
Many-to-Many Prediction for Effective Modeling of Frequent
Label Transitions in Time Series

Alexander Katrompas
amk181@txstate.edu
Texas State University
San Marcos, Texas, USA

Vangelis Metsis
vmetsis@txstate.edu
Texas State University
San Marcos, Texas, USA

ABSTRACT
Time-series classification is vital in health monitoring and human
activity recognition, as well as in areas such as financial forecasting,
process control, and a wide array of forecasting tasks. Traditional
time-series models segment data into windows and assign one label
per window, often missing label transitions within those windows.
This paper presents a novel many-to-many time-series model and
post-processing using hybrid recurrent neural networks with atten-
tion mechanisms, which more effectively captures label transitions
over traditional many-to-one models. Further, unlike typical other
many-to-many models, our approach doesn’t require a decoder.
Instead, it employs an RNN, generating a label for every input time
step. During inference, a weighted voting scheme consolidates over-
lapping predictions into one label per time step. Experiments show
our model remains effective on time-series with sparse label shifts,
but particularly excels in detecting frequent transitions. This model
is ideal for tasks demanding accurate pinpointing of rapid label
changes in time-series data, such as gesture recognition, making it
ideal for fast-paced human activity recognition. 1
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1 INTRODUCTION
Time-series classification, the task of classifying sequential data
over time, is indispensable in various assistive technology appli-
cations, ranging from human activity recognition to personalized
health monitoring to human-machine interaction. These data, of-
ten complex and multidimensional, become particularly challeng-
ing when considering variations in length and sampling frequen-
cies, resulting in datasets with frequent and irregular label transi-
tions [3, 5, 19].

A common approach for training machine learning models on
time-series data is to segment the continuous time-series into win-
dows of fixed or variable size, and consider each window as a label-
able sequence of data. Each window contains a set of time-steps,
commonly representing a single label [7, 27]. Classical machine
learning typically relies on feature engineering, where a set of fea-
tures describing the properties of the signal are extracted from
each window and used by the learning algorithm [1, 24]. On the
other hand, deep learning techniques enable direct input of raw
measurements into neural networks, bypassing manual feature
definition [9, 21].

Deep learning models for sequence modeling typically appear in
two forms: an encoder-only form and an encoder-decoder form. In
time-series classification applications, the most common task is to
map a set of input time steps to one of a known set of class labels.
An encoder-only architecture (i.e., many-to-one) is adequate for
such tasks and is the common case. The window size and overlap
between windows can be tuned during training and inference [12].

Many-to-one time-series modeling approaches often fail to cap-
ture class transitions within each window, as they assign a single
label to every window. This limitation becomes evident in applica-
tions with frequent label transitions, such as gesture recognition
from motion tracking data [11, 19]. To address this issue, we intro-
duce a distinctive many-to-many modeling approach, reminiscent
of the encoder-decoder architecture, but without the need for a
decoder. Each data input window of dimension 𝑅𝑇×𝐹 , with 𝑇 as
the length of the sequence and 𝐹 as the number of channels, is as-
signed a label per time-step instead of a label per window. The label
window corresponding to the data window is also of dimension
𝑅𝑇 , or 𝑅𝑇×𝐶 when the classes are one-hot encoded, where 𝐶 is the
number of known classes.

While our many-to-many architecture shares some similarities
with encoder-decoders, our approach deviates in that it eschews
the decoder entirely. Instead, we rely on a recurrent neural network
(RNN) — specifically, a Long Short-TermMemory (LSTM) enhanced
with an attention mechanism, as detailed in Section 4. During the
training phase, we feed the model with continuous time-series data,
segmented into fixed-size windows, each having multiple labels,
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Figure 1: At training time, using the many-to-one approach, the
time-series is segmented into (potentially overlapping) windows and
a single label is assigned to each window. Using our many-to-many
approach, a label is assigned to each time-step of the window.

Figure 2: At inference time, using the many-to-one approach, a
label per time-step can be predicted using a sliding window with a
stride of 1. Using ourmany-to-many approach, multiple overlapping
labels are predicted for each time-step, and a voting scheme is used
to consolidate the predictions.

one per time step. This captures diverse class transitions within
a window. For inference, we have formulated a weighted voting
mechanism, leveraging prediction probabilities and attention scores
to refine overlapping predictions into a definitive output for each
time step.

