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Abstract

This paper proposes an efficient moving objects detec-
tion pipeline focusing on dynamic object detection on video
streams captured by traffic monitoring cameras. While de-
veloping autonomous vehicle systems, we found that views
from self-driving vehicles can be occluded by dynamic or
static objects on the street. Whereas infrastructure nodes
such as traffic monitoring cameras having broader field-
of-views and better perspectives can be used as auxiliary
sensors to share traffic information with nearby self-driving
cars in real-time. However, these infrastructure cameras
usually have constrained computation resources, and de-
tecting hundreds of static background objects in consecutive
video frames is wasteful. In our detection pipeline, we lever-
age the image eccentricity analysis as a pre-processing step
to fast generate moving objects segmentation maps. These
maps are used to mask the original images to get images
that only contain the moving objects in the scene. These
sparse images are then passed to an object detection model
built with a sparse convolution backbone network, result-
ing in significant reduction in computational costs. Our
quantitative experiments illustrate that the proposed detec-
tion pipeline can achieve up to 50% inference speedup with
negligible detection accuracy drop in images obtained from
traffic monitoring cameras.

1. Introduction
Developing self-driving cars has become one of the

hottest machine learning research fields in recent years.
A fully automated self-driving car system will revolution-
ize daily human transportation and create a magnificent
business impact. With the success of self-driving cars,
smart city infrastructure will also become vital. An intel-
ligent traffic management system mounted at higher van-
tage points provides a broader coverage compared to a self-
driving car. Such systems can be used to monitor and con-
trol traffic, alarm nearby vehicles and share information
among vehicles.

Traffic monitoring cameras are the most commonly used

sensors that are installed on street infrastructure nodes.
Since they have broader coverage than the cameras installed
on self-driving cars, they can share what they see with mul-
tiple nearby self-driving cars to prevent accidents caused
by obstructed views of these vehicles. We can use these
cameras to conduct object detection tasks and alert anoma-
lies to upcoming self-driving cars. However, running real-
time object detection tasks on these edge devices requires
significant computational resources. Due to data privacy
constraints and data transmission overheads, most of these
computations need to be done directly on edge devices and
can’t be offloaded to a cloud device. To achieve real-time
response and the best possible performance, we must care-
fully arrange the computation resources and design the al-
gorithms efficiency to meet the real-time response require-
ments in autonomous driving application.

An ordinary object detection model selects thousands of
multi-scale image segments and applies an image classifica-
tion task to each segment. This is a very compute-intensive
task for edge devices such as infrastructure cameras. In this
project, we introduce an efficient object detection pipeline
used for traffic monitoring systems which significantly re-
duces the required resources and decreases inference time.
We observe that consecutive frames captured by static cam-
eras share many similarities in background and static ob-
jects. It is unnecessary to conduct object detection pixel
by pixel and frame by frame with such images. There-
fore, we propose a background and stationary object sub-
traction method to pre-process the input images to filter our
the static and background areas, and only apply the detec-
tion algorithm on areas with dynamic objects.

The Finite Memory Eccentricity algorithm introduced
in [4] is a non-parametric, assumption-free methodology
for extracting information from data. It can be computed
recursively, and requires very limited statistical information
when processing input images. We leverage this algorithm
to generate moving object segmentation maps as a pre-
processing step to get images that only contain the differ-
ence among consecutive video frames. Such a method only
adds negligible computation overhead when pre-processing
the input images.
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The sparse convolution networks take data lists and in-
dex lists as the input image format and only apply convolu-
tion computation on these nonempty pixels. To incorporate
the sparsity in the pre-processed images and improve infer-
ence time, we use a sparse convolution library [10] to build
object detection models. The generated segmentation maps
generated by the eccentricity algorithm are used as masks
on the original images, so the resulting sparse images only
contain moving objects. The sparse images will be stored in
a compressed format that has lists of pixel values and cor-
responding indexes. The sparse convolution-based object
detection model takes such inputs and predicts objects the
same way as ordinary object detection models.

