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Abstract. When using LSTM networks to model time-series data, the
standard approach is to segment the continuous data stream into fixed-
size sequences and then independently feed each sequence to the LSTM
network for training in a stateless fashion (i.e in a fashion that resets the
LSTM cell state per fixed-size sequence). As a result, long-term depen-
dencies between patterns appearing in the data stream may be lost. In
this work, we introduce a hybrid deep learning architecture that enables
long-term inter-sequence modeling while maintaining focus on each se-
quence’s local characteristics. We use stateful LSTM training to model
long-term dependencies that span the fixed-size sequences. We also uti-
lize the attention mechanism to optimally learn each training sequence
by focusing on the parts of each sequence that affect the classification
outcome the most. Our experimental results show the advantages of each
of these two mechanisms independently and in conjunction, compared to
the standard stateless LSTM training approach.

Keywords: recurrent neural networks, lstm, deep learning, attention
mechanisms, time series data, self-attention

1 Introduction

Recurrent neural networks (RNNs) are well known for their ability to model tem-
poral dynamic data, especially in their ability to predict temporally correlated
events [24]. RNNs form a family of neural networks in which a key feature is
the additional input of the previous time-step’s network “state,” also known as
“memory.” This memory allows RNNs to retain temporal relationships by cre-
ating an association between the current time-step and the previous time-step,
thereby representing a chain of causation [24, 8].

A vanilla RNN’s memory length is relatively short and typically newer in-
formation is weighted heavier than older information. However, ideally, an RNN
should not only retain longer past information, but it would also weigh informa-
tion based on importance to the model and not simply on its recent proximity
in time. Well established developments in these areas are the RNN architectural
variant known as the Long Short-Term Memory (LSTM) network [9, 15], as well
as the Back-propagation Through Time (BPTT) learning algorithm [28, 4]. In
this study, LSTM networks and variants of BPTT will be studied with the fur-
ther enhancements: attention mechanisms and stateful training. The goal of such
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enhancements is enhancing RNN memory in memory length (stateful training),
feature importance, and inter-sequence weighting (self-attention).

We have built a hybrid deep neural network architecture that enhances the
ability of LSTM networks to both “focus” on importance within a sequence and
“remember” long term patterns, thereby not only increasing accuracy but also re-
ducing or eliminating the need for extensive data preparation. The first enhance-
ment, a mechanism known as attention [1, 11], allows the network to focus on
more salient sequences within the LSTM memory space. Specifically, in this dis-
cussion, we examine self-attention, also known as intra-attention, which focuses
on the important relationships between features within sequences [25, 10]. This
enhancement is network-level architectural in nature, altering the structure of
the network while leaving the LSTM layer untouched. The second enhancement,
a training model enhancement, overrides the typical LSTM back-propagation
through time algorithm. This enhancement, which we term “stateful training,”
allows the LSTM layer to retain its state between error correction updates while
also retaining its “batch update” behavior, thereby capturing long sequences of
information in an efficient manner. These enhancements are studied individually
and in conjunction so that four models are compared and contrasted for tem-
poral classification performance: 1) baseline LSTM, 2) LSTM w/Attention, 3)
stateful LSTM, 4) stateful LSTM w/Attention.

The remainder of this paper is organized as follows. We first introduce some
background work on recurrent neural networks, LSTM networks, and the at-
tention mechanism. Subsequently, we describe the details of our methodology
and our proposed solution. We then evaluate our method and compare its per-
formance against a baseline LSTM model as well as against results of other
studies on the same publicly available datasets. We discuss our observations on
the training behavior of the proposed architecture. Finally, we summarize and
conclude this work.

2 Background

RNNs and their associated learning algorithms are typically some variation or
enhancement to the standard feed-forward neural network architecture and the
back-propagation learning algorithm. A brief introduction to the feed-forward
back-propagation (FFBP) algorithm is presented here to frame the challenge
and solutions presented in this study. More details about these algorithms can
be found in [5, 22, 25].

2.1 Feed-Forward Networks, Recurrent Neural Networks, Back
Propagation Through Time

A FFBP network trains very simply by feeding information through the net-
work forward, and then back-propagating errors in the reverse, typically with
some form of gradient descent. In the simplest case, each neuron’s activation
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in the network is “fed forward” through a simple sigmoid activation per neu-
ron, errors are calculated in the output layer, and back-propagated through the
network for correction of weights between neurons. This feed-forward and back-
propagation process is executed with each iteration through the data. A complete
pass through all data is known as an epoch [6].