Figures 1 and 2 offer a visual contrast between the prevalent
many-to-one time-series modeling and our proposed many-to-
many paradigm. Parts of the figure with a gray background color
depict the common many-to-one approach, whereas the parts with
green background represent our proposed many-to-many approach

Figure 3: Many-to-one time-series input-output of a hypothetical
gesture recognition model. The sliding window fails to correctly
predict the transition from gesture 1 to gesture 2.

at training time (1) and at inference time (2). Our method utilizes the
LSTM’s inherent many-to-many processing capability to yield mul-
tiple labels per sequence. After this, as expanded upon in Section 5,
a voting mechanism derives a consolidated label for each sequence,
in line with the conventional many-to-one prediction paradigm.
Furthermore, we introduce a novel weighted training mechanism
to handle class imbalance for the many-to-many prediction task.

To encapsulate, this work introduces a novel many-to-many
attention-based framework for time-series classification, tailored for
frequent label transition scenarios. Our attention-enhanced LSTM
coupled with a voting mechanism not only efficiently identifies
transitions within data windows but also offers a simpler and more
adaptable solution than existing models, as elucidated in Section 2.
Empirical results across diverse datasets attest to our model’s robust
performance, especially excelling in datasets marked by volatility.

2 RELATEDWORK
The conventional many-to-one approach to time-series classifi-
cation is well-documented and broadly adopted [1, 9, 21, 24]. As
illustrated in Figure 3, this method demonstrates a limitation in
capturing swift label transitions. While the onset of a label change
initially remains dominated by its predecessor, the subsequent in-
puts progressively favor the new label. Despite this, a transitional
latency persists [30]. For datasets with infrequent transitions, such
delays might be negligible. However, in domains characterized by
frequent label changes, like human gesture recognition or financial
analytics, this can lead to significant prediction errors [19, 32].

The many-to-many, or sequence-to-sequence, modeling, tra-
ditionally employed in tasks like machine translation, remains
relatively untapped for label prediction sequences. Even though
this paradigm shows promise in terms of accuracy and robustness
over its many-to-one counterpart [6, 20, 28], it is predominantly
lauded for predicting entire sequences rather than individual la-
bels [4, 33]. Attention-based augmentations have further enhanced
its efficiency [15].

Our exploration pivots towards harnessing many-to-many mod-
eling for data exhibiting high label transition rates, a realm often
deemed challenging for deep learning. Classical methods neces-
sitate intensive pre-/post-processing or resort to traditional tech-
niques [19, 22, 26, 30]. We postulate that a streamlined many-to-
many deep learning approach can adeptly navigate such erratic
data with minimal processing overhead.
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Figure 4: Air Quality Example Sequence.

While there have been ventures into this domain, our approach
distinguishes itself in several respects. For instance, while many-to-
many models have found applications in medical diagnostics, these
models often necessitate significant further post-processing to yield
a singular prediction [17]. Others have argued the computational
simplicity and comparable accuracy of many-to-many over many-
to-one modeling [28]. We advance this claim by demonstrating the
superiority of many-to-many models, particularly when supple-
mented with attention mechanisms and our novel voting process,
especially for high volatility datasets. Furthermore, a related study
applied many-to-many models to volatile financial datasets [32].
Although it bears similarity to our work, it is tailor-made for au-
toregressive problems and demands extensive feature engineering.
In contrast, our method offers a more versatile solution, negating
the need for intricate feature engineering and transcending the
confines of autoregression.

3 DATA
In time-series modeling, the continuous data are commonly seg-
mented into windows of multiple time-steps. Each window forms a
training instance. The data characteristics of interest to this work
are high label transition rate time-series data, defined as data for
which, within a sequence window, there are two or more labels
for numerous such windows. Figure 4 shows an example of such a
sequence from the air quality data used in this study. As shown, the
optimal window size for modeling this type of data is 8 time-steps
(derived through grid-search) and has within it multiple labels, mak-
ing the prediction of t+1 more difficult. The following data provide
such data for the study, as well as being sufficiently disparate to
demonstrate the generalizability of the technique and results. Three
data sets are presented, used across four prediction/classification
tasks. Data sets are listed in order of the percentage of sequences
(windows) which contain multiple labels per sequence.

• Hand Gestures: Predicting gesture phases (rest, gesture, re-
traction) [19].Multi-label prediction. 67% transition sequences.
Sequence length: 44.

