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Abstract. There is currently a scarcity of labeled Electroencephalogra-
phy (EEG) recordings, and different datasets usually have incompatible
setups (e.g., various sampling rates, number of channels, event lengths,
etc.). These issues hinder machine learning practitioners from training
general-purpose EEG models that can be reused on specific EEG classi-
fication tasks through transfer learning. We present a deep convolutional
neural network architecture with a spatial pyramid pooling layer that is
able to take in EEG signals of varying dimensionality and extract their
features to fixed-size vectors. The model is trained with a contrastive self-
supervised learning task on a large unlabelled dataset. We introduce a
set of EEG signal augmentation techniques to generate large amounts of
sample pairs to train the feature extractor. We then transfer the trained
feature extractor to new downstream tasks. The experimental results1

show that the first few convolutional layers of the feature extractor learn
the general features of the EEG data, which can significantly improve
the classification performance on new datasets.

Keywords: EEG, self-supervised learning, contrastive learning, transfer
learning, spatial pyramid pooling

1 Introduction

Electroencephalography (EEG) has enabled numerous applications both in and
out of the clinical domain. For example, it has been used for diagnosing epilepsy [1],
monitoring sleep stages [2], emotion recognition [3], human-computer interac-
tion [4], etc. However, EEG signals often have a low signal-to-noise ratio, high
variability among subjects, and are collected in confugurations that are incom-
patible across datasets, making them hard to interpret and challenging to use
in an end-to-end automated processing pipeline (i.e., applying machine learning
models on raw signals).

In the past, most machine learning EEG applications relied on hand-crafted
features extracted by neuroscience experts. They usually required designing
specific solutions for one particular task and are hard to be re-used on other

1The source code on Github: https://github.com/imics-lab/eeg-transfer-learning
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tasks. Due to the difficulty of manually extracting useful features, only a limited
amount of tasks with clear EEG patterns can benefit from automatically trained
machine learning models. Deep learning allows end-to-end signal processing, fea-
ture extraction, and model training, which has enabled significant performance
improvements in the EEG field [5, 6, 7] compared to traditional machine learn-
ing methods. Despite the success of deep learning in classifying EEG signals, the
majority of these approaches are subject to the limited amounts of labeled EEG
recordings that often lead to relatively shallow deep neural networks, trained in
supervised ways, and on a single dataset.

Applications of deep learning in other domains (e.g. Computer Vision and
NLP), have vastly benefited from transfer learning, i.e. starting with a neural
network that has been pre-trained on big datasets and then fine-tuned on a spe-
cific task to achieve better classification accuracy rates and training performance
speedup on smaller datasets.

Self-supervised Learning (SSL) is an approach for learning useful represen-
tations from unlabelled data. SSL allows deep neural networks to first learn
general-purpose features from large unlabeled datasets and then fine-tune the
representations for the supervised downstream tasks. Contrastive learning has
been used to learn the general features of a dataset without labels by teaching
the model which data points are similar or different. It has achieved great success
in many fields. For example, image patches reordering [8] in Computer Vision,
sentence embedding [9] in Natural Language Processing, and Wave2Vec [10] in
time series data.

A few works have also implemented contrastive learning on EEG data. Banville
et al. [11] developed three solutions mainly by defining negative windows and
positive windows located in different places in an EEG recording and sample pos-
itive and negative data pairs from those windows. However, it only implements
the downstream tasks on the same dataset trained for the pre-training task but
did not verify if the learning features also fit other datasets. Mohsenvand et
al. [12] developed a single-channel EEG representation model which fused mul-
tiple datasets and recombined multiple channels in one to boost the variety of
channels. The work of Kostas et al. [13] is the most similar work compared to
ours. They designed a CNN feature extractor and pass features to a transformer
model to conduct contrastive learning tasks. However, the datasets used for the
pre-training task and downstream tasks all need to be resampled to the same
sampling rate.

In this paper, we present a new framework that allows us to, 1) learn EEG
representations in a self-supervised manner via contrastive learning without re-
quiring external labels, and 2) transfer the pre-trained feature extractor to other
downstream tasks without modifying target dataset dimensions to match the
properties of the original datasets used for the self-supervised learning task.

