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Abstract. Signal measurements appearing in the form of time series are
one of the most common types of data used in medical machine learning
applications. However, such datasets are often small, making the train-
ing of deep neural network architectures ineffective. For time-series, the
suite of data augmentation tricks we can use to expand the size of the
dataset is limited by the need to maintain the basic properties of the
signal. Data generated by a Generative Adversarial Network (GAN) can
be utilized as another data augmentation tool. RNN-based GANs suf-
fer from the fact that they cannot effectively model long sequences of
data points with irregular temporal relations. To tackle these problems,
we introduce TTS-GAN, a transformer-based GAN which can success-
fully generate realistic synthetic time-series data sequences of arbitrary
length, similar to the real ones. Both the generator and discriminator
networks of the GAN model are built using a pure transformer encoder
architecture. We use visualizations and dimensionality reduction tech-
niques to demonstrate the similarity of real and generated time-series
data. We also compare the quality of our generated data with the best
existing alternative, which is an RNN-based time-series GAN.
TTS-GAN source code: github.com/imics-lab/tts-gan

Keywords: Generative Adversarial Network · Transformer · Time-Series
Analysis · Medical Signal

1 Introduction

Data shortage is often an issue when analyzing physiology based time-series sig-
nals with deep learning models. Unlike images and text data used in computer
vision (CV) and natural language processing (NLP) tasks, which are abundant
on the web, such signals are collected as sensor measurements resulting from
physical or biological process. Especially when such processes involve human
subjects, data collection, annotation, and interpretation is a costly endeavour.
Furthermore, differences in the various collection configurations make it harder
for data collected in different settings to be merged together to form larger
datasets. Deep learning models require large amounts of data to train success-
fully. Training deep learning models with a high number of trainable parameters
on small datasets results in over-fitting and low generalization capabilities. As a
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compromise researchers are forced to train shallower deep learning models that
are not capable of capturing the full complexity of the problem at hand. This is
a common situation encountered in medical and health-related machine learning
research.

Generative Adversarial Networks (GANs), first introduced in 2014 [1], have
been gaining traction in the deep learning research field. They have successfully
generated and manipulated data in CV and NLP domains, such as high-quality
image generation [2], style transfer [3], text-to-image synthesis [4], etc. There has
also been a movement towards using GANs for time series and sequential data
generation, and forecasting. The review paper [5] gives a thorough summary of
GAN implementations on time series data.

A GAN is a generative model consisting of a generator and discriminator,
typically two neural network (NN) models. The generator takes as input ran-
dom vectors of specified dimensions and generates output vectors of the same
dimension that are similar to the real training data. The discriminator is a binary
classifier used to distinguish the real data and generated data. The generator and
discriminator are updated by back-propagation alternately, playing a zero-sum
game against each other and until they reach an equilibrium.

The transformer architecture, which relies on multiple self-attention lay-
ers [6], has recently become a prevalent deep learning model architecture. It
has been shown to surpass many other popular neural network architectures,
such as CNN over images and RNN over sequential data [7,8], and it has even
displayed properties of a universal computation engine [9]. Some works have al-
ready tried to utilize the transformer model in GAN model architecture design
with the goal to either improve the quality of synthetic data or to create a more
efficient training process [10,11] for image and text generation tasks. In work [10],
the author, for the first time, built a pure transformer-based GAN model and
verified its performance on multiple image synthesis tasks.

Previous efforts for creating a time-series GAN have mainly relied on Recur-
rent Neural Network (RNN)-based architectures [12,13,14]. Since the transformer
was first invented to handle very long sequential data and does not suffer from a
vanishing gradient problem, theoretically, a transformer GAN model should per-
form better than other RNN-based models on time-series data. In this work, we
follow a process similar to the one Jiang et.al. [10] followed for image generation,
adapted for time-series data.

Since time-series data are not easily interpretable by humans, we use PCA [15]
and t-SNE [16] to map the multi-dimensional output sequence vectors into two
dimensions to visually observe the similarity in the distribution of the syn-
thetic data and real data instances. For a more quantitative comparison, we also
measure several well-known signal properties and compare the similarity of the
transformer-generated as well as RNN-generated sequences with real sequences
of the same class.

Our contributions can be summarized as follows:

– We create a pure transformer-based GAN model to generate synthetic time-
series data.
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– We propose several heuristics to more effectively train a transformer-based
GAN model on time-series data.

– We qualitatively and quantitatively compare the quality of the generated
sequences against real ones and against sequences generated by other state-
of-the-art time-series GAN algorithms.

