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Abstract. Deep neural networks have become a staple in time-series
prediction due to their remarkable accuracy. However, their internal
workings often remain elusive. Significant advancements have been made
in the interpretability of these networks, with attention mechanisms and
feature maps being notably effective for image classification by highlight-
ing the crucial data points. While human observers can readily confirm
the significance of features in image classification, the interpretability
of time-series data and its modeling remains challenging. To address
this, we put forth an innovative approach that unifies temporal attention
and visualization as a blend of recurrent neural networks, self-attention,
and general attention. This synergy results in the generation of temporal
attention signatures, akin to image attention heat maps. Temporal at-
tention not only enhances prediction accuracy beyond that of recurrent
networks alone but also demonstrates that varying label classes yield
distinct attention signatures. This observation indicates that neural net-
works focus on different sections of time-series sequences contingent on
the prediction target. We conclude with a discussion on the practical im-
plications of this novel approach, including its applicability to model in-
terpretation, sequence length selection, and model validation. This leads
to more accurate, robust, and interpretable models, instilling greater
confidence in their results.

Keywords: Neural Networks - Deep Learning - Attention Mechanisms
- Time-Series - Model Interpretability.

1 Introduction

Recurrent neural network models (RNNs) have a long, successful history in time-
series modeling [I3]. Recent advancements in the combination of attention mech-
anisms with Long Short-Term Memory (LSTM) networks, a type of RNN, have
demonstrated that LSTMs can achieve improved performance, surpassing both
RNNs and attention-only models (i.e., transformers) [9120]. As a result, RNNs,
particularly LSTMs, remain competitive for modeling complex time-series data,
particularly in hybrid models [I3120].

Attention mechanisms have been successfully used in text processing [3JTTJIS]
and in image classification. Attention has also led to advances in model inter-
pretability, wherein image attention heat maps validate the network’s atten-
tion [7YTI0]. Inspired by both the accuracy of RNN-attention models and image
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Fig. 1: Examples of self-attention visualization demonstrating which parts of a
sequence are important to the classification decision.

attention interpretability, we introduce a novel RNN-attention time-series model,
which we refer to as temporal attention, used to achieve state-of-the-art accuracy
and interpretability via temporal attention signatures.

For comparison to image classification, Figure shows an image atten-
tion heat map, which reveals what the classification network identifies as sig-
nificant [I]. The visualization is easily validated through observation, providing
credibility to the model [I]. Time-series data and models are typically more chal-
lenging to interpret. Therefore, despite their accuracy, time-series models may
be viewed with some skepticism [16]. In the work, we develop temporal attention
signatures, providing a method of interpretation and validation for time-series
models which is conceptually comparable but computationally innovative. For
illustration, Figure [ID] shows an attention signature displaying a six-step time-
series sequence, wherein it can easily be seen that the middle of the sequence
significantly influences the prediction of the specific label.

Temporal attention signatures demonstrate that the network consistently fo-
cuses on specific segments of a time-series sequence on a per-label basis. This will
enable human observers to understand the RNN’s decision-making process, dis-
tinguishing data sequences into classes through attention. Attention signatures
help demystify the black box, providing another tool to fine-tune, interpret, and
validate time-series models.

2 Background

2.1 Related Work

Recently, progress has been made toward comprehending the internal mecha-
nisms of neural networks, however, neural networks predominantly remain “black
boxes.” For text and image processing, interpretability research involves pre-
senting the text and images in an intuitive format which can be easily verified
by human observers [IJI0]. In the domain of deep learning time-series models,
much of the interpretability research involves analyzing the network’s internal
structures (e.g., neural activations), and visualizing and performing statistical
analyses of input/output [516]. Work has also employed visualizations of RNN-
CNN hybrids, where the feature maps of the CNN layers can be visualized for
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interpretability [I9]. Similarly, attention has been utilized with RNNs to en-
hance interpretability, but these efforts have primarily been in the area of fea-
ture interpretation [20]. The contribution of the work is in time-step importance
interpretability per-label, providing insight into the influence of time on time-
series model accuracy, giving both model builders and users further confidence
in model predictions.