We design a contrastive learning task to train the feature extractor. To gener-
ate contrastive learning data pairs, we introduce a few EEG data augmentation
methods. For example, adding noise, downsampling, random cropping, pooling,
and quantizing signal voltage values, etc. To transfer the trained feature extrac-
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tor without modifying the downstream dataset’s input dimensions, we design
a densely connected convolutional neural network with spatial pyramid pooling
layer [14] to map any size of input data to fixed size vectors. Two data samples
in a data pair both pass through the feature extractor and the absolute differ-
ence value are calculated in the latent space. Then a linear classifier is used to
distinguish whether it is a positive data pair or negative one.

While transferring the pre-trained feature extractor to downstream tasks,
we load the parameters of different numbers of convolutional layers to target
classification models. The experimental results show that the contrastive learning
task helps the feature extractor learn general EEG signal features that can be
re-used on downstream tasks to improve the model’s classification performance.

Our contributions can be summarized as follows:

– We exploit an EEG signal feature extractor that is agnostic of the input data
dimension and can be re-used for any downstream task without modifying
the target dataset’s properties.

– We conduct a contrastive self-supervised learning task to extract general
features from the EEG signals from massive EEG data without external
labels.

– We perform transfer learning from the pre-trained feature extractor to other
smaller EEG datasets. The experimental results show significant classifica-
tion performance improvements compared to training smaller datasets on
deep learning models from scratch.

The rest of the paper is organized as follows. Section 2 introduces our method-
ology. The datasets, data preprocessing steps, experiments setup, and results are
described in Section 3. Section 4 concludes the paper.

2 Method

2.1 SPP-EEG Feature Extractor

We design an input dimension agnostic feature extractor, SPP-EEG network.
The architecture is shown in Fig. 1. The convolution layers all have the kernel
size (1, 3) and filter count F = 32. They are applied to all input signal channels
to learn the representations of each specific 10-20 EEG montage system channel.
There are two convolution layers which have stride size (1, 2) used to down-
sample the feature map by a factor of 1/2. A dropout layer is added after every
three convolution layers to alleviate the over-fitting problem.

The Spatial Pyramid Pooling layer ensures every input signal length and
shape be extracted to the exact same length of feature vectors. By choosing a
pooling bin [A,B,C], a vector of size = F ∗ (A2 + B2 + C2) will be extracted
after the spatial pyramid pooling layer for all shapes of input data. Then a dense
layer with the embedding size 100 is added in this model. The spatial pyramid
pooling layer enables the feature extractor to be trained with multiple EEG
datasets with various data dimensions and learns the general EEG data features
that co-exist on all recordings. And it can be transferred to any other downstream
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Fig. 1: SPP-EEG feature extractor architecture. Any dimensional input signals will be
mapped to the same size 1D vectors. The Conv2D layers reserve general EEG signal
features that can be transferred to downstream tasks.

EEG classification task without modifying the original signal collection settings
(e.g. sampling rate, event window size, etc).

2.2 Contrastive learning

Fig. 2 shows the contrastive learning pipeline. We denote the input multivariate
time-series S ∈ R1×C×N , 1 represents that we view each EEG input as an 2D
image with only one color channel. C is the total number of EEG data channels
following the 10-20 EEG Montage system [15]. N is the total time-points of each
input data sample. Here N can vary depending on various event window sizes,
data transformations, and signal sampling rates, etc.

To produce labeled samples from the multivariate time-series S, we propose
to sample pairs of time windows (xt, xt′) where each window xt, xt′ is inR1×C×N .
The first window xt is referred to as the “anchor window”. The second window
xt′ can be a transformation of the anchor window, where (xt, xt′) has the label
‘1’. xt′ can also be a transformation of a random time window which is far away
from the anchor window for a distance of at least 10 times the window size,
where (xt, xt′) has the label ‘0’. Our assumption is that an anchor window and
its transformed counterparts still have some similar features and should have the
same label, whereas the distant window should have a different label.

In order to learn how to discriminate pairs of time windows based on their
sampled position, we use the feature extractor mentioned in section 2.1 to
map a window x to its representation in the latent space, fΘ : R1×C×N →
RD. Ultimately we expect fΘ to learn an informative representation of the
raw EEG input which can be reused in different downstream tasks. A con-
trastive module gaug is then used to aggregate the feature representations of
each window. For our task, gaug : RD × RD → RD combines representa-
tion form pairs of windows by computing an element-wise absolute difference,
gaug (fΘ (x)− fΘ (x′)) = |fΘ (x)− fΘ (x′)| ∈ RD.

