis,
1662-1938. Cambridge University Press.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. Imagenet classification with
deep convolutional neural networks. Communications of the ACM 60, 84–90.

33

http://dx.doi.org/10.1038/s41746-021-00536-y


Kutluana, G., Türker, İ., 2024. Classification of cardiac disorders using weighted
visibility graph features from ecg signals. Biomedical Signal Processing and
Control 87, 105420.

Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C., 2008. From time
series to complex networks: The visibility graph. Proceedings of the National
Academy of Sciences 105, 4972–4975.

Lee, J.M., Hauskrecht, M., 2021. Modeling multivariate clinical event time-series
with recurrent temporal mechanisms. Artificial intelligence in medicine 112,
102021. doi:10.1016/j.artmed.2021.102021.

Li, C., Zhang, S., Qin, Y., Estupinan, E., 2020. A systematic review of deep
transfer learning for machinery fault diagnosis. Neurocomputing 407, 121–135.

Li, M., Zhu, Y., Zhao, T., Angelova, M., 2022. Neurocomputing Weighted dy-
namic time warping for traffic flow clustering. Neurocomputing 472, 266–279.
URL: https://doi.org/10.1016/j.neucom.2020.12.138, doi:10.1016/j.
neucom.2020.12.138.

Liu, J., Liu, H., Huang, Z., Tang, Q., 2015. Differ multivariate timeseries from
each other based on a simple multiplex visibility graphs technique, in: 2015
Sixth International Conference on Intelligent Control and Information Pro-
cessing (ICICIP), IEEE. pp. 289–295.

Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.,
2019. catch22: Canonical time-series characteristics: Selected through highly
comparative time-series analysis. Data Mining and Knowledge Discovery 33,
1821–1852.

der Maaten, L., Hinton, G., 2008. Visualizing data using t-SNE. Journal of
machine learning research 9.

McInnes, L., Healy, J., Melville, J., 2018. Umap: Uniform manifold approxima-
tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426
.

Meyer, Y., 1993. Wavelets: algorithms & applications. Philadelphia: SIAM
(Society for Industrial and Applied Mathematics .

Michau, G., Frusque, G., Fink, O., 2022. Fully learnable deep wavelet transform
for unsupervised monitoring of high-frequency time series. Proceedings of the
National Academy of Sciences 119, e2106598119.

Morid, M.A., Sheng, O.R.L., Dunbar, J., 2023. Time Series Prediction Using
Deep Learning Methods in Healthcare. ACM Trans. Manage. Inf. Syst. 14.
URL: https://doi.org/10.1145/3531326, doi:10.1145/3531326.

Morlet, J., Arens, G., Fourgeau, E., Glard, D., 1982. Wave propagation and
sampling theory—part i: Complex signal and scattering in multilayered media.
Geophysics 47, 203–221.

34

http://dx.doi.org/10.1016/j.artmed.2021.102021
https://doi.org/10.1016/j.neucom.2020.12.138
http://dx.doi.org/10.1016/j.neucom.2020.12.138
http://dx.doi.org/10.1016/j.neucom.2020.12.138
https://doi.org/10.1145/3531326
http://dx.doi.org/10.1145/3531326


Nejedly, P., Ivora, A., Viscor, I., Koscova, Z., Smisek, R., Jurak, P., Plesinger,
F., 2022. Classification of ecg using ensemble of residual cnns with or without
attention mechanism. Physiological Measurement 43, 044001.

Pearson, K., 1901. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine and
journal of science 2, 559–572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-
learn: Machine learning in python. the Journal of machine Learning research
12, 2825–2830.

Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally
linear embedding. science 290, 2323–2326.

Santosh, K.C., De Sarkar, S., Mukherjee, A., 2018. Product Popularity Modeling
Via Time Series Embedding, in: 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), pp. 650–653.
doi:10.1109/ASONAM.2018.8508291.

Schölkopf, B., Smola, A., Müller, K.R., 1997. Kernel principal component anal-
ysis, in: International conference on artificial neural networks, Springer. pp.
583–588.

Singh, G., Mémoli, F., Carlsson, G.E., et al., 2007. Topological methods for
the analysis of high dimensional data sets and 3d object recognition. PBG@
Eurographics 2, 091–100.