2.2 Recurrent Neural Networks

RNNs excel in preserving temporal information through the recurrence mech-
anism, which feeds the previous recurrent layer’s output back into the current
input. The mechanism constructs a temporal chain of causality, creating a net-
work “memory.” The memory enables the RNN to model time-series data more
effectively than most other networks. Although RNNs encompass various net-
work architectures, in the study we focus on the LSTM, which has demonstrated
itself to be one of the most robust RNN variants [4Jg].

Previous work has shown that attention mechanisms can significantly en-
hance RNN accuracy in various time-series modeling [9T420]. The improvement
in time-series modeling arises from a RNN’s inherent tendency to assign more
weight to nearer time-steps than older ones. While the smooth weighting in time
may be desirable in some cases, it may not be in others. Attention mitigates
the issue and allows the RNN to construct possibly better representations of
sequences by enabling the network, if advantageous, to attend to data “out of
order” [3U9UTTITY].

2.3 Attention Mechanisms

Attention mechanisms, originally created for text prediction in sequence-to-
sequence models, allow the network to focus on particular portions of a sequence,
highlighting the importance of one token or another within the sequence to cre-
ate a more accurate representation of the sequence for output [3I11]. Attention
can be broadly described as a weight or context vector of importance within a
sequence [3/17].

2.4 General Attention Mechanism

The general attention mechanism creates a weight vector, known as a context
vector, which captures the importance of each output step of the RNN to the
prediction outcome. With access to the hidden states of the entire input sequence,
the attention mechanism selects specific elements from the sequence to improve
the output. In this way, the context vector enables the model to concentrate
more on the relevant portions of the input sequence, as needed. See Formulas
through [3] [3U11].
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2.5 Self-Attention Mechanism

Unlike general attention, self-attention directly calculates the importance of se-
quence portions relative to other portions, generating a context matrix. The con-
text matrix enables the computation of a better representation of each sequence,
allowing subsequent layers to model more effectively. Formulas [4] through [6] pro-
vide additional details on the self-attention mechanism used in the work [I7/18].

3 Temporal Attention

Temporal attention in the work refers to the use of both of the aforementioned
attention mechanisms in conjunction with a LSTM network in time-series model-
ing. We employ both self-attention and general attention (in the form of global-
soft attention) to develop models that achieve both high accuracy and high
interpretability. Self-attention, when added to a LSTM network, enhances accu-
racy by establishing relationships between different time steps [9], while general
attention both further enhances accuracy (see Section and also allows us to
produce interpretable results through novel temporal attention signatures.

Temporal general attention operates by capturing the full LSTM output (i.e.,
“hidden layer”), typically denoted H, from within a sequence and training a
separate layer to “attend” to some parts of the LSTM output more than others.
Equations [1| through [3| define temporal general attention [3I1], where H is the
output of the LSTM layer (i.e., input to the attention layer), and z is model
input ((i.e., input to the LSTM layer).

Temporal General Attention Equations

e; = tanh(W,H” +b,) [ similarity score | (1)
a; = softmax(e;) | attention weights | (2)
y=Ya;H" | output vector | (3)

Temporal self-attention closely follows traditional self-attention [I7JI8], with
minor but notable changes. The “value matrix,” a projection of input, is used
as-is. In the case of quantitative time-series data, there is no purpose to a trans-
formation of the input data. Another difference is dot-product attention is used,
rather than scaled dot-product. The purpose of scaling is to avoid the vanishing
gradient problem. Since LSTM networks avoid this inherently, there is no pur-
pose to scaling in the attention layer. Equations [] through [6] describe temporal
self-attention.

Temporal Self-Attention Equations
E =tanh(W,HT +b,) [ similarity score | 4)
A = softmaz(W.E) | attention weights | (5)
Y =AH [ output matrix | (6)
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4 Data

The data sets used are as follows and chosen with the following rationale;
time-series prediction/classification tasks; comparison to similar studies [9]; suf-
ficiently different classification tasks; a mix of data sizes and sequence lengths;
both binary and multi-label classification.

— ECG Heartbeat Categorization (multi-label classification): ECG readingsﬂﬂ
Sequence size 187.

— SmartFall (binary classification): Raw (x,y, z) accelerometer readings of ac-
tivities of daily life (ADL), predicting falls [12]. Sequence size 40.

— Air Quality Time-Series data UCI (binary prediction): Detecting CO levels
will rise/fall tomorrow [I5]. Sequence size 8.