A RNN and its training is derived from the basic FFBP network. The most
basic RNN simply captures its current “state” as the output of the RNN layer,
and “feeds” this output back to itself as an extra input in the next time step.
Typically the RNN structure forms the first layer of a deeper network where a
FFN is fed from the output of the RNN. Layered RNNs are also common. In
the case of a layered network, the output of the RNN is “hidden” within the
network and is therefore called a hidden layer, its neurons termed hidden nodes,
and its output termed hidden output [21].

In addition to the aforementioned architectural change, the BP learning al-
gorithm is typically modified into what is known as Back-propagation Through
Time (BPTT). Rather than updating the weights with each iteration of input
data, input is “batched,” where each batch is some uniform fraction of the total
data. Data are fed forward in batches without error correction, collecting all
neural output, and updating the network over the entire batch at once [4, 23,
28].

2.2 Long Short-Term Memory and Truncated BPTT

Long Short-Term Memory (LSTM) networks are a variant of RNN which not
only feed the previous hidden output back into the input of the LSTM but also
maintain a separate “cell state,” which updates with each iteration, independent
of batch error correction. This cell state is not directly affected by the back-
propagation of errors thereby giving the network the ability to avoid the well-
known vanishing/exploding gradient problem [21]. Unlike vanilla RNNs, LSTMs
can learn tasks which require memories of events that happened hundreds of
discrete time-steps earlier [21, 9].

LSTMs also use the batched BPTT algorithm using (aka Truncated BPTT).
In typical TBPTT some batch size, k, is chosen between 2 and n/2 where n is
the number of instances in the training set. When training an LSTM the internal
cell state of the LSTM is typically reset between batches. This reset effectively
removes the ability of the network to retain state (i.e. memory) across batches.
A form of TBPTT time that allows for information flow across boundaries is
known as accelerated TBPTT (A-TBPTT). In this case, k1 is chosen to a batch
size and k2 the error size, where k1 < k2. In other words, k1 is when to correct
the network and k2 is the amount by which to correct. In this fashion, some
portion of a previous batch’s state is incorporated into the current batch [4, 23,
28].

Extending the idea of A-TBPTT it can be imagined the network could be
trained using TBPTT but trained using maximal information on everything
seen to that point (i.e. k1 < k2 where k2 is all information seen to that point).
The advantage to this could be to both take advantage of TBPTT while also
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maintaining maximal state information from one batch to the next. However,
if it were simply a matter of choosing k1 normally, and k2 to be n (i.e. all
instances), to retain all state information, this would simply devolve into a very
inefficient form of classical BPTT (i.e. k = n). This method of training also tends
to “overload” the network with long past information unlikely to be relevant to
the current time-step thereby creating noise.

2.3 Self-Attention

Attention mechanisms are a well-known technique in natural language process-
ing using Seq2seq encoder-decoder models. Standard encoder-decoders generally
operate with the encoder processing the input sequence and then “compress-
ing” or “summarizing” the information into a context vector of a fixed length
for passing to the decoder. A disadvantage of this fixed-length context vector
is the inability of the system to remember longer sequences as well as weighing
recent information as more important regardless of its true relevance. Attention
mechanisms are designed to resolve these problems. [1, 11]

Self-attention, also known as intra-attention, is an attention mechanism re-
lating different positions of a sequence in order to model dependencies between
different parts of the sequence. This differs from general attention in that in-
stead of seeking to discover the “important” parts of the sequence relating to
the network output, self-attention seeks to find the “important” portions of the
sequence that relate to each other. This is done in order to leverage those intra-
sequence relationships to improve network predictions. [10, 3, 16, 17, 25]

Originally designed for text processing, the benefit of self-attention can be
seen in the following example. In order to understand the sentence, “the dog did
not run home because it was too tired,” the word “it” must be related to the word
“dog” or the sentence makes no sense. However, if we change the word “tired”
to “far,” then the word “it” must be related to the word “home.” Obviously, the
relationship between “it” and the subject of the sentence is extremely important
to the general understanding of the sentence as a whole. In general attention,
the mechanism would seek to process the entire sentence and then emphasize the
portions that are most important based on the correctness of network output.
Conversely, self-attention seeks to relate portions of the sentence that are most
important to each other prior to prediction, thereby enhancing understanding
and prediction in a more context-specific manner. [10, 3, 16, 17] This technique
has proven so successful that in the case of text processing it has been shown
to stand alone without the need for RNN or CNN layers and perform as well or
better on its own. [25]

