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Abstract. Recently the transformer has established itself as the state-
of-the-art in text processing and has demonstrated impressive results
in image processing, leading to the decline in the use of recurrence in
neural network models. As established in the seminal paper, Attention
Is All You Need, recurrence can be removed in favor of a simpler model
using only self-attention. While transformers have shown themselves to
be robust in a variety of text and image processing tasks, these tasks all
have one thing in common; they are inherently non-temporal. Although
transformers are also finding success in modeling time-series data, they
also have their limitations as compared to recurrent models. We explore a
class of problems involving classification and prediction from time-series
data and show that recurrence combined with self-attention can meet or
exceed the transformer architecture performance. This particular class of
problem, temporal classification, and prediction of labels through time
from time-series data is of particular importance to medical data sets
which are often time-series based. 3.

1 Introduction

The transformer architecture has shown superior performance to recurrent net-
works (RNN) and convolutional (CNN) networks, particularly in the areas of text
translation and processing [13], as well as recently in image classification [17].
Self-attention only models, based on the transformer, are also showing promise
in time-series classification [16]. While the majority of these non-temporal data
(i.e. image and text) have some form of order, they are not inherently temporal
nor continuous in nature. Text data and images are processed by transformers
as discrete data tokens or patches where the value of one token does not neces-
sarily affect the value of a neighboring token. While order and position matter in
text prediction, the strength of the relationships between tokens is at least semi-
independent of proximity and requires positional encoding for modeling. [13].
This applies to images as well [15].

Conversely, time-series data are typically continuous, and proximity is im-
portant to the current time-step and the current classification/prediction [9].

3 Source code: https://github.com/imics-lab/recurrence-with-self-attention

https://github.com/imics-lab/recurrence-with-self-attention
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This study will show it is this difference in time-series data characteristics which
make recurrence combined with self-attention important to temporal classifica-
tion/prediction.

Previous work has shown that time-series classification can benefit from the
addition of self-attention to recurrent neural networks [6]. The main contribu-
tion of this paper is to demonstrate that in the case of temporal classifica-
tion/prediction, neither self-attention nor recurrence is all you need, but rather
it is recurrence combined with self-attention which provides the most robust
modeling for this class of problems. The goal of this work is to compare and con-
trast self-attention alone, i.e. the transformer, against combined recurrence and
attention to achieve the optimal time-series modeling. This is verified through
a series of experiments on nine different publicly available data sets, empirical
observations, and theoretical evidence.

2 Background

2.1 Recurrent Neural Networks

Recurrent networks are particularly adept at maintaining temporal information
through the recurrence mechanism, which feeds the current recurrent layer’s out-
put back to input layer, thereby including each current output to the subsequent
input and forming a temporal chain of causality by maintaining an internal state
(i.e. “memory”). This architecture allows the RNN to more effectively model
time-series data than most other networks [4]. The term “recurrent neural net-
work” is used broadly to refer to a collection of specific network architectures.
Of interest in this study is the LSTM which has proven itself as one of the most
robust of the RNN architectures [10,4].

While RNNs have proven themselves in a variety of tasks, especially temporal
modeling, they have some drawbacks including computational complexity and
the heavier weighting of nearer time-steps [13,7,5]. The latter characteristic is
of interest to this study. A RNN’s “memory” has a time-dependent feature,
which is both a shortcoming and a benefit. RNNs tend to weigh the most recent
information more heavily than long past information, analogous to a weighted
moving average. This is a benefit in modeling time-series data where more recent
information should be weighed heavier [10]. However, it is also a shortcoming in
two regards: 1) long past information is “forgotten” even when it is useful, and
2) within any particular sequence we may not always wish a weighting strictly
based on proximity in time.

2.2 Self-Attention

Attention mechanisms, originally created for text prediction, allow the network
to “attend” to portions of a sequence out of order, stressing the importance of
one token or another within a sequence, thereby creating a better representation
of the sequence [13,4]. There are several types of attention mechanisms, all of
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which work similarly within a neural network to create a “relationship within
a relationship”; the latter relationship being the neural network input/output
and the former being some relation between the sequence tokens which are more
(or less) important to the neural network prediction. Attention can be generally
described as a weight or “context vector” of importance within a sequence [2,8,7].

Fig. 1: Attention-based LSTM model (a) [7] with a self-attention layer (b).

Self-attention (see Figure 1) is an attention mechanism directly relating dif-
ferent positions of a sequence in order to compute a better representation of that
sequence. Self-attention differs from other attention mechanisms in that rather
than calculating an entire summarized context vector based on input/output
prediction, self-attention is directly calculating sequence-portion importance rel-
ative to other sequence-portions [13,4,17,7].