Sneddon, I.N., 1995. Fourier transforms. Courier Corporation.

Soenksen, L.R., Ma, Y., Zeng, C., Boussioux, L., Villalobos Carballo, K., Na,
L., Wiberg, H.M., Li, M.L., Fuentes, I., Bertsimas, D., 2022. Integrated multi-
modal artificial intelligence framework for healthcare applications. npj Digital
Medicine 5, 149. URL: https://doi.org/10.1038/s41746-022-00689-4,
doi:10.1038/s41746-022-00689-4.

Tenenbaum, J.B., Silva, V.d., Langford, J.C., 2000. A global geometric frame-
work for nonlinear dimensionality reduction. science 290, 2319–2323.

Tjøstheim, D., Jullum, M., Løland, A., 2023. Some recent trends in embeddings
of time series and dynamic networks. Journal of Time Series Analysis 44,
686–709.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser,  L., Polosukhin, I., 2017. Attention is all you need. Advances in neural
information processing systems 30.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X., 2019. Deep learning
and its applications to machine health monitoring. Mechanical Systems and
Signal Processing 115, 213–237.

35

http://dx.doi.org/10.1109/ASONAM.2018.8508291
https://doi.org/10.1038/s41746-022-00689-4
http://dx.doi.org/10.1038/s41746-022-00689-4


Zhu, H., Huang, J., 2022. A New Method for Determining the Embed-
ding Dimension of Financial Time Series Based on Manhattan Distance
and Recurrence Quantification Analysis. Entropy (Basel, Switzerland) 24.
doi:10.3390/e24091298.

36

http://dx.doi.org/10.3390/e24091298


Appendix A. Experimental Details and Reproducibility

This appendix details the experimental setup for the deep learning models

to ensure full reproducibility. All models were trained within a self-supervised

contrastive learning framework before being used as feature extractors.

The full implementations of these models can be found in https://github.

com/imics-lab/time-series-embedding

Appendix A.1. Deep Learning Framework

All of C-CNN, C-RNN, and C-Tran methods employ the Nearest Neighbor

Contrastive Learning (NNCLR) framework (Dwibedi et al., 2021), adapted for

time series data. The core principle involves learning robust representations

by training a model to identify augmented versions of the same time series (a

“positive pair”) while distinguishing them from other time series in the batch

(the “negative pairs”). A key component of NNCLR is a support queue of

embeddings from previous batches, from which the nearest neighbor to the query

embedding is selected as the positive key, improving the quality of the learned

representations.

Contrastive Loss Function

All deep learning models were trained by optimizing the NNCLR loss func-

tion, which is a form of the InfoNCE loss:

L = − log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

k− exp(q · k−/τ)
(A.1)

where q is the embedding of an augmented view of a time series (the query), k+

is the embedding of its nearest neighbor from the support queue (the positive

key), k− are the embeddings of other samples in the batch (the negative keys),

and τ is a temperature hyperparameter, which was set to 0.1 for all experiments.

Data Augmentation Details

To generate the two distinct “views” of each time series required for con-

trastive learning, we applied a sequence of three stochastic data augmentation

techniques:

• Jittering: Adds Gaussian noise (with σ = 0.03) independently to each

point in the time series.

• Scaling: Multiplies the entire time series by a random scalar drawn from

a Gaussian distribution with µ = 1 and σ = 0.1.

37

https://github.com/imics-lab/time-series-embedding
https://github.com/imics-lab/time-series-embedding


• Time Warping: Smoothly distorts the time axis of the signal using a

cubic spline with 4 knots, where the knot locations are perturbed by a

random value drawn from a Gaussian distribution with σ = 0.2.

Appendix A.2. Model Architectures

All models were trained using the Adam optimizer. The final layer of each

architecture is a dense projection head that maps the features to the embedding

space where the contrastive loss is calculated.

Appendix A.2.1. C-CNN Model

The CNN model was designed to capture local temporal motifs and hierar-

chical patterns in the signals.

• Architecture:

– Input layer accepting tensors of shape (nsteps, nfeats).