2.4 Experimental Rationale

While it could be argued that text processing is temporal in nature since words
have order and are related through time, strictly speaking, text processing is not
time-series data. In fact, it could be argued that a text sentence, or even an entire
paragraph, is more related to an image in that it represents a single “picture”
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conceptually in the mind of the reader. In fact, attention mechanisms designed
for text processing found almost immediate further success being adapted to im-
age processing. This further emphasizes this “single concept” idea between image
and text processing.[29] The analogy goes further in that attention in a sentence
or paragraph is generally focusing on subject/verbs/adverbs for understanding,
just as in an image attention is focusing on objects/actions/attributes.

This study seeks to conduct a preliminary analysis on attention’s efficacy
on true time-series data, specifically in temporal classification tasks. As detailed
in the landmark paper, Attention is all you need [25], the temporal layer can
be removed from text and image processing. However, we seek to understand
attention’s role when the temporal aspect of the data is its primary feature.
To test this, we re-introduce the LSTM layer and study the interplay between
LSTM and attention layers where the LSTM layer is responsible for temporal
relationships and attention is responsible for relationships between features. We
propose that there is a benefit to understanding the data both “vertically” (i.e.
through time) and “horizontally” (i.e. feature to feature) when learning true
time-series data. This study seeks to investigate this empirically prior to the
next logical step: theoretical study (should it prove worthy empirically).

3 Methodology

This study seeks to investigate the following challenge: How do we maintain
maximum relevant temporal state information, without picking up noise and ir-
relevant information, without over-training, while also leveraging relevant feature
importance? In other words, how do we make the LSTM maximally “stateful”
but have it pay “attention” to only relevant information? The solutions proposed
here study both the concepts of statefulness to preserve information through
batches, and the concept of “attention” to focus training on specific, short-term,
feature-to-feature, high-value information.

3.1 Statefulness

In the context presented here, “statefulness” refers to the LSTM’s ability to pre-
serve its cell state through batches [14, 19]. Typically LSTMs are trained without
any preservation of state between batches (i.e. k1 = k2 < n and n%k1 = 0).
This can be partially solved through A-TBPTT. It should be noted that carrying
state forward is not always desirable and this is highly data-dependent. Stateful
training on data which has many short-term dependencies, and/or causation is
a near-term event, and/or the data has clear and uniform temporal “sections,”
may actually be harmful to the model’s performance. However, what is of con-
cern in this study is data that is continuous with longer-term relevant knowledge
throughout the data.

To achieve this we begin with setting the batch size to 1. This is a matter
of the TensorFlow/Keras API used to model the data, and not part of the
general algorithm. Setting batch size to 1 has the effect of making the training



6 Alexander Katrompas and Vangelis Metsis

sequence equal to 1. This normally would cause the loss of all LSTM cell state
information since the LSTM cell state will be reset with every iteration. However,
we will alter the LSTM behavior to maintain state between batches (i.e. do not
reset the cell state) by setting “stateful” to true (again, this is a matter of the
TensorFlow/Keras API used as a method to achieve our algorithmic goals).

In this programmatic form (batch size = 1, stateful = true), training is anal-
ogous to classical BP, however, we will also structure the data into time slices
from 10s to 100s of steps (i.e. a “sequence”), thereby allowing TBPTT to be
performed. LSTM cell state will be reset only at the end of an epoch, as opposed
to at the end of a sequence, and multiple epochs will be presented. This can
be seen in algorithm 1 where the difference between common LSTM batched
training and “stateful” training is the placement of the step, “reset LSTM cell
state.” In typical LSTM training, this is performed automatically and imme-
diately following the step, “execute TBPTT.” The end result of this altered
training algorithm is an LSTM network that will maintain cell state throughout
an entire data set (i.e. epoch) while still training and correcting in batches ac-
cording to TBPTT [9, 23, 28, 12, 14, 19].

Algorithm 1: Stateful Training Algorithm

Data: 3D matrix of r (x) c (x) s, where r is the number of training
instances per sequence, c is the number of features, s is the
number of sequences, and where N%s=0, where N = total
number training instances.