2.3 LSTM with Self-Attention

When combined with LSTM architectures, attention operates by capturing all
LSTM output within a sequence and training a separate layer to “attend” to
some parts of the LSTM output more than others [7]. For an input sequence
x = (x1, x2, ..., xT ) the LSTM layer produces the hidden vector sequence h =
(h1, h2, ..., hT ) and output y = (y1, y2, ..., yT ) of the same length, by iterating
the following equations from t = 1 to T .

ht = H(Wxhxt +Whhht−1 + bh) (1)

yt = Whyht + by (2)

where the W terms denote weight matrices, the b terms denote bias vectors,
and H is the hidden layer function. In this fashion, self-attention learns to weigh
portions of a sequence for relative feature importance [15].
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The attention used in this study is multiplicative self-attention and uses the
following attention mechanism:

ht = tanh(Wxxt +Whht−1 + bh) (3)

et = σ(hT
t Waht−1 + bt), at = softmax(et) (4)

where ht is the hidden node output from the LSTM layer in a two-dimensional
matrix. et is the sigmoid activation output of the attention two-layer network,
where Wa is the attention network weights, producing a corresponding matrix of
the attention network activations. at is the softmax activation of et producing a
context vector “alignment score” weighing the importance of the sequences [6].

2.4 Transformer

The transformer is a deep learning model which primarily uses the self-attention
mechanism for modeling and eliminates the RNN component. Like RNNs, trans-
formers are designed to handle ordered input data (e.g text, images) for tasks
such as translation, summarization, prediction, and classification. Unlike RNNs,
transformers do not process data sequentially at the encoder (input) stage. In-
stead, the transformer processes the tokens in parallel and identifies the context
of each token relative to other tokens, which then confers meaning to each word
in the sentence [13].

Transformers typically adopt an encoder-decoder architecture. The function
of the encoder layers is to generate encodings that contain information about
which parts of the inputs are relevant to each other. Each decoder layer does
the opposite, taking all the encodings and using their incorporated contextual
information to generate an ordered output sequence. To achieve this, each en-
coder and decoder layer makes use of a self-attention mechanism [13]. One or
more fully connected layers can be attached at the end of the encoder part of
the transformer to create a sequence classification architecture.

Because transformers do not process data in order at the encoder (input)
layer, they do not understand order on their own (which RNNs understand by
design). To solve this, transformers use positional encoding to maintain order in
output (discussed further in sections 3.1) [13].

2.5 Temporal Classification and Prediction

Text and image processing require ordered information and relative position
matters, however, strict sequential ordering and proximity do not matter (or at
least matter less) [2,13]. Conversely, time-series data are highly dependent on
absolute order, proximity, and absolute position [9]. Further, while text and im-
age data are typically processed in discrete “chunks” such as words or patches,
time-series data are typically processed as a series of continuous signal measure-
ments in which the strongest relationships to any given time-step are with the
immediately preceding time-steps.



Recurrence & Self-Attention vs the Transformer 5

Given the characteristics of text/image data versus time-series it can im-
mediately be seen why the transformer has enjoyed such success with text and
image processing. Not only is recurrence not needed, but it can also be argued it
is counter productive to use an architecture based on continuous temporal flow
for such tasks. By that same logic, it is also fair to question the transformer’s
suitability for true time-series data and temporal classification, even consider-
ing recent promising advances [16]. To do so we first identify an important and
common class of temporal classification and pattern matching problem which is
highly time-dependent.

The time-series problem in question is the classification or prediction of a
temporal “event” (i.e. label) through time. For example, given a continuous
ECG signal can we identify heart abnormalities, or given accelerometer read-
ings from a smart device can we detect activities of daily life (ADLs), and can
we do so with superior results to both RNNs alone and the transformer. Such
tasks require pattern matching and modeling data which have three very specific
characteristics. 1) Sequential nature: The data to be modeled is true time-series
data, continuous and in-order, sampled at reasonably regular rates. 2) Natural
order : The data to be modeled are natural and not artificially staged into fixed,
discrete, disparate labels. 3) Temporal label classification from time-series data:
The classification labels are occurrences through time from time-series data and
not single-point, discrete classifications.

3 Models

3.1 Time-Series Transformer

Architecture: The time-series transformer used in this study is built directly
from the transformer described in [13] with a modified output for time-series
classification, and eliminating positional encoding as it is not needed (see sec-
tion 3.1). The self-attention mechanism is identical to [13], as is the encoder
architecture, including layer normalization and feed-forward components. Since
decoding is not needed, the decoder is replaced with dense layers, leading to the
final dense layer for output. Figure 2a illustrates this architecture.