The rest of the paper is organized as follows. Section 2 discusses the back-
ground and most popular applications of GANs and transformer models. In
section 3, we provide the details of our TTS-GAN model architecture and how
we process time-series data to feed this model. In section 4, we visually and
quantitatively verify the fidelity of the synthetic data. Section 5 summarizes our
work and concludes this paper.

2 Background

2.1 Generative Adversarial Networks (GANs)

GANs consist of two models, a generator and a discriminator. These two models
are typically implemented by neural networks, but they can be implemented with
any form of differentiable system that maps data from one space to the other.
The generator tries to capture the distribution of true examples for new data
example generation. The discriminator is usually a binary classifier, discriminat-
ing generated examples from the true examples as accurately as possible. The
optimization of GANs is a minimax optimization problem, in which the goal
is to reach Nash equilibrium [17] of the generator and discriminator. Then, the
generator can be thought to have captured the real distribution of true examples.

GANs have had many applications in different areas, but mostly in CV and
NLP. For example, it can generate examples for image datasets [18], front view
faces [19], text-to-image translation [4], etc. While these successes have drawn
much attention, GAN applications have diversified across disciplines such as
time-series data generation. The work [5] gives a thorough summary of the GAN
implementations in this field. The applicability of GANs to this type of data
can solve many issues that current dataset holders face. For example, GANs
can augment smaller datasets by generating new, previously unseen data. GANs
can replace the artifacts with information representative of clean data. And it
can also be used to denoise signals. GANs can also ensure an extra layer of
data protection by generating deferentially private datasets containing no risk
of linkage from source to generated datasets.

2.2 Transformer

The transformer is the state-of-the-art neural network architecture. Unlike recur-
rent neural networks, which consume a sequence token by token, in a transformer
network, the entire sequence is fed into layers of transformer modules. The rep-
resentation of a token at a layer is then computed by attending to the latent



4 X. L. et al.

representations of all the other tokens in the preceding layer. Many works in the
NLP field have proved its performance [6,8].

Given its strong representation capabilities, researchers have also applied
transformers to computer vision tasks. In a variety of visual benchmarks, trans-
former models perform similar to or better than other types of networks, such
as convolutional and recurrent networks. The work in [7] builds a model named
ViT, which applies a pure transformer directly to sequences of image patches.
The work in [10] builds a pure transformer GAN model to generate synthetic
images, where the discriminator designing idea is from the ViT model. The multi-
dimension time-series data we are dealing with has similarities from both texts
and images, meaning a sequence contains both temporal and spatial information.
Each timestep in a sequence is like a pixel on one image. The whole sequence
contains an event or multiple events happening, which is similar to a sentence
in NLP tasks.

In this work, we adapt the ideas used in [7] and [10] for images, and view a
time-series sequence as a C ×H ×W tuple, where C is the number of channels
of the time-series data, H corresponds to the height of the image, but for time-
series that value is set to 1, andW corresponds to the width of the image, which
for times-series is the number of timesteps in the sequence. We divide the tuple
into multiple patches on the W axis and provide positional encoding to each
patch. To our best knowledge, it is the first work to implement such an idea to
process time-series data and apply it to a transformer GAN model.

3 Methodology

3.1 Transformer Time-Series GAN Model Architecture

The TTS-GAN model architecture is shown in Fig. 1. It contains two main
components, a generator, and a discriminator. Both of them are built based on
the transformer encoder architecture [6]. An encoder is a composition of two
compound blocks. A multi-head self-attention module constructs the first block
and the second block is a feed-forward MLP with GELU activation function. The
normalization layer is applied before both of the two blocks and the dropout layer
is added after each block. Both blocks employ residual connections.

The generator first takes in a 1D vector with N uniformly distributed ran-
dom numbers values within the range (0,1), i.e. Ni ∼ U(0, 1) . N represents
the latent dimension of the synthetic signals, which is a hyperparameter that
can be tuned. The vector is then mapped to a sequence with the same length
of the real signals and M embedding dimensions. M is also a hyperparameter
that can be changed and not necessarily equal to real signal dimensions. Next,
the sequence is divided into multiple patches, and a positional encoding value
is added to each patch. Those patches are then input to the transformer en-
coder blocks. Then the encoder blocks outputs are passed through a Conv2D
layer to reduce the synthetic data dimensions. The Conv2D layer is set to have
a kernel size (1, 1), which won’t change the width and height of the synthetic
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Fig. 1: TTS-GAN model architecture

data. The filter size is set to the same dimension size as the real data sequences.
Therefore, a synthetic data sequence after the generator transformer encoder
layers with a data shape (hiddendimensions, 1, timesteps) will be mapped to
(realdatadimensions, 1, timesteps). In this way, a random noise vector is trans-
formed into a sequence with the same shape as the real signals.