• Air Quality: Predicting CO levels will rise/fall within 24
hours [5]. Binary prediction. 84% transition sequences. Se-
quence length: 8.

• Metro Interstate Traffic Volume: Binary prediction traffic will
increase/decrease in the next hour [10]. 99% transition se-
quences. Sequence length: 12.

• Metro Interstate Traffic Volume: Multi-label classification traf-
fic by very-low, low, medium, high, very-high volume [10].

Figure 5: LSTM with Temporal Attention Model.

99% transition sequences. Sequence length: 12.

4 MODEL
4.1 Rational and Architecture
The proposed model (see Figure 5) is the culmination of a series of
approaches to deep learning time-series modeling, each facilitating
superior performance in time-series prediction [13]. Firstly, our
backbone of choice is the LSTM, historically shown to produce
state-of-the-art results in time-series modeling [17, 34]. Attention
mechanisms, shown to improve LSTM performance, are added in
two forms for two purposes. Self-attention has been shown to gen-
erally improve time-series accuracy [12, 23, 34]. General attention
is uniquely suited for detailed input-output analysis, which is of
direct interest to this work. In particular, the general attention layer
can be extracted and analyzed, providing insight as to what the
model finds important during classification [13].

The LSTM architecture inherently produces a many-to-many
output, which when combined with general attention, gives us a
multistep output suitable for processing with our unique voting
process, ultimately producing a single output label with higher
accuracy as compared to many-to-one time-series modeling. This
is accomplished by leveraging the fact that the general attention
layer is weighting the input-output relationship, stressing the more
relevant time-steps for the desired output [13]. By processing the
multistep output, as modified by attention, we should expect that
we can find the “important” inputs-outputs within the sequence
relative to the desired output(s).

For example, consider Figure 4, and assume the ?-output is 0
(i.e. falling CO). Even though 50% of the time-steps represent the
input associated with the opposite case (i.e. rising CO), temporal
attention allows the model to stress the importance of label 0 (in this
sequence) in order to correctly predict 0 [13]. Given this behavior,
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we should be able to analyze the output activations in a many-
to-many model and build a more accurate and higher confidence
model (see Section 5).

General Attention equations as implemented within this work.

𝑒𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑎𝐻
𝑇 + 𝑏𝑎) [ similarity score ] (1)

𝑎𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑖 ) [ attention weights ] (2)

𝑦 = Σ𝑖𝑎𝑖𝐻
𝑇 [ output vector ] (3)

Self-Attention equations as implemented within this work.

𝐸 = 𝑡𝑎𝑛ℎ(𝑊𝑎𝐻
𝑇 + 𝑏𝑎) [ similarity score ] (4)

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑒𝐸) [ attention weights ] (5)

𝑌 = 𝐴𝐻 [ output matrix ] (6)

4.2 Temporal Attention
Originally designed for text-centric sequence-to-sequence mod-
els, attention mechanisms allow a network to emphasize specific
segments of an input sequence, thus refining sequence represen-
tation [2, 18]. Essentially, attention offers a contextual weighting,
delineating importance within a sequence. Two primary forms,
general attention and self-attention, have been integrated into our
time-series context, collectively termed as temporal attention [2, 29].

General attention creates a context vector, determining the sig-
nificance of each RNN output step concerning prediction. This
vector, in turn, guides the model to focus on pertinent segments
of the input sequence [2, 18]. In contrast, self-attention measures
sequence segments’ significance concerning one another, culminat-
ing in a context matrix. This matrix subsequently facilitates better
modeling between input and target output [16, 29, 35].

General attention, as applied to time-series, operates by captur-
ing the full LSTM output (i.e., “hidden layer”), typically denoted𝐻𝑇

𝑡 ,
from within a sequence and training a separate layer to “attend”
to some parts of the LSTM output more than others. Equations 1
through 3 define temporal general attention, closely following the
accepted global soft-attention [2, 18], where 𝐻 is the output of the
LSTM layer (i.e., input to the attention layer), and 𝑥 is model input
((i.e., input to the LSTM layer).

Self-attention, as applied to time-series, follows traditional self-
attention (typically used with text processing) [16, 29], with minor
but notable changes. In temporal self-attention, the “value matrix,”
a projection of input, is used as-is and not transformed. This is done
because in the case of quantitative time-series data, there is no
purpose to a transformation of the input data. A second difference
is that dot-product attention is used, rather than scaled dot-product.
The purpose of scaling is to avoid the vanishing gradient problem,
a redundant feature in the presence of an LSTM, which avoids
this inherently [21, 34]. Equations 4 through 6 describe temporal
self-attention.