Positional Encoding: In the traditional encoder-decoder transformer relative
and/or absolute positional encoding is needed to preserve order within sequences
and in output [13,12], and to signify the absolute position of each token in the
sequence, as the same token can appear in different positions of a sequence for
different samples. However, in time series where each token is a single time-step,
i.e a signal measurement appearing as a scalar real number or a vector (in the
case of multiple channels), positional encoding does not add any information.
The same real number may never appear again in the dataset or it may appear
multiple times within the same sequence. Thus adding a positional encoding to
time-series data only adds another feature to be learned from the training data,
which does not add any benefit to the prediction performance. This is verified
in practice, as in all our experiments attempting positional encoding, accuracy
declined between 1% and 4% regardless of hyper-parameter tuning.
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(a) Time-series transformer architecture. (b) LSTM with self-attention architecture.

Fig. 2: Overview of neural network architectures evaluated in this study.

3.2 LSTM with Self-Attention

Architecture: The basis for an LSTM plus self-attention model is that we
wish to model sequences in order through time (the LSTM component) while
also attending to portions of a sequence which may be more or less relevant (self-
attention), thereby making a better representation of each sequence. In this way,
we are modeling ordered temporal sequences which are better representations of
themselves through the attention mechanism, while at the same time allowing
the LSTM memory to remember and model time-series dependencies. Figure 2b
illustrates the overall LSTM/self-attention architecture.

Figure 3 illustrates the conceptual flow of data “weight” through both a
LSTM model (top) and a LSTM plus attention model (bottom). Darker shading
indicates a stronger relationship to LSTM memory and/or attention. As data
flows through an LSTM more recent data is “weighted” heavier than past data.
The top flow (LSTM alone) illustrates that data is weighted smoothly both
intra-sequence and inter-sequence.

The lower flow of figure 3 shows LSTM plus self-attention with each sequence
modeled according to self-attention. Within a sequence, we can see some time-
steps as more or less important to the sequence overall. As stated in [13], through
self-attention we can “form a better overall representation of the sequence.”

Sequence Length: Deep learning architectures require the continuous time se-
ries to be broken down into fixed-length sequences for training. Sequence length
is a hyper-parameter which can be tuned on a per-model basis. Model accuracy
is sensitive to sequence length selection which makes both intuitive and theoret-
ical sense. When modeling time-series data with a self-attention component we
are attending more or less to portions of a sequence. Therefore if we make the
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sequence t-2

sequence t-2 sequence t-1 sequence t-0

sequence t-1 sequence t-0

LSTM "memory"

LSTM "memory"

Fig. 3: Conceptual data flow through LSTM (top) versus LSTM plus self-attention
(bottom). Darker shading indicates higher importance.

sequence very long then the model essentially degrades to attention only due
to the LSTM’s decreased ability to model time-steps too far in the past. In the
reverse case, imagine the sequence length being simply 1 or 2 time-steps. In that
case, there is not enough information for self-attention to intelligently attend
to portions of sequence, and the model degrades to LSTM-only. Therefore, as
sequence length is lengthened or shortened, more or less emphasis is placed on
the self-attention mechanism versus the LSTM. For this study sequence length
was selected through grid search.

4 Experiments

Set-up: In each experiment, hyper-parameters were selected through grid-search
and are noted in the referenced code. Sequence lengths, being of particular
note, were selected as follows: SmartFall: 50, MobiAct: 200, Australian National
Weather Observations: 5, Air Quality: 4, mHealth: 200, ECG: 100.

Data Sets: Data sets were chosen with the following rationale: (i) Satisfying
the criteria of section 2.5. (ii) Verification and comparison to similar LSTM-only
studies with ADLs and time-series data [6,14]. (iii) ADL data sets, and ECG sets,
representing medical data. (iv) Sufficiently different classification tasks which
bear little to no resemblance to each other, other than the fact they satisfy
the criteria of section 2.5. (v) A mix of temporal classification (SmartFall, Mobi-
Act, mHealth, EEG) and temporal prediction (Australian BOM, CO prediction).
(vi) A mix of data sizes from 100s to 100,000s of instances. (vii) Both binary
classification/predication and multi-label classification.
The data sets used are the following:

– mHealth (multi-label classification): Human behavior recording, analysis,
and classification based on multi-modal body sensing [3].

– ECG Heartbeat Categorization (multi-label classification): Two collections of
heartbeat signals derived from two datasets in heartbeat classification, the
MIT-BIH Arrhythmia Dataset4 and The PTB Diagnostic ECG Database5.