The discriminator architecture is similar to the ViT model [7], which is a
binary classifier to distinguish whether the input sequence is a real signal or
synthetic one. In the ViT model, an image is divided evenly into multiple patches
with the same width and height. However, in TTS-GAN, we view any input
sequences like an image with a height of 1. The timesteps of the inputs are
image widths. Therefore, to add positional encoding on time series inputs, we
only need to divide the width evenly into multiple pieces and keep the height of
each piece unchanged. This process is explained in detail in section 3.2.

3.2 Processing Time-Series Data like an image

We view a time-series data sequence like an image with a height equal to 1. The
number of timesteps is the width of an image,W . A time-series sequence can have
a single channel or multiple channels, and those can be viewed as the number
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Fig. 2: Processing time-series data

of channels (RGB) of an image, C. So the input sequences can be represented
with the matrix of size (BatchSize, C, 1,W ). Then we choose a patch size N
to divide a sequence into W/N patches. We then add a soft positional encoding
value by the end of each patch, the positional value is learned during model
training. Therefore the inputs to the discriminator encoder blocks will have the
data shape (BatchSize, C, 1, (W/N) + 1). This process is shown in Fig. 2.

3.3 Updating Generator and Discriminator Parameters

The transformer blocks in the generator and discriminator both use the Mean
Squared Error loss to update the parameters. We can use z to denote input
vectors to the generator. Use G(z) to represent the synthetic data generated by
the generator. We use the prefix real to represent the real input signals. D(x)
is the classification output of the discriminator. x can be the real signals or
synthetic signals. real_label is set to 1 and fake_label is set to 0. To stabilize
the GAN model training, some heuristics can be used when setting label values.
For example, we can use soft labels that real_label is a float number close to
1 and fake_label is a float number close to 0. Sometimes, we can also flip the
values of the real_label and the fake_label. The usefulness of these strategies
has been so fat been tested only on a case-by-case basics. The discriminator loss
can be represented as:

d_real_loss =MSELoss(D(real), real_label)
d_fake_loss =MSELoss(D(G(z)), fake_label)

d_loss = d_real_loss+ d_fake_loss

The discriminator loss is the sum of real data loss and fake data (synthetic data)
losses. The generator loss can be represented as:

g_loss =MSELoss(D(G(z)), real_label)

4 Experiments

4.1 Datasets

We evaluate the TTS-GAN model on three datasets. Simulated sinusoidal waves,
UniMiB human activity recognition (HAR) dataset [20] and the PTB Diagnostic
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ECG Database [21,22]. A few raw data samples for each dataset are shown in
Fig. 3a.

The sinusoidal waves are simulated with random frequencies A and phases
B values between [0, 0.1]. The sequence length is 24 and the number of dimen-
sions is 5. For each dimension i ∈ {1, ..., 5}, the sequence can be represented with
the formula xi(t) = sin(At + B), where A ∈ (0, 0.1) and B ∈ (0, 0.1). A total
number of 10000 simulated sinusoidal waves are used to train the GAN model.

For the UniMiB datase [20], we select 2 categories (Jumping and Running)
samples from 24 subjects’ recordings to train GAN models. The two classes have
600 and 1572 samples respectively. Every sample has 150 timesteps and three
accelerator values at each timestep. All of the recordings are channel-wisely
normalized to a mean of 0 and a variance of 1.

The PTB Diagnostic ECG dataset [21,22] contains human heartbeat
signals in two categories, normal and abnormal with 4046 and 10506 samples re-
spectively. Each sequence represents a heart beat sampled at 125Hz. The original
length of each sequence is 188, padded with zeros at the end to create fixed-length
sequences. We only use the timesteps 5 to 55 of each sample, which is the part
of the sequence containing the most useful information of the heatbeat.