– Two 1D Convolutional layers with 100 filters each and ReLU activa-

tion. The kernel size (ksize) was varied as a hyperparameter.

– A Dropout layer with a rate of 0.5 for regularization.

– A MaxPooling1D layer with a window size of 2 to downsample the

sequence.

– A Flatten layer to convert the feature maps into a 1D vector.

– A projection head consisting of two dense layers (the first with 100

units and ReLU activation) culminating in a final embedding vector.

• Hyperparameters:

– Convolutional kernel size (ksize) was tuned per dataset.

– Batch size and number of training epochs were adjusted per dataset

for convergence.

Appendix A.2.2. C-RNN (LSTM) Model

The RNN model utilizes a Bidirectional Long Short-Term Memory (LSTM)

network, designed to model sequential dependencies by capturing information

from both past and future time steps.

• Architecture:

– Input layer accepting tensors of shape (nsteps, nfeats).

– A Bidirectional LSTM block with two layers and 128 hidden units

in each direction. A dropout rate of 0.3 was applied between LSTM

layers.

– The final hidden states from the forward and backward passes of the

last LSTM layer are concatenated to form a comprehensive sequential

representation.

38



– A Dropout layer with a rate of 0.3.

– A dense projection head that maps the concatenated state to a final

256-dimensional embedding, with L2 regularization applied.

• Hyperparameters:

– LSTM hidden size: 128 units.

– Number of LSTM layers: 2.

– Final embedding dimension: 256.

– Batch size and number of training epochs were adjusted per dataset.

Appendix A.2.3. C-Transformer Model

The Transformer-based model was designed to capture complex, long-range

dependencies within the time series via a self-attention mechanism.

• Architecture:

– Input layer accepting tensors of shape (nsteps, nfeats).

– A learnable positional embedding is added to the input to provide the

model with temporal ordering information.

– A Transformer encoder block consisting of:

∗ A multi-head self-attention layer (4 heads, model dimension 256).

∗ Layer Normalization.

∗ A position-wise feed-forward network (hidden dimension 512).

– A GlobalAveragePooling1D layer to create a fixed-size representation

from the variable-length output sequence of the encoder.

– A dense projection head with L2 normalization, producing a final

128-dimensional embedding.

• Hyperparameters:

– Number of attention heads: 4.

– Model dimension: 256.

– Feed-forward hidden size: 512.

– Final embedding dimension: 128.

– Batch size and number of training epochs were adjusted per dataset.

39


	Introduction
	Background
	Statistical Methods
	Transformation-Based Methods
	Feature-Based Methods
	Model-Based Methods
	Kernel-Based Methods
	Graph-Based Methods
	Manifold Learning and Nonlinear Dimensionality Reduction
	Topological Methods
	Deep Learning-Based Methods
	Hybrid Methods

	Evaluation Methodology
	Data
	Machine Learning Pipeline
	Data Splitting:
	Time Series Segmentation:
	Data Normalization:
	Time Series Embedding:
	Model Training, Validation, and Testing

	Embedding Methods Evaluated
	Principal Component Analysis (PCA):
	Fourier Transform (FFT):
	Wavelet Transform:
	Locally Linear Embedding (LLE):
	UMAP:
	Graph Embedding:
	Persistent Homology:
	Autoencoder:
	Contrastive Learning CNN Embedding (C-CNN):
	Contrastive Learning RNN Embedding (C-RNN):
	Contrastive Learning Transformer Embedding (C-Tran):

	Classification Algorithms
	Embedding Dimension Selection

	Results
	Overall Performance
	UMAP Projection Analysis
	Dataset Complexity Analysis
	Domain-Specific Performance
	Bioelectrical Signals
	Biomechanical and Motion Signals
	Electrical and Mechanical System Signals
	Economic and Environmental Signals

	Computational Efficiency Analysis
	Classification Algorithm Impact

	Discussion
	Impact of Signal Characteristics
	Method Selection Guidelines
	Methodological Considerations
	Classification Algorithm Synergies
	Practical Guidelines for Signal Processing Applications

	Conclusion
	Experimental Details and Reproducibility
	Deep Learning Framework
	Model Architectures
	C-CNN Model
	C-RNN (LSTM) Model
	C-Transformer Model