We conduct qualitative and quantitative experiments to
test the performance of our sparse convolution-based object
detection model. The experiments show that on a single
CPU, the sparse object detection model on average achieves
50% inference speedup compared to the dense counterpart
(standard object detection model). We also leverage the im-
age eccentricity algorithm to generate moving object seg-
mentation maps and test the performance of the object de-
tection model on the dataset collected from real-world traf-
fic monitoring cameras. The experimental results show
that our model can achieve very similar detection accuracy
but, at the same time, significantly reduce the computation
amount needed for a model running on edge devices.

To summarize, the contributions of our proposed
pipeline are as follows:

• We utilized the image eccentricity analysis algorithm
to develop a fast moving object extraction method
from consecutive video frames with a negligible
amount of computation overhead.

• We leveraged sparse convolution networks to build ob-
ject detection models that only apply convolution com-
putations on nonempty pixels and largely reduce the
needed inference computation compared to standard
object detection models.

• We qualitatively and quantitatively analyzed the per-
formance of our sparse object detection models on
multiple datasets. The experiment results showed that
our detection pipeline could speed up inference time
by 50% with little to no detection accuracy drop.

• We explored the relationships among the quality of
generated segmentation maps with different eccentric-
ity analysis algorithm thresholds.

2. Related Work
2.1. Efficient object detection

Object detection models are mostly using image classi-
fication models as backbones. However, a one-time object

detection process often divides the input image into multi-
ple small regions. It conducts image classification on each
region, which results in the object detection task requiring
hundreds or thousands more computations than an image
classification task. To achieve real-time object detection,
researchers have developed multiple strategies to reduce the
required computation while trying to retain the detection ac-
curacy. One approach was to design lightweight backbone
networks such as the EfficientDet [31] backbone networks
and YOLO families [17]. Also, the efficient deep learning
model ideas can be used to reduce object detection compu-
tations, such as network pruning [8, 14], network quanti-
zation [5, 16], and model-hardware co-design [27, 22, 24].
Another strategy is to define a multi-scale detection strategy
and only spend more computation resources on the area of
interest or hard-to-detect small objects [23, 29, 25].

Another aspect of efficient object detection is pre-
processing the input images to reduce the total regions that
need to apply object detection. For example, salient ob-
ject detection is a task based on a visual attention mech-
anism in which algorithms aim to explore objects or re-
gions more attentive than the surrounding areas in the scene.
Given original images and segmentation maps as ground
truths, the model tries to predict the salient objects in the
images [13, 32]. When processing videos instead of single
images, optical flow and feature warping techniques can be
used together to depict similar regions among consecutive
frames and reduce redundant computations on such regions
without affecting detection accuracy [18, 20].

The eccentricity analysis algorithm used in our work is
similar to optical flow as it captures image changes among
consecutive video frames. However, it gives more detailed
spatial information than optical flow [4]. Our goal is to only
detect moving objects on the videos collected from static
cameras. To prove the efficacy of our proposed pipeline, we
used relatively simple object detection models and detected
objects from videos frame by frame. But our pipeline is
also compatible with the earlier mentioned efficient object
detection methods.

2.2. Sparse Convolution

Convolution networks are the de-facto standard for an-
alyzing spatio-temporal data such as images, videos, and
3D shapes. Standard “dense” implementations of convolu-
tion networks are inefficient when applied to sparse data,
such as 1D lines on RGB images and 3D point clouds on
RGB-D images. Sparse Convolution plays a vital role in
processing such kinds of data, unlike the regular convolu-
tion computations that store image information as matrix or
tensor and process them using dense matrix multiplication.
The sparse images can be represented as data lists and index
lists, and the sparse convolution uses a particular schema
to process such a data format. That is, the sparse convo-
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lution collects all convolution kernel computations (atomic
operations) and saves them in a Rulebook as instructions for
computation. It is more efficient because we do not need to
scan all the pixels in an image but only calculate the con-
volutions for the nonzero elements. The sparse convolu-
tional networks were first studied in the works [6, 9, 26].
Their major drawback is that the active region proliferates
with each layer, and the sparsity of feature maps from each
layer will decrease. The work [12] designed a submanifold
sparse convolution network which restricts the growth of ac-
tive regions. It performs on par with state-of-the-art meth-
ods whilst requiring substantially less computation. Since
then, sparse convolution has been used for 3D point cloud
processing [6, 30, 15]. Our work utilized the sparse convo-
lution library developed from [12] to build the object detec-
tion model and process the sparse 2D images generated by
the eccentricity analysis algorithm.