Figure 6: Single Prediction, Hard Vote.

5 EXPERIMENTS
5.1 Methodology
For each dataset, we constructed two distinct models: a conven-
tional many-to-one LSTM model for deep learning time-series and
our proposed many-to-many model (refer to Figure 5). The key
architectural distinction between these models is the inclusion of
a flatten layer in the feed-forward segment of the many-to-one
model. This incorporation yields a standard many-to-one LSTM
with attention for time-series modeling. However, both models
incorporate an attention layer, which has been demonstrated to
enhance LSTM time-series performance significantly [13].

The many-to-one model is fed with training data using a time-
series generator approach, utilizing a fixed sliding window with a
stride of 1. In contrast, the many-to-many model segments data into
fixed-size windows, applying a sliding window of random stride
ranging from 1 to 𝑇 /2. This approach is designed to encapsulate
diverse class transitions. Notably, both models maintain an identical
sequence size, denoted as 𝑇 . We determined the optimal sequence
sizes and other hyperparameters through a comprehensive grid
search, with specifics available in the accompanying code.

To ensure robustness, each model underwent training and eval-
uation ten times, leveraging 5-fold cross-validation on the training,
test, and validation datasets, using a 70/15/15 split. During infer-
ence, both models employed a 𝑇 − 1 overlap between successive
windows to assess performance across all potential sequences. In
the many-to-one model, each sequence yields one label. Conversely,
in the many-to-many approach, each sequence results in 𝑇 labels.
These labels are subsequently refined using various weighted voting
mechanisms, as illustrated in Figure 6 and detailed in Section 5.2).
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5.2 Voting Schemes
The process of generating a single prediction from a many-to-many
model, as visualized in Figure 6, involves producing 𝑇 predictions
based on the input sequences ranging from 𝑡𝑖−𝑇 to 𝑡𝑖−1, where 𝑖
spans from 1 to𝑇 . In this context, 𝑡0 is the targeted prediction, which
could either predict a future step or classify the current step—both
scenarios are explored and analyzed in this paper. This process
yields a prediction/classification vector, denoted as 𝑠𝑖−1𝑡𝑇−1, where
each sequence signifies a “vote” for 𝑡0. To amalgamate these votes
into a singular prediction, we introduce four voting mechanisms:

(1) Hard-vote: Here, the labels (one per time-step) are predicted,
tabulated, and the majority label is designated as the predic-
tion (see Figure 6).

(2) Soft-vote: Instead of relying on discrete labels, this scheme
evaluates the probabilistic prediction for each class. Let 𝑝𝑖 𝑗
be the predicted probability of the 𝑖𝑡ℎ time-step for the 𝑗𝑡ℎ

class for a given sequence. For soft voting, the predicted prob-
ability for the 𝑗𝑡ℎ class (for a given time-step) is the average
of the predicted probabilities for that class across all over-
lapping sequences. 𝑣 𝑗 = 1

𝑁

∑𝑁
𝑖=1 𝑝𝑖 𝑗 for 𝑗 = 1, 2, . . . , 𝑀 . The

class with the highest average probability after soft voting
is selected as the final class of the time-step. Mathematically,
this is: prediction = argmax𝑗 (𝑣 𝑗 )

(3) Attention-vote: The attention mechanism employed in our
model assigns a different attention weight to each time-step
of the sequence, indicating the importance of that time-step
to the prediction outcome. In the attention-vote, we incor-
porate the attention weight 𝑤 in the soft voting process,
thus producing a weighted soft voting. Assuming weights
𝑤𝑖 for each overlapping sequence are normalized such that∑𝑁

𝑖=1𝑤𝑖 = 1, the predicted probability for the 𝑗𝑡ℎ class using
weighted soft voting is: 𝑣 𝑗 =

∑𝑁
𝑖=1𝑤𝑖 · 𝑝𝑖 𝑗 for 𝑗 = 1, 2, . . . , 𝑀 .

The final prediction after weighted soft voting with normal-
ized weights is: prediction = argmax𝑗 (𝑣 𝑗 ). This mirrors the
soft-vote mechanism but incorporates an additional factor:
𝑤 = 𝛼𝑖, 𝑗 , where 𝛼 represents the attention score of the out-
put 𝑖 at time-step 𝑗 .