Initialize network;
while epochs remaining do

foreach s do
for i← 1 to r do

propagate si forward;
E += ei;

end
execute TBPTT;

end
reset LSTM cell state;

end

3.2 LSTM and Attention

When combined with LSTM architectures, attention operates by capturing all
LSTM output within a sequence and training a separate layer to “pay attention”
to (i.e. to weigh) some parts of the output more than others. Note that the
LSTM is set to return sequences, i.e. for an input sequence x = (x1, x2, ..., xT )
the LSTM layer produces the hidden vector sequence h = (h1, h2, ..., hT ) and
output y = (y1, y2, ..., yT ) of the same length, by iterating the following equations
from t = 1 to T .
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ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where the W terms denote weight matrices, the b terms denote bias vectors,
and H is the hidden layer function. Details about LSTM networks can be found
in [7].

Attention is essentially a neural network within a neural network, which is
learning to weigh portions of a sequence for relative feature importance [27,
30]. The general concept of attention can be modified to work with temporal
classification problems where the sequences are a collection of instances of time-
series data and the “decoding” is classification. In the models presented here,
rather than a sequence of words, the sequences are fixed-length vectors generated
by segmenting the continuous data stream. Each value of the sequence vector is a
time-step (data point) represented as a numeric value. This value can be a sensor
measurement, a stock market price, etc. [18]. The attention used in this study
is multiplicative self-attention1 and uses the following attention mechanism:

ht = tanh(Wxxt +Whht−1 + bh) (3)

et = σ(xTt Waxt−1 + bt) (4)

at = softmax(et) (5)

where ht is the hidden node output from the LSTM layer in a two-dimensional
matrix (i.e. the entire hidden output achieved in Keras through setting return
sequences to true). et is the sigmoid activation output of the attention two-layer
network, where Wa is the attention network weights, producing a corresponding
matrix of the attention network activations. at is the softmax activation of et
producing a vector “alignment score” weighting the importance of the individual
parts of the batched input sequences.

4 Data

In this section, we discuss the characteristics of the data for which the proposed
architecture is advantageous as well as the datasets used in our experiments.

4.1 Data Characteristics

Sequential nature: The data to be modeled must be time-series data, continuous
and in-order, sampled at reasonably regular rates, with dependencies through
time. For example, environmental data such as barometric pressure, air moisture,
current temperature, etc. in the prediction of future temperature. Gathering data
such as environmental data, process control data, physio-metric data, biometric

1 pypi.org/project/keras-self-attention/
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data, etc. can be done continuously, in order, and at regular intervals, and is of
high value to many classification problems.

Natural order : The data to be modeled must be reasonably natural and not
artificially staged into discrete, disparate groups. For example, the data cannot
be EEG data in ordered experimental events such as hearing a noise on the
left/right, or a vision event on the left/right [20]. Since the events (auditory or
visual stimulus) in this dataset follow a predetermined pattern scripted by the
researchers, the model very quickly learns the experimental design pattern and
not the EEG signal characteristics that are associated with the stimulus type.
This leads to dramatic over-fitting and no generalizability. It should be noted
this does not apply to data collected experimentally in which purposeful natural
randomness is simulated with uneven events.

Temporal event classification: The classifications to be modeled must be tem-
poral events through time, and not single-point, discrete classifications. In other
words, the events being predicted are things that happen over time continuously.
For example, predicting a human fall based on smart-device accelerometer read-
ings. The movements leading up to a fall can be running, walking, standing, etc.,
followed by a fall which happens over time with a series of time-steps includ-
ing the initial falling period, striking the ground, remaining in the fall position,
recovery, and then back to some non-falling activity.

4.2 Data Sets

Three different datasets were used in our experiments.

SmartFall : The data set consists of raw (x, y, z) accelerometer readings rep-
resenting activities of daily living (ADLs) such as walking and running with falls
interspersed. [13]

MobiAct : The data set consists of raw (x, y, z) accelerometer readings with
various ADLs (jogging, walking upstairs, falls, etc) recorded and labeled. [26]

Occupancy Data: The data set consists of recorded ambient features of an
enclosed space (temperature, humidity, light, CO2, and humidity ratio) and the
associated event label that space is occupied or not occupied for some period of
time. [2]

In our experiments, the SmartFall and MobiAct data are not pre-processed
other than to concatenate various subjects together into a single training, test,
and validation set. Conversely, the original SmartFall study, and especially the
MobiAct study, both do extensive pre-processing and feature extraction.