Then we use the binary cross entropy loss with a Sigmoid function on the
predictions of gaug, we can write a joint loss function as:
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Fig. 2: Contrastive learning pipeline. FE represents the SPP-EEG feature extractor
shown in Fig. 1. The absolute differences of two feature vectors are computed and a
linear classifier is used to classify whether two vectors are similar or not in the latent
space.

Transformation min max

Add Noise (scale) 0.02 0.1
Downsample (Hz) 100 256
Random Crop (Time Points) 600 1200
Pooling (level) 2 5
Quantize (level) 10 30

Table 1: Transformation Ranges

Loss = − 1

N

N∑
i=1

yilogσ (gaug) + (1− yi) log (1− σ (gaug))

2.3 Augmentation methods

Data augmentation serves a dual purpose in our methodology. It allows us to gen-
erate more training data and it enables the self-supervised contrastive learning
process, as explained in section 2.2. Five different signal augmentation methods
are used. Table 1 shows the range of each transformation. Add Noise: Add
independent and identically distributed random noise to the input signal with
the standard deviation of the random noise equal to a random generated scale.
Downsample: Downsample input signals to a random sampling rate within a
range but not violate the Nyquist–Shannon sampling theorem [16]. Random
Crop: Select random sub-sequences in a range from the input signal. Pooling:
Reduce the temporal resolution to original input 1/level without changing the
input signal length. Quantize: Round each timepoint value to the nearest level
in a level set.
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2.4 Transfer Learning

After training the feature extractor with the contrastive self-supervised learning
task, we transfer the feature extractor to different downstream EEG classifica-
tion tasks and fine-tune it on the new dataset. The downstream classification
model has a similar architecture with the pre-trained feature extractor, except
we switch the spatial pyramid pooling layer to a maxpooling layer. The pooling
size is decided upon each dataset’s input window size. Such a decision is made
empirically as the experimental results show the downstream tasks cannot ben-
efit from the spatial pyramid pooling layer and it is also unnecessary to use it
for single dataset classification tasks. Then we add a few dense layers and an
output layer. The output dimension depends on each downstream task.

3 Experiments

3.1 Datasets

We conduct a self-supervised contrastive learning task on the TUH Normal / Ab-
normal dataset [17]. This dataset contains 2,993 recordings of around 15 minutes
from 2,329 different patients who underwent a clinical EEG in a hospital setting.
The training set contains 1,371 recordings labeled as normal and 1,346 labeled
as abnormal. The evaluation set contains 150 and 126 recordings respectively.

We conduct transfer learning to three downstream datasets. The first one is
from the same dataset used for feature extractor training. We select 30 normal
and 30 abnormal patients’ recordings that are not been used formerly. The second
one is the EEG Motor Movement/Imagery Dataset [18, 19], which consists of
over 1500 one- and two-minute EEG recordings, obtained from 109 volunteers.
The recordings are labeled as 0, 1 for four different binary motor imagery tasks.
We used the first 50 subjects recordings in transfer learning experiments. The
third one is the subset the first one, chooses 10 EEG recordings from the TUH
normal/abnormal dataset in each training round to make up the training set
and testing set.

3.2 Data preprocessing

For the TUH Normal/Abnormal dataset, we use the same train/test split, to
train and test the feature extraction model, as in the original paper [17]. For the
transfer learning datasets, we use KFold = 5 cross-validation.

To preprocess the TUH dataset, we follow the EEG montage 10-20 system
to select and reorder all recording channels to [FP1, FP2, F7, F3, FZ, F4, F8,
T3, C3, CZ, C4, T4, T5, P3, PZ, P4, T6, O1, O2]. We discard the first 1-minute
time points from all recordings and crop the total length of a recording to no
more than 20 minutes. We apply a (0.3-80Hz) fifth-order band-pass Butterworth
filter [20] to all recordings. 6-second time windows are extracted and each time
window has the dimension size = (1, 19, 6 ∗ Hz). Then all time windows are
channel-wise normalized.
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For the transfer learning datasets, we select and reorder recording channels
the same as the TUH dataset. We follow the original event time and the sam-
pling rate of each dataset to divide time windows, which yields different sizes of
time windows for different datasets. To all recordings we apply the filter bands
suggested in their manuals. And similarly, all time windows are normalized in
each channel.