— Dissolved Ozygen Levels (multi-label classification): Classifying levels of dis-
solved oxygen in natural bodies of water [6]. Sequence size 6.

— Australian BOM Observations (binary prediction): Prediction of rain/no-
rain tomorrow [2]. Sequence size 5.

Larger data sets were split into train, validation, and test 60,/20/20. Smaller
sets are split into train and test 80/20 and run with 5-fold cross-validation.

5 Model and Methodology
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Fig. 2: Temporal attention architecture.

5.1 Architecture

The temporal attention modeﬂ is designed to model sequences through time
while attending to portions of a time sequence in which some time-steps are
more important to one another (self-attention) or to output (general attention).
The combination of attention mechanisms allows for both higher accuracy (see

LECG source 1.
2 ECG source 2.
3 |Source code of the project.
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Section and uniquely interpretable results through the use of temporal at-
tention signatures. The architecture is illustrated in Figure [2|

The use of self-attention is motivated by the desire to achieve maximal
accuracy [9]. However, general attention, when used in conjunction with self-
attention, further improves accuracy (see Section . Furthermore, general at-
tention is used to generate attention signatures, which is central to the work.
The choice of general attention for signature generation is based on the theoreti-
cal behavior of each type of attention. Self-attention provides information about
the relative importance of different time-steps with respect to one another, effec-
tively adding new “features” to the input and improving sequence representation.
In contrast, general attention calculates absolute attention scores between input
and output. Since our goal in signature generation is to determine the absolute
importance of each time-step in the sequence relating to output, thereby yielding
interpretable insight to the model’s choices, temporal attention signatures are
generated using the general attention mechanism. Self-attention was also investi-
gated for interpretability, but did not yield per-label interpretable insights. The
investigation is omitted for brevity, as it did not contribute to the study other
than to further validate the theoretical choice of general attention signatures.

Table 1: Ablative study, showing temporal attention (TempAtt), removing general
attention (SelfAtt), removing self-attention (GenAtt), removing both (LSTM).

Data TempAtt|SelfAtt|GenAtt|LSTM
ECG 0.990 [0.990 |0.962 [0.941
SmartFall [|0.960 0.961 |0.956 [0.939
Air Quality||0.987 0.962 0.924 [0.912
Diss Oxy (/0.976 |0.970 [0.945 |0.937
AUS BOM ||0.939 0.923 10.894 (0.853

5.2 Accuracy and Ablative Study

Prior work has shown that LSTMs with self-attention can achieve higher ac-
curacy and more robust time-series models than either LSTMs alone, or self-
attention alone [9]. Temporal attention as presented here uses a combination of
both self-attention and general attention to further enhance accuracy. Presented
in Table[T)is an ablative study demonstrating the enhanced accuracy of temporal
attention over either type of single attention RNN combination and no attention
(i.e., LSTM alone).

5.3 Signature Generation

Rank Matrix: The first step in signature generation is to present test sequences
to a fully trained model, and to generate an attention rank matrix, which is
then used to generate a confidence measure. For illustration, we use the shortest
sequence length of 5 (Australian BOM data) to step through the generation and
interpretation of temporal attention signatures. For each test sequence presented,
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Table 2: Example rank matrix, label 0, Australian BOM weather prediction.

step ||low med- |med med- |high [total |[|confidence
low high

0 23 105 97 6732 |87 7044 ]|0.96

1 6450 (139 172 159 124 7044 |]0.92

2 201 173 6302 |(|146 222 7044 }|0.89

3 108 6589 (203 92 52 7044 ]|0.94

4 47 71 13 11 6902 (7044 ]|0.98

attention values corresponding to Equation [2] are recorded (a vector of length
sequence size). The vector is normalized using min-max scaling in the range
[0,1], on a per-sequence basis. Normalization is performed on a per-sequence
basis to facilitate relative importance assessment within the sequence and for
comparison between different sequences. Normalized scores are ranked in order
of importance (lowest importance 0 to highest important 4). The rankings of
all normalized attention vectors per-label are compiled into a rank matrix. The
matrix represents the per-label frequency in which a time-step per sequence
occurs at each importance ranking (see Table . Reading the matrix row-wise
determines the per-label frequency of each time-step at each importance ranking.
For example, in Table[2] the rank matrix for label 0 of the Australian BOM data
shows time-step 0 is of medium-to-high importance most of the time (6,732/7,044
or 96%), while time-step 1 is of low importance most of the time (6,450/7,044
or 90%), and so on.