The occupancy data is not pre-processed and is taken as-is, in temporal order,
in both our study and the cited work. However, the cited study does extensive
statistical analysis to achieve the optimal model and feature set whereas our
technique simply uses the data as-is with the complete feature set.
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5 Models

Four models were used to demonstrate the effectiveness of the enhancements
discussed here. All models are built using TensorFlow 2.0 with Keras and the
third-party library mentioned above for achieving attention models.

5.1 Architectures

Model 1: Vanilla LSTM : This model is a typical LSTM deep-learning model and
consists of an LSTM input layer, a dense layer wrapped in a time-distributed
layer, another dense layer, and an output classifier. The LSTM return sequences
parameter is set to true which enables the complete LSTM hidden layer se-
quences to be sent forward to the time distributed later as shown in Figure 1a.
The time-distributed wrapper allows each set of hidden layer sequences to be
applied to individual identical copies of the first dense layer. This conforms to
the idea we want to capture and train on all hidden states equally, and not on
just the resulting context vector of the hidden states. This also is analogous to
the next model 1bwherein ‘return sequences’ is required to implement the at-
tention layer. This also allows for a consistent comparison between models. The
output of the time-distributed dense layer is forwarded to the subsequent dense
layer, and finally to the output layer. It is assumed the reader is familiar with
such models [9].

(a) Vanilla LSTM model. (b) LSTM with Attention.

Fig. 1: The figure shows the architectures of two networks designed for sequence
classification.

Model 2: LSTM with Attention: This model replaces the time-distributed
dense layer with an attention layer. Return sequences is set to true enabling the
complete hidden layer sequences to be sent forward to the attention layer where
they are processed similarly to the previously explained encoder/decoder model
and the vanilla LSTM model (see Figure 1b).
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Model 3: Stateful LSTM : This model is architecturally identical to the vanilla
LSTM (Figure 1a), however, the learning algorithm is altered to maintain state as
described in the section on stateful training. Both return sequences and maintain
state parameters are set to true. The state is reset at the end of each epoch as
described in algorithm 1.

Model 4: Stateful LSTM with Attention: This model utilizes the TensorFlow
functional API and uses both stateful training and attention in parallel layers,
which are then merged and fed forward to a common dense layer. In this model,
each “side” of the network is trained according to its architecture as described
in the previous two models respectively. (Figure 2).

Fig. 2: Stateful LSTM with Attention

5.2 Hyperparameters

In each case, the models were tuned with the number of nodes, time-steps, and
epochs that performed the best for the dataset at hand, so that the best perfor-
mance of each was measured both against each other and against the existing
published work. These parameters were selected in a grid search pattern varying
hidden layer nodes, time-steps, and the number of epochs in all combinations
until the optimal parameters were discovered for each model. Figure 3 shows the
typical Stateful LSTM w/Attention summary. From this summary and the fol-
lowing general parameter ranges, it should be sufficient to reproduce all models.

Hidden Layer nodes were selected between 100 and 300 with an increasing
number needed from models 1 to 4, in order, as described in the architectures
sub-section.
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Time-steps were chosen to be 40 in the case of an attention model and
200 in the case of a non-attention model (models 2 and 4, as described in the
architectures sub-section).

Epochs were chosen between 120 and 35 in generally decreasing numbers from
models 1 to 4, as described in the architectures sub-section. This is especially
notable in that as the number of nodes increased from model to model, epochs
decreased dramatically.

Fig. 3: Typical Stateful LSTM with Attention Model used in the study.

6 Experiments and Results

We first present the experimental results of comparing the four different archi-
tectures studied in this work (i.e. Vanilla LSTM, LSTM w/ Attention, Stateful
LSTM, and Stateful LSTM w/ Attention) against each other. We show these re-
sults per data set, including accuracy, precision, recall, and F1 scores. Figure 4
shows the bar graph of accuracy per data set. Finally, we compare the results
of our best model (Stateful LSTM w/ Attention) with the results obtained by
previously published work on the same datasets.