4.2 Evaluation

We evaluate TTS-GAN using qualitative visualizations and quantitative metrics,
and compare it with Time-GAN [13], which is the best current alternative.
Raw data visualization: Fig. 3b shows samples of synthetic data generated
by TTS-GAN. Comparing them to the real data in Fig. 3a, we can observe that
the synthetic data present visually similar signal patterns to the real data.
Visualizations with PCA and t-SNE: To further illustrate the similarity
between the real data and synthetic data, we plot visualization example graphs
of data point distributions mapped to two dimensions using PCA and t-SNE
in Figure 4. In these plots, red dots denote original data, and blue dots denote
synthetic data generated by TTS-GAN. Again, we notice a similar distribution
pattern between real and synthetic data.
Similarity scores: To quantitatively compare the similarity of the real and
generated sequences, we defined two similarity scores, average cosine similarity
(avg_cos_sim) and average Jensen-Shannon distance (avg_jen_dis). The de-
tailed definition of these similarity metrics is given in Appendix B. We first
extract 7 well-known signal features from each signal channel C, to form a
7 × C dimensional feature vector for each sequence. The avg_cos_sim mea-
sures the average cosine similarity among all real signals and synthetic signals
of the same class. Values closer to 1 indicate high similarity between two feature
vectors. The Jensen–Shannon distance is a method of measuring the similarity
between two probability-like distributions. We consider each extracted feature
to be a normally distributed array of values and compute the Jensen-Shannon
distance for corresponding features between real and synthetic feature vectors.
The avg_jen_dis is the average of all feature vector distances. A value closer
to zero means a pair of signals have a small distance from each other and thus
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Fig. 3: A visual comparison of real data and their corresponding synthetic data
generated by TTS-GAN.

share similar distributions. As it can be observed from the experimental results
shown in Table 1, synthetic samples show a high average cosine similarity and
low Jensen–Shannon distance for different signal classes. In addition, TTS-GAN
wins against Time-GAN in 7 out of 10 cases.

5 Conclusions

In this work, we build a transformer-based GAN model (TTS-GAN) that is
able to generate multi-dimensional time-series data of various lengths. A visual
comparison of the raw signal patterns as well as data point distributions mapped
in two dimensions show the similarity of the original data and the synthetic data.
Two similarity scores are also used to quantitatively further verify the fidelity of
the synthetic data. Overall, the experimental results demonstrate the viability of
TTS-GAN as a generator of realistic time-series, when trained on real samples.
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Fig. 4: The PCA and t-SNE test for real and synthetic data generated by TTS-
GAN.

Model Name Similarity Score Sinusoidal Jumping Running Normal Abnormal
TTS-GAN avg_cos_sim 0.9936 0.9982 0.9988 0.9855 0.9768

avg_jen_dis 0.0980 0.0870 0.0497 0.1861 0.2911
Time-GAN avg_cos_sim 0.9935 0.9980 0.9989 0.9878 0.9719

avg_jen_dis 0.1226 0.0924 0.0470 0.1883 0.3354
Table 1: The similarity scores between real data and synthetic data of 5 different
datasets. avg_cos_sim, the bigger the better. avg_jen_dis, the smaller the
better. Bold texts identify better results.
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A Appendix 1: Training Details

We conduct all experiments on an Intel server with a 3.40GHz CPU, 377GB
RAM memory and 2 Nvidia 1080 GPUs. For all datasets, the synthetic data are
generated by a generator that takes random vectors of size (100, 1) as inputs.
The transformer blocks in the generator and discriminator are both repeated
three times. We adopt a learning rate of 1e − 4 for the generator and 3e − 4
for the discriminator. We follow the setting of LSGAN [23] and use loss func-
tion described in section 3.3 to update model parameters. An Adam optimizer
with β1 = 0.9 and β2 = 0.999, and a batch size of 32 for both generator and
discriminator, are used for all experiments.

B Appendix 2: Similarity Scores

Feature extraction We extract several meaningful features from each input
data sequence. They are the median, mean, standard deviation, variance, root
mean square, maximum, and minimum values of each input sequence. Suppose
we compute m features from all channels of each sequence and get a feature
vector with the format f =< feature1, feature2, ..., featurem >.
Average Cosine Similarity For each pair of real signal feature vector fa and
synthetic signal feature vector fb, the vector has the size m, we can compute its
cosine similarity as:

cos_simab =
fa · fb
‖fa‖ ‖fb‖

=

∑m
i=1 faifbi√∑m

i=1 f
2
ai

√∑m
i=1 f

2
bi

The average cosine similarity score is the average of each cosine similarity
between pairs of feature vectors corresponding to real and synthetic signals of
the same class. The average cosine similarity is computed as follows, where n
the total number of signals:

avg_cos_sim =
1

n

n∑
i=1

cos_simi

Average Jensen-Shannon distance The average jensen-shannon distance is
the average of jensen-shannon distance between each feature from real signals
and synthetic signals. For each pair of real signal feature fi_real and synthetic
signal feature fi_syn, we can compute its jensen-shannon distance as:

jen_simi =

√
D(fi_real||m) +D(fi_syn||m)

2
Where m is the pointwise mean of fi_real and fi_syn and D is the Kullback-

Leibler divergence. The average jensens-shannon distance is computed as:

avg_jen_dis =
m∑
i=1

jen_simi
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