= | | I | , 1
1.0 4 1.0

05 \/_/ 0.5 fJ/
00 : ‘ ‘ ‘ : ool ‘ = . ,

] 1 2 3 4 0 1 2 3 4

Fig. 3: Sample signatures (labels [0,1]) for the Australian BOM rain prediction.

Confidence Measure: Using the rank matrix, a confidence vector is calculated
as shown in Table [2]s confidence column. If the average of the vector is 90% or
higher (determined empirically), the time-steps’ rankings are considered “confi-
dent.” For example, in Table [2 the confidence is 0.94. Once judged confident,
the normalized attention scores on a per-label basis are averaged to calculate a
single normalized attention vector per-label. These single vectors represent each
label’s attention signature. Figure [3] displays the attention signatures for the “no
rain” (left) and “rain” (right) prediction labels for the Australian BOM weather
data.
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6 Experiments and Results

Each data set was trained repeatedly until 20 models with both high accuracy
(> 0.92) and confidence (> 0.90) were obtained. All models were processed as
described in Section [5.3] and the stability and repeatability of the signatures
were verified for each data set (see next paragraph), producing a set of per-label
temporal attention signatures per data set. Each of these signature sets is then
be analyzed for interpretability insights (see Section .

To validate that attention signatures are similar across models, we calculate
the Euclidean distances between per-label signatures per-model. Since signature
values for each time step are scaled to [0, 1], the maximum possible Euclidean
distances between signatures is known. Therefore, along with visual inspection
of the graphical signatures, average Euclidean distances between models may
be used as a validation measure to ensure signatures are stable and repeatable.
Table [3] shows these averages and maximums across experiments and demon-
strates that signatures across models are similar, stable, and repeatable. Fig-
ures [3] through [7] detail the temporal signatures of each of the data sets.

Table 3: Euclidean distances summaries for all data sets.

data set average |max sequence||percent max
e-dist |e-dist length

Australian BOM {/0.128 2.24 5 05.7%

Air Quality 0581  |447 |20 13.0%

SmartFall 0.771 6.32 40 12.2%

Dissolved 02 0.185 2.45 6 07.5%

ECG 1.631 10.0 187 16.3%

7 Applications

7.1 Interpretability

Visualizations of temporal attention signatures enable the identification of im-
portant time intervals within a sequence, providing insight into the most relevant
factors for classification. This helps both validate the model and also enhances
our understanding of critical data points that may require attention when mak-
ing human decisions. For instance, the Australian BOM weather signatures (see
Figure [3]) clearly demonstrate that step 5 is of high importance to both labels.
This is intuitive, since yesterday’s weather is a major factor in predicting today’s
weather. However, the “no rain” label signature also indicates that weather five
days ago carries some importance. This provides insight that, further into the
past, there may be information that could aid in the prediction of one case versus
another.

To further analyze our findings, we select two more complex data sets, the
SmartFall ADL data (multivariate, binary label) and ECG data (univariate,
multi-label), for more in-depth discussion (see Figures [6] and [7] respectively). In
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each case, a typical input sequence for each label is overlaid with the attention
signature (dotted blue line). In the SmartFall data set, the orange, green, and
red lines represent the x, y, and z accelerometer scores. In the ECG data set, the
single-channel ECG reading is in orange.

In the case of the SmartFall data, label 1 (fall) exhibits the network attend-
ing to data immediately preceding the fall and the fall itself (steps 20-35). In
contrast, for label 0 (no fall), the network attends to the majority of the input
data (steps 5-40). Both results are intuitive and demonstrate that the network
attends to a fall much in the same way a human would. When observing a non-
fall ADL, a human would tend to observe most things equally. However, when a
fall is observed, human attention immediately narrows to the fall and the time
immediately preceding the fall to detect “what happened?” This clearly indicates
that the network can distinguish between “fall” and “no fall” similarly to human
observation.

1.0 - 1.0

0.5 1

0.0

0.51

—_———
______

_____

0.0

——

Fig. 5: Dissolved oxygen data. Label 0: toxic (top), label 1: inhospitable (bottom-left),
label 2: supports life (bottom-right).