6.1 Model-to-Model and Model-to-Study Comparisons

Each of the tables 1 through 7 show the results of optimally training each model
on each dataset. Tables 8 - 12 compare the results of each of the best models
studied here (measured by accuracy) with the results from the cited studies from
which each data set was acquired.
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Table 1: SmartFall Fall Detection
Results

SmartFall

LSTM Attn State Attn
State

Accuracy .939 .946 .958 .960
Precision .687 .777 .828 .857
Recall .824 .809 .844 .847
F1 .750 .793 .836 .852
ROC AUC .912 .941 .963 .974
PR AUC .819 .827 .859 .893

Table 2: MobiAct: Fall Detection
Results

MobiAct - Fall

LSTM Attn State Attn
State

Accuracy .929 .936 .945 .952
Precision .814 .799 .929 .941
Recall .871 .912 .847 .864
F1 .841 .852 .886 .901
ROC AUC .960 .966 .990 .990
PR AUC .966 .933 .960 .970

Table 3: MobiAct: Jogging Detection Results

MobiAct - Jogging

LSTM Attn State Attn
State

Accuracy .963 .970 .970 .972
Precision .991 .990 .990 .988
Recall .969 .977 .978 .981
F1 .980 .984 .984 .985
ROC AUC .973 .980 .982 .965
PR AUC .986 .996 .997 .991

Table 4: MobiAct: Detecting Walking
Down Stairs

MobiAct - Stairs Down

LSTM Attn State Attn
State

Accuracy .919 .943 .941 .948
Precision .949 .960 .967 .969
Recall .929 .953 .944 .953
F1 .939 .957 .955 .961
ROC AUC .950 .965 .968 .968
PR AUC .956 .955 .965 .968

Table 5: MobiAct: Detecting Walking
Up Stairs

MobiAct - Stairs Up

LSTM Attn State Attn
State

Accuracy .900 .919 .926 .933
Precision .944 .953 .973 .975
Recall .919 .935 .928 .935
F1 .931 .944 .950 .955
ROC AUC .946 .980 .964 .973
PR AUC .976 .996 .979 .989

Table 6: Detecting Occupancy of an
Enclosed Space - Door Closed

Occupancy 1

LSTM Attn State Attn
State

Accuracy .978 .961 .978 .980
Precision .998 .996 .998 .999
Recall .944 .903 .942 .948
F1 .907 .947 .969 .973
ROC AUC .990 .991 .994 .990
PR AUC .977 .980 .986 .990

Table 7: Detecting Occupancy of an
Enclosed Space - Door Open

Occupancy 2

LSTM Attn State Attn
State

Accuracy .925 .955 .948 .970
Precision .778 .957 .922 .993
Recall .860 .850 .840 .890
F1 .817 .901 .879 .939
ROC AUC .984 .993 .984 .993
PR AUC .929 .965 .959 .972
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Fig. 4: Model to Model Accuracy Comparison

The first model-to-study comparison presented is the SmartFall study which
used a combination of (x, y, z) accelerometer readings, derived features, and
post-processing labels into categories of events as fall or not fall. Table 8 shows
our results using only raw (x, y, z) accelerometer readings as input and no post-
processing. Table 9 shows our results when post-processing is applied similar
to the SmartFall study. Both results are compared to the deep learning model
presented in the SmartFall study.

Also presented is the MobiAct fall detection results from our experiments,
however, the MobiAct study did not include fall detection. The results of our
MobiAct fall detection experiments are presented in table 10 as a comparison
to both our SmartFall results and the original SmartFall study results. This
is presented simply as a re-enforcement of the overall results of our models
in a similar activity, with a different but comparable data set. Again, no pre-
processing of our data was done, and we use post processing similar to SmartFall
for comparison.

Table 11 shows the MobiAct results for jogging detection, walking down-
stairs, and walking upstairs. In each case, the input data for our models was raw
accelerometer readings. Conversely, the input to the ”multilayer perceptron” in
the MobiAct study was a series of complex derived features that was termed in
the study the Optimal Feature Set (OFS). This is notable in that we achieve
results that in two out of three cases are superior. In the third case, our results
have a lower accuracy score but are comparably close and notable given the
difference in pre-processing effort.