(4) Stacking-vote: A Gradient Boosting Classifier (GBC) is first
trained on test set predictions. Subsequently, it’s leveraged
to transform multi-label outputs into single-label predictions
during inference. The GBC operates as a meta-estimator, fit-
ting multiple decision tree classifiers to an input sequence
(i.e., the many-to-many network’s output) to ultimately pre-
dict a singular label.

The intuition behind the four voting processes is simple; hard-
voting represents the absolute “opinion” of the 𝑇 sequence’s input-
output, which provides a base-line. Soft-voting is a modification of
hard-voting, which gives a stronger/weaker vote to neurons that
are more/less “sure” of their classification based on the strength
of their output. We should expect soft-voting to outperform hard-
voting, as it is a relative measure based on the strength of the output.
Attention-voting is a modification of soft-voting by weighing the

Table 1: Gesture Data: Multi-label classification, classifying hand
gestures into three phases; rest, gesture, retraction.

Gesture m-to-1 hardv softv attnv stacking
accuracy 0.717 0.787 0.806 0.805 0.638
precision 0.732 0.794 0.810 0.809 0.652
recall 0.717 0.787 0.806 0.802 0.637
f1 0.698 0.781 0.795 0.794 0.610

Table 2: Air Quality Data: Binary prediction, predicting CO levels
will rise or fall within 24 hours.

Air Quality m-to-1 hardv softv attnv stacking
accuracy 0.777 0.825 0.828 0.828 0.801
precision 0.789 0.844 0.834 0.834 0.811
recall 0.772 0.824 0.827 0.827 0.809
f1 0.753 0.812 0.811 0.811 0.798

Table 3: Traffic Volume Data: Binary prediction, predicting traffic
levels will rise or fall within 1 hour.

Traffic 1 m-to-1 hardv softv attnv stacking
accuracy 0.775 0.787 0.796 0.799 0.791
precision 0.774 0.785 0.790 0.805 0.800
recall 0.775 0.787 0.792 0.801 0.793
f1 0.768 0.786 0.781 0.793 0.787

Table 4: Traffic Volume Data: Multi-label classification, classifying
current traffic into 5 levels.

Traffic 2 m-to-1 hardv softv attnv stacking
accuracy 0.664 0.775 0.787 0.786 0.672
precision 0.661 0.806 0.808 0.802 0.668
recall 0.664 0.775 0.787 0.787 0.670
f1 0.649 0.776 0.789 0.788 0.642

strength of the output neuron by the network’s attention scoring.
Since we are combining the relative confidence of the output neuron
with the network’s overall confidence of that input-output, we
should expect attention-voting to outperform soft-voting. Stacking
is presented as a meta-classifier for comparison purposes, and at
the time of the study, we have no preconceived notion as to its
performance relative to other schemes.

5.3 Dealing with Class Imbalance in
Many-to-Many Modeling

In the course of obtaining data, it was noted that very often high-
transition rate data is also imbalanced data. While the air quality
set was balanced, with each class representing near 50% of the
data, the other two sets were quite imbalanced. For example, the
rest phase of the Gesture data represents less than 20% of the time
steps. Similarly, very high and very low traffic in the traffic volume
data was less than 10% each. The challenges of imbalanced data
are well-documented [8, 14], and typically require some kind of
remediation, such as up-/down-sampling, or a weighted loss. These
remediations can be readily applied in the common case where
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each classification instance (sequence window) is associated with a
single label.

In the case of sequences in which each time-step is associated
with a label, up-/down-sampling entire sequences does not solve
the problem as the labels associated with each time-step will be
up-/down-samples by the same rate, keeping the class proportions
unchanged. Also, up-/down sampling specific time steps is not
possible because they alter the characteristics of the sequence.

To overcome the class imbalance in the case of many-to-many
prediction, we compute a custom weight for each sequence. Given
an imbalanced multi-class time-series dataset, the algorithm cal-
culates sample weights based on the uniqueness and frequency of
class transitions within each sequence instance (window).