3.3 Training details

We conduct all experiments on an Intel server with 377GB CPU memory and 2
Nvidia 1080 GPUs. The feature extraction model is trained for 100 epochs and
saved at the best performance checkpoint. We use Adam optimizer [21] with the
initial learning rate of 0.001 and batch size of 32. The learning rate degrades to
its 95% after every 10 epochs. Since the contrastive data pairs we generated have
different window sizes, we pad all time windows to the same size in a training
batch to maximize the GPU’s parallelization ability. For transfer learning tasks,
we still use Adam optimizer with the learning rate 0.0001 or 0.00001 depending
on the dataset. The training epochs are set to 50 in each fold and the batch size
is set to 32 or 64 depending on the available GPU memory.

3.4 Transfer Learning Results

We first transfer the feature extractor to the TUH Normal/Abnormal dataset.
As the first dataset described in section 3.1. We segment the recordings to 6-
second time windows and each is labeled as normal or abnormal. Then reload
the parameters of different numbers of convolutional layers and train the classi-
fier mentioned in Section 2.4. The experiment results are shown in Fig. 3. The
red line is the classification accuracy obtained when training the same network
architecture on the downstream dataset from scratch. The blue line shows the
classification accuracy obtained on the downstream task when transferring the
first n convolutional layers trained on the self-supervised learning task. From
the plot, we can see the more than 6% accuracy improvement is achieved when
transferring the first three layers on the TUH dataset. Overall, the accuracies ob-
tained using our transfer learning approach are better than training from scratch
except when transferring all six layers, which expected as in that case the orig-
inal model is highly specialized on the initial self-supervised learning task. In
other words, the last layers extract the patterns that particularly fit the former
task which are not useful for downstream tasks.

Similar results can be found in Fig.4 when transferring the feature extractor
to EEGBCI dataset which is a new dataset, not seen during the self-supervised
pre-training process. The best performance appears when transferring the first
four convolutional layers with around 4-5% accuracy improvement compared to
training from scratch.

We conduct another experiment to show how the pre-trained feature extrac-
tor could benefit the downstream task on very small training sets. In this case,
due to shortage of training data, the deep learning model quickly over-fits the
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Fig. 3: TUH Downstream transfer learning results. The red line is the classification
accuracy obtained when training the same network architecture on the downstream
dataset from scratch. The blue line shows the classification accuracy obtained on the
downstream task when transferring the first n pre-trained convolutional layers.
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Fig. 4: EEGBCI transfer learning results for the four different tasks.

training set and performs very poorly on testing set. The experiment uses only 10
EEG recordings from the TUH normal/abnormal dataset to make up the train-
ing set and testing set. We transfer the pre-trained feature extractor, training
on three different training sets, and test on a single testing set. Fig. 5 shows the
transfer learning results. The smaller the difference between training and testing
accuracy in the downstream deep learning model indicates less over-fitting, and
the testing accuracy improves. From the plots, (1) we can observe that transfer-
ring the first three convolution layers parameters to the downstream task and
freezing the first layer’s parameters give the best practical result. (2) On such
a small training set, the pre-trained feature extractor overall performs better
than training from scratch. Our findings show that the number of layers to be
transferred and the number of layers to be frozen when training on the down-
stream task matters. Transferring too many or freezing too many layers adds
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Fig. 5: Transfer learning results on a very small dataset. The upper and lower border-
lines are the training from scratch training and testing accuracy.

stricter restrictions on the downstream model which makes it performs worse on
the testing set.

4 Conclusion

In this work, we introduce an input data shape agnostic deep convolutional neu-
ral network for learning EEG data representations. We train the model with a
self-supervised contrastive learning task and transfer the model to other smaller
datasets with different recording setups. The experimental results verify the
ability of contrastive learning to learn EEG data inner representation without
external labels. And the pre-trained parameters can be used in other small EEG
datasets as the initial training parameters to improve the downstream classifi-
cation performance.
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