14 Alexander Katrompas and Vangelis Metsis

Table 8: SmartFall: Stateful LSTM
w/Attn versus Study without Post

Processing

SmartFall w/o Post Processing

Attn
State

Study

Accuracy .960 .850
Precision .857 .770
Recall .847 1.0

Table 9: SmartFall: Stateful LSTM
w/Att versus Study with Post

Processing

SmartFall w/Post Processing

Attn
State

Study

Accuracy .995 .850
Precision 1.00 .770
Recall .989 1.0

Table 10: Stateful LSTM w/Att
SmartFall, Stateful LSTM w/Att
MobiAct, SmartFall Comparision

MobiAct Fall Data versus SmartFall

Attn
State
Smart-
Fall

Attn
State
Mobi-
Act

Smart-
Fall
Study

Accuracy .995 .984 .850
Precision 1.0 .968 .770
Recall .989 1.0 1.0

Table 11: MobiAct Detecting ADLs versus
Study

MobiAct Data

Jogging Stairs-D Stairs-U

Attn+
State

Study Attn+
State

Study Attn+
State

Study

Accy. .972 .996 .948 .915 .933 .925

Table 12: Occupancy Detection versus Study

Occupancy Detection Data

Test 1 Test 2

Attn+
State

Study Attn+
State

Study

Accy. .980 .979 .970 .993
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Table 12 shows occupancy detection compared to the cited study. This com-
parison is notable in that the cited study did not use a neural network model,
but rather used several statistical models. Our results are presented as a compar-
ison to these statistical models, specifically the best of statistical model results
(Linear Discriminant Analysis). While our best results were similar to the cited
study’s best results, there are several things of note that make our approach
novel and valuable. Again, our models used no pre-processing or pre-selection of
inputs, whereas the cited study was in fact a study of the statistically “best” in-
put selection. In other words, we achieved slightly better results (test set 1), and
slightly worse but comparable results (test set 2), by simply using the entire fea-
ture set without the need for extensive comparative statistics. This comparison
is of value as a demonstration that our enhanced deep learning models achieve
similar or better results than most of the statistical methods in the cited paper.

7 Discussion: Training Behavior

A notable and surprising effect on training became evident as the attention mod-
els were trained and studied. In each case, models that included attention resisted
over-fitting, sometimes dramatically so. Even when trained well past the mini-
mum achievable test error, the models did not exhibit over-fitting. This occurred
in both the attention-only model and the stateful model with attention. Figures
5 through 7 show this effect. Figure 5 shows that as the standard LSTM model
continued to train, the over-training effect becomes more and more pronounced.
This was also observed in the stateful-only model (Figure 6b). However, in the
attention models (Figure 6a and Figure 7) the test error closely parallels the
training error as the training error continues to decline. Even when both errors
“flat-lined,” training and test error remained closer and parallel.

(a) 60 epochs (b) 100 epochs

Fig. 5: MobiAct Walking Down Stairs - Standard LSTM
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(a) LSTM w/Attn (b) Stateful LSTM

Fig. 6: MobiAct Walking Down Stairs - Attention versus Statefulness

Fig. 7: MobiAct Walking Down Stairs - Stateful LSTM with Attention

This was an unexpected result, however, upon closer inspection, it is seem-
ingly intuitive. The purpose of attention mechanisms is to reduce noise (i.e. irrel-
evant information) and focus on the relative “important” part of the sequences.
It seems intuitive this should reduce over-fitting in that the model has a more
difficult time memorizing the training set, and is instead constantly corrected
to the important and predictive input sequences and feature relationships. How-
ever, this is only a preliminary hypothesis and necessitates further study and
validation.

8 Conclusions

Our study conducted into LSTM model enhancements demonstrates clearly that
LSTM models with the enhancements of statefulness and attention are capable
of equal or better classification results than many state-of-the-art models, and
most notably with far less pre-processing. This is an important finding in that
pre-processing is not only cumbersome, it very often leads to human bias. With
the enhancements presented here it is possible to effectively process raw data



Enhancing LSTM Models 17

into accurate temporal classification models. This is an important consideration
when attempting to train models in real-time and online while the models are
in service, an area that warrants further study.

In addition, this study demonstrates both the benefits of attention mech-
anisms as applied outside their typical domains (e.g. seq2seq text processing
models) and re-examines the usefulness of a RNN layer(s) used in conjunction
with attention for temporal classification. Furthermore, stateful training is an
area gaining ground in the study of long-term pattern recognition and these
results support those efforts.

Based on these results, attention mechanisms, specifically self-attention, can
benefit from RNNs and vice versa, and that this is an area worthy of further
investigation.
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