4 https://www.physionet.org/content/mitdb/1.0.0/
5 https://www.deepdyve.com/lp/de-gruyter/nutzung-der-ekg-signaldatenbank-
cardiodat-der-ptb-ber-das-internet-uemKpjIFzM
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– SmartFall (binary classification): The data set consists of raw (x, y, z) ac-
celerometer readings representing activities of daily living (ADLs), such as
walking and running with falls interspersed [6]. The task is to label a fall as
compared to other ADLs.

– MobiAct (binary classification): The data set consists of raw (x, y, z) ac-
celerometer readings with various ADLs recorded and labeled [14,6]. The
task is to label a fall, jogging, walking up stairs, walking down stairs, as
compared to other ADLs.

– Australian BOM National Weather Observations (binary prediction): Obser-
vations of a number of weather elements each day in various Australian cities
for years 2008 to 2017. The task is to predict rain/no-rain tomorrow [1].

– Air Quality Time-Series data UCI (binary prediction): Hourly averaged re-
sponses from an array of 5 metal oxide chemical sensors embedded in an air
quality device [11]. The task is to predict if CO levels will rise/fall tomorrow.

The larger data sets were split into train, validation, and test 60/20/20. The
smaller sets are split into train and test 80/20. For the data sets with validation
sets, each model was run ten times and test set averages were calculated and
recorded. In the case of smaller sets without validation sets, each model was run
with 5-fold cross-validation and test set averages were calculated and recorded.

4.1 Results

All binary classification/prediction task results are presented in Table 1. The
macro-averaged results for all classes of mHealth and EEG data set are shown in
Tables 2 and 3. The detailed per-class results can be found in Appendix A. LSTM
only results have been conducted on the same and similar data sets in other
work [6,14]. In all cases and without exception, LSTM plus self-attention out-
performed stand-alone LSTM models. Therefore, results for stand-alone LSTM
are omitted for brevity since they do not alter the results of this study. Further,
as shown in detail in this study, LSTM plus self-attention was generally superior
to self-attention alone (i.e. the transformer).

Accuracy of the LSTM plus self-attention model showed an increase in vali-
dation accuracy over the transformer between 1.2% (MobiAct jog detection) and
14.4% (CO prediction). Precision increased from 1.4% (MobiAct jog detection)
to 324.5% (SmartFall fall detection). Recall ranged from a decrease of 3.7% (Mo-
biAct stairs up detection) to an increase of 8.7% (SmartFall fall detection). F1
increased from 0.7% (MobiAct jog detection) to 53.7% (SmartFall fall detection).
Further, in all cases except one (Mobi-Act Jog), the LSTM plus self-attention
architecture ROC-AUC and PR-AUC showed significant improvement over the
transformer architecture.

For the mHealth data set, the LSTM/Attn model proved superior for all but
one category, with overall accuracy being .85 versus .82 and a weighted average
.87 versus .82. In the case of EEG classification, both models achieve extremely
high accuracy, 0.99, however, the detailed per category results still show a very
slight advantage to the LSTM/Attn model.
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Table 1: Results comparing performance metrics of LSTM+self-attention against
the Transformer for each binary classification dataset. Acc = Accuracy, Prec =
Precision, Rec = Recall, F1 = F1-score, ROC=Area under ROC curve, PR =
Area under Precision-Recall curve. SF = SmartFall, MA-[F/J/Up/Dn] = MobiAct
[Fall/Jog/StairsUp/StairsDown], Rain = Australian BOM, CO = Carbon Monoxide.

SF MA-F MA-J MA-Up MA-Dn Rain CO

tran lstm tran lstm tran lstm tran lstm tran lstm tran lstm tran lstm

Acc .886 .961 .900 .937 .957 .968 .894 .936 .900 .916 .848 .923 .659 .754
Prec .196 .832 .622 .767 .976 .990 .868 .972 .891 .956 .486 .827 .422 .698
Rec .782 .869 .913 .953 .977 .975 .967 .932 .964 .790 .847 .927 .651 .715
F1 .313 .850 .740 .850 .976 .983 .914 .952 .926 .941 .601 .837 .512 .706
ROC .593 .906 .802 .878 .872 .868 .906 .919 .906 .888 .722 .890 .628 .747
PR .542 .862 .811 .887 .987 .987 .960 .961 .966 .957 .699 .858 .659 .771

Table 2: Averaged results of mHealth data set (13 classes). Acc: Accuracy, Prec: Pre-
cision, Rec: Recall, F1: F1-score, MacrAvg: Macro Average, WAvg: Weighted Avg.