Fig. 6: SmartFall data. Label 0: no fall (left), and label 1: fall (right). Line graphs show
temporal attention signature (dotted blue) and x,y,z signals (orange, green, red).

In the case of ECG data, for label 1, which corresponds to superventricular
ectopic beats (i.e., premature and/or narrow beats), the network attends to
the early portion of the cycle as expected. For label 2, which corresponds to
ventricular ectopic beats (i.e., small changes in normal heartbeats leading to
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Fig. 7: ECG data. Label 0: Non-Ectopic (top), label 1: Superventrical Ectopic (mid-
left), label 2: Ventricular Ectopic (mid-right), label 3: Fusion (btm-left), label 4: Un-
known (btm-right). Lines show temporal attention (dotted blue) with ECG signal.

extra or skipped beats), the network pays more general attention throughout the
cycle due to its complex nature. For label 3, which corresponds to fusion beats
(i.e., supraventricular and ventricular impulses coincide), the network attends to
the fusion portions as expected. For label 0, which corresponds to normal beats,
the network attention is low throughout most of the cycle, indicating nothing
noteworthy. Lastly, for label 4, which corresponds to unknown beats, we observe
temporal attention attending with a strong correlation to the beat cycle itself,
indicating that the shape of the beat is noteworthy and may require further
investigation by a domain expert.

These observations provide two valuable insights. First, we can validate
our intuition by correlating network attention with domain expert knowledge,
thereby increasing confidence in the model. Secondly, we can use temporal at-
tention to gain new insight into unknown states by investigating data portions
that the networks indicate are important.

Not discussed for brevity, the two remaining signature sets, dissolved oxygen
and air quality data, show similar results; clearly distinguishable temporal at-
tention signatures which domain experts may examine for validation and insight.

7.2 Sequence Length

In the context of time-series modeling, selecting optimal sequence length is not
always straightforward, especially when the data does not possess a natural fixed
sequence length. Typically, sequence length selection is based on intuition, trial-
and-error, or grid search. By generating temporal attention signatures, a rela-
tionship between sequence length and prediction becomes clearly evident, which
provides insight into both selecting and empirically validating sequence length.
Based on the observations made by temporal attention signatures thus far, it
should be expected that selecting a sequence length that is too long will yield
a signature with very little importance toward the beginning of the sequence.
Similarly, selecting a sequence length that is too short will yield a signature with
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Fig. 8: Dissolved oxygen data set signatures (labels 0, 1, 2) for sequence size 3 (left)
and sequence size 12 (right).

most steps showing high importance. Therefore, temporal attention signatures
can be used to reduce the guesswork and cost associated with obtaining the op-
timal sequence length, as well as to validate the final sequence length selection,
regardless of how it was chosen.

As empirical evidence, we examine the dissolved oxygen data set, where an
optimal sequence size of 6 was obtained through grid search. Figure [§illustrates
training using size 3 (left) and size 12 (right). When the sequence size is low
(3), all time steps are heavily weighted, indicating that there is more relevant
information further into the past. At sequence size 12, almost all weighting is
assigned to the six most recent time steps. Furthermore, the model accuracies
are as follows: size 6: 0.98, size 3: 0.91, size 12: 0.95.

For brevity, demonstration with other data sets is omitted, however extensive
sequence length experimentation validates the result. This demonstrates that vi-
sual inspection of temporal attention signatures can be employed to quickly nar-
row the field of sequence size choices, and can also be used to validate sequence
length, regardless of the selection method.

8 Conclusion

The work presents a novel and practical approach for simultaneously increasing
accuracy in time-series modeling and analyzing time-series data through tem-
poral attention. Temporal attention signatures allow for the identification of
important events or patterns within the data that contribute to the final pre-
diction or classification. By analyzing attention signatures, one can validate or
challenge prior assumptions, providing confidence in the model. Additionally,
the technique can reveal new insights previously unknown to the analyst. Fur-
thermore, attention signatures can aid in the determination of optimal sequence
length, reducing the need for costly trial-and-error methods. Ultimately, the ap-
proach inherently improves accuracy and also leads to further improvements by
facilitating the fine-tuning of sequence length through visual inspection.
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