Let’s denote our multi-class time-series dataset by 𝑌train where
𝑌train ∈ Z𝑛sequences×𝑛timesteps contains sequences with one label per
time-step. The goal is to compute weights for each sequence to
mitigate class imbalance. The proposed algorithm focuses on com-
puting weights based on the uniqueness and frequency of label
transitions in each sequence window. The steps are as follows:

(1) Input: 𝑌train

(2) Identify Transitions: For each sequence 𝑠 in 𝑌train, identify
label transitions between consecutive time-steps. Let 𝑇𝑠 be
the set of transitions for sequence 𝑠 , i.e.,

𝑇𝑠 = {(𝑦𝑡 , 𝑦𝑡+1) | 𝑦𝑡 , 𝑦𝑡+1 ∈ 𝑠, 𝑡 = 1, . . . , 𝑛timesteps − 1}

(3) Compute Transition Frequencies: Let 𝐹 denote the fre-
quencymap. For each unique transition 𝑡 across all sequences,
compute its frequency:

𝐹 (𝑡) =
∑︁

𝑠∈𝑌train
I(𝑡 ∈ 𝑇𝑠 )

where I is the indicator function.

(4) Calculate Transition Weights: The weight of each transi-
tion 𝑡 is the inverse of its frequency:

𝑊 (𝑡) = 1
𝐹 (𝑡)

(5) Assign Sequence Weights: The weight for each sequence
𝑠 is computed based on the transitions it contains:

𝑊𝑠 =
1
|𝑇𝑠 |

∑︁
𝑡 ∈𝑇𝑠

𝑊 (𝑡)

where |𝑇𝑠 | is the number of transitions in seq. 𝑠 .

(6) Output: Sequence weights {𝑊𝑠 }
𝑛sequences
𝑠=1

These sequence weights can then be used as sample weights
when training the model, enabling a weighted loss computation
that takes into account the class imbalance.

6 RESULTS AND ANALYSIS
6.1 General Analysis
Upon training, each model undergoes evaluation on its respective
test set. The results pertaining to the four datasets, as described in
Section 3, are detailed in Tables 2 through 4. These tables enumer-
ate the performance metrics for many-to-one (m-to-1) modeling
alongside the various many-to-many voting schemes: hard vot-
ing (hardv), soft voting (softv), attention-based voting (atnv), and
stacking.

A consistent observation across the datasets is that many-to-
many modeling outperforms the many-to-one paradigm across all
voting strategies. In alignment with our anticipations, hard voting
exhibits superior performance when juxtaposed with the conven-
tional many-to-one time-series model, thus reinforcing the validity
of our proposed many-to-many time-series modeling approach.
Additionally, soft voting, which accords weighted votes based on
the confidence of the output neurons, surpasses hard voting.

Intriguingly, while one might predict enhanced performance
from soft voting when integrated with weights extracted from the
attention mechanisms, our results indicate that soft voting on its
own and weighted soft voting offer comparable outcomes. A metic-
ulous examination of Equations 3 and 6 reveals the underlying
rationale: the output is inherently weighted by attention values.
Thus, the subsequent application of these weights yields no dis-
cernible difference, as the attention scores are intrinsically embed-
ded within the output activations. This insight not only became
evident post-analysis, but also underscores the fundamental oper-
ation of attention mechanisms, affirming their role in amplifying
relevant features or time steps to bolster prediction accuracy.

Lastly, the stackingmethod, incorporated as a comparative bench-
mark devoid of any votingmechanism, presented ambiguous results
when contrasted with the many-to-one approach and exhibited a
consistently subdued performance against the soft-voting many-
to-many modeling paradigm. Given the added computational cost
compared to voting, stacking seems like a less attractive option.

6.2 Gesture Data Analysis
The gesture data set is selected for detailed examination as it is the
lowest transition rate (67%) of the presented high-transition rate
data, showing more easily human-identifiable patterns, making for
an effective and interpretable demonstration of the efficacy of many-
to-many modeling, especially within the realm of human activity
recognition. Figures 7 and 8 show actual (red) versus predicted
(blue) for the gesture test data, highlighting the transitions from
rest (0), to gesture (1), to retraction (2). Figure 7 demonstrates the
traditional many-to-one model fails for many of the transitions
to and from retraction (2). This results from the relatively short
duration of retraction, causing it to be “lost” in the relatively long
sequence lengths (44). Conversely, as shown in Figure 8, the many-
to-many model effectively captures retraction (2). This is a direct
result of the attention mechanisms weighing the retraction-relevant
time-steps heavier when retraction is both present and relevant in
the sequence.