LSTM w/Attn Transformer

Prec Rec F1 Prec Rec F1 Support

MacrAvg 0.76 0.83 0.78 0.71 0.68 0.67 202k

WAvg 0.87 0.85 0.85 0.82 0.82 0.82

Acc 0.85 0.82

Table 3: Averaged results of ECG Classification data set (5 classes).
LSTM w/Attn Transformer

Prec Rec F1 Prec Rec F1 Support

MacrAvg 0.93 0.99 0.95 0.93 0.97 0.95 21.9k

WAvg 0.99 0.99 0.99 0.99 0.99 0.99

Acc 0.99 0.99

5 Conclusion

The LSTM plus self-attention model outperformed and proved superior to the
time-series transformer in temporal classification and prediction. In particular,
we believe this work shows that a combination of overall temporal modeling
(the RNN component) along with fine-grained sequence modeling (self-attention)
addresses this specific class of problem with state-of-the-art results. We believe
this is notable since this particular class of problem, natural time-series data and
temporal classification/prediction, is common and of particular importance to
tasks such as medical data analysis and prediction, ADL classification, process
control, natural event prediction, financial and economic modeling, and many
other similar high-value tasks. This work shows recurrence is not only valuable
but that it is a particularly and specifically valuable partner to self-attention,
demonstrating that for this particular class of problem, attention may not be all
you need.
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A Appendix: Detailed Classification Report Results

Table 4: Experimental results mHealth data set. Cat: Category, Acc: Accuracy, Prec:
Precision, Rec: Recall, F1: F1-score, MacAvg: Macro Average, WAvg: Weighted Avg

LSTM w/Attn Transformer

Cat Prec Rec F1 Sup Cat Prec Rec F1 Support

Null 0.94 0.86 0.89 135,542 Null 0.88 0.88 0.88 135,542

Standing 0.60 0.98 0.74 6,144 Standing 0.71 0.98 0.82 6,144

Sitting 0.72 1.00 0.84 6,144 Sitting 0.71 0.89 0.79 6,144

Laying 0.92 0.98 0.95 6,144 Laying 0.92 0.98 0.95 6,144

Walking 0.50 0.91 0.65 6,144 Walking 0.47 0.44 0.45 6,144

Stairs-Up 0.71 0.48 0.57 6,144 Stairs-Up 0.64 0.76 0.69 6,144

Bends 0.89 0.90 0.90 5,274 Bends 0.89 0.65 0.75 5,274

Arm elev 0.79 0.57 0.66 4,864 Arm elev 0.70 0.57 0.63 4,864

Knee bend 0.66 0.49 0.56 5120 Knee bend 0.83 0.54 0.66 5,120

Cycling 0.51 0.79 0.62 6144 Cycling 0.75 0.81 0.78 6,144

Jogging 0.88 0.89 0.89 6144 Jogging 0.71 0.39 0.51 6,144

Running 0.83 1.00 0.91 6144 Running 0.55 0.9 0.68 6,144

Jumping 1.00 0.95 0.97 2,048 Jumping 0.46 0.05 0.09 2,048

MacAvg 0.76 0.83 0.78 202,000 MacAvg 0.71 0.68 0.67 202,000

WAvg 0.87 0.85 0.85 202k WAvg 0.82 0.82 0.82 202k

Acc 0.85 202,000 Acc 0.82 202,000

Table 5: Experimental results ECG Classification data set. Cat: Category, Acc: Ac-
curacy, Prec: Precision, Rec: Recall, F1: F1-score, MacAvg: Macro Average, W.Avg:
Weighted Average, 0: Non-Ectopic, 1: Superventrical Ectopic, 2: Ventricular Ectopic,
3: Fusion, 4: Unknown

LSTM w/Attn Transformer

Cat Prec Rec F1 Sup Cat Prec Rec F1-
score

Support

Cat Prec Rec F1 Support Cat Prec Rec F1 Support

0 1.00 0.99 1.00 18,118 0 1.00 0.99 1.00 18,118

1 0.82 1.00 0.90 556 1 0.82 0.87 0.84 556

2 1.00 0.97 0.98 1,448 2 0.95 0.99 0.97 1,448

3 0.81 1.00 0.90 162 3 0.87 0.99 0.93 162

4 1.00 0.99 1.00 1,616 4 1.00 0.99 1.00 1,616

MacAvg 0.93 0.99 0.95 21.9k MacAvg 0.93 0.97 0.95 21900

WAvg 0.99 0.99 0.99 21.9k WAvg 0.99 0.99 0.99 21.9k

Acc 0.99 21.9k Acc 0.99 21.9k
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