The gesture data set also provides a comparative study to vali-
date the study results [19]. Previous work has shown this data set
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Figure 7: Gesture classification, many-to-one, actual (red) versus
predicted (blue).

Figure 8: Gesture classification, many-to-many, actual (red) versus
predicted (blue), soft vote.

is particularly challenging, and does not lend itself well to multi-
label, continuous time-series, deep learning models, despite being
continuous time-series data, and this is clearly shown to be due to
transition errors. In this previous work, to overcome the transition
errors, the original data were greatly simplified into binary classifi-
cation problems of the form label/not-label, such as rest/not-rest.
Using Support Vector Machines, averaged classification precision
of ∼84% was achieved, and that metric was itself compared to pre-
vious work, using similar simplifications, and achieving similar
results [25, 31]. While theoretically effective, these simplifications,
it could be argued, are over-simplifications as they do not yield
useful real-time, continuous data insights, they simply prove that
transition errors are highly problematic in high-transition rate data.

Through this study, we are able to improve upon previous work
by treating the data as continuous and whole time-series data,
accurately identifying rest, gesture, and retraction in a continuous
stream of data, a far more complex proposition, while achieving
comparable precision, ∼81%, but with a more practical and useful
approach, paving the way for real-time multi-class classification
and analysis, something previous approaches could not achieve.

6.3 Performance Analysis in Low Class
Transition Rate Data

An examination of Figures 7 and 8 reveals that the many-to-many
modeling approach is comparable to the many-to-one model in
regions characterized by low label transition rates. Notably, in ar-
eas with elevated transition rates, the many-to-many approach

Figure 9: Air Quality, many-to-one, actual (red) versus predicted
(blue); random sample of 50 time-steps.

Figure 10: Air Quality, many-to-many, actual (red) versus predicted
(blue); random sample of 50 time-steps.

exhibits superior performance. In prolonged segments where la-
bels predominantly represent either rest (0) or gesture (1), both
modeling paradigms deliver satisfactory and equivalent results.
Nonetheless, during rapid transitions, especially evident in swift
gesture retractions, the many-to-one model’s performance dimin-
ishes, as illustrated in Figure 7. In contrast, Figure 8 confirms that
the many-to-many model’s efficiency remains consistent in regions
of infrequent transitions, and it excels remarkably during frequent
transitions, outpacing the many-to-one model.

For a more comprehensive understanding, Figures 9 and 10 pro-
vide an actual-versus-predicted comparison over a randomly se-
lected window of 50 time-steps for the air quality dataset. Analo-
gous to the gesture dataset observations, these figures underline
that the many-to-one model struggles during periods of rapid tran-
sitions (early segments of the window shown) but aligns closely
with the many-to-many model in segments marked by sporadic
transitions (later in the sequence). This reaffirms the premise that
the many-to-many modeling approach, while retaining its efficacy
in areas of low transition rates, offers a distinct advantage in high-
transition-rate scenarios. Additional examinations of the air quality
data and traffic volume data, which are not included here for con-
ciseness, corroborate these findings.

7 CONCLUSION
Our research underscores the efficacy of many-to-many time-series
modeling, especially for data characterized by high label transi-
tion rates, outperforming the conventional many-to-one modeling
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approach. This novel enhancement is largely attributed to the ca-
pability of many-to-many attention-based modeling to accurately
discern transition states, leading to superior metrics in terms of
accuracy, precision, recall, and F1 score. It is noteworthy that while
excelling in high-transition scenarios, our novel attention-based
many-to-many voting model doesn’t compromise performance in
non-transition data, positioning it as a versatile tool for general
time-series classification or prediction, irrespective of the transition
rate intensity.

Through our experiments, soft voting emerged as the most im-
pactful mechanism for accuracy enhancement. While attention
voting did present some improvements, they were mostly minimal.
This observation aligns with both theoretical foundations and intu-
itive reasoning: the attention scores are implicitly embedded within
the output activations in soft-voting. The prominence of soft-voting,
seamlessly integrating attention, further validates the potency of
attention mechanisms when coupled with RNNs for time-series
modeling. The attention mechanism refines output activations to
better resonate with the input context.

In closing, our research indicates that integrating sample weight-
ing can further refine time-series models. This approach not only
addresses challenges posed by high-transition rate data but also
compensates for data imbalances. The culmination of these strate-
gies paves the way for robust and precise modeling of data that is
both volatile and skewed.
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