3. Methodology
3.1. Processing Pipeline

The proposed efficient object detection process is de-
picted in Figure 1. The consecutive video frames are
the original inputs. The image eccentricity analysis algo-
rithm will pre-process these images to generate segmenta-
tion maps containing only moving objects. Then the seg-
mentation maps will be masked on original inputs to get
moving objects’ foreground images. The generated fore-
ground images are in a compressed format containing only
nonempty pixel values and their corresponding indexes. Af-
ter that, the foreground image will pass through a sparse
convolution-based object detection model to detect the ob-
jects contained in the foreground images. In this pipeline,
The image eccentricity analysis is a purely mathematical
method that iteratively updates the current frame segmen-
tation map, which only involves a small amount of compu-
tational overhead. Meanwhile, the sparse convolution ob-
ject detection model significantly reduces object detection
inference computations than commonly used dense object
detection models.

3.2. Image Eccentricity Analysis

Eccentricity analysis is a method to extract information
from time-series data without predetermined parameters,
random variables, or distributions. This methodology was
first introduced in the work [1]. Thereafter, such a method
has been implemented on various tasks, such as cluster-
ing [3], classification [19], and fault detection [2].

The Eccentricity ζ of the data sample x at the time instant
k can be defined as [1]:

ζk = 2

∑k
i=1 d(x, xi))∑k

i=1

∑k
j=1 d(xi, xj))

(1)

Consecutive video frames

Moving objects segmentation maps 

Image Eccentricity
Analysis

Moving objects images

Sparse Convolution
Object Detection Model

Detect moving objects

Figure 1: EMOD:Efficient moving object detection
pipeline.

k ≥ 2,

k∑
i=1

k∑
j=1

d(xi, xj) > 0

where d is some type of distance, such as Euclidean dis-
tance, Mahalanobis distance, etc. Eccentricity is bounded
by [1]:

0 ≤ ζk ≤ 1,

k∑
i=1

ζk = 2

When d is Euclidean distance, the equation 1 can be de-
rived as [1]:

ζk =
1

k
+

(µk − xk)
T (µk − xk)

kσ2
k

(2)

k ≥ 2, σ2
k > 0

Both the mean µk and the variance σ2
k can be recursively

updated, respectively, by [1]:

µk =
k − 1

k
µk−1 +

xk

k
(3)

k ≥ 1, µ1 = x1

σ2
k =

k − 1

k
σ2
k−1 +

(µk − xk)
T (µk − xk)

k − 1
(4)

σ2
1 = 0

The work [4] addressed the infinite memory problem in-
volved in the above method. With equations 1&2, the Ec-
centricity computation takes into account all data samples
going back to k = 1 frames, which can be a significant
problem in dynamic and rapidly evolving environments.
Therefore, this work introduces a finite memory mecha-
nism for updating Eccentricity where it exponentially for-
gets older samples during the recursive computation.
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A constant forgetting factor α = 1/k, 0 ≤ α ≤ 1 is in-
troduced to assign a set of exponentially decaying weights
to the older data sample xk [4], hence the equation 2
rewrites as:

ζk = α+
α(µk − xk)

T (µk − xk)

σ2
k

(5)

The effect of equation 5 will cause the older data points
to essentially be eliminated from the eccentricity computa-
tions after a certain data point xk.

A variance threshold γ is chosen to prevent σ2
k ≈ 0 when

consecutive samples are very close to each other [4]. There-
fore, the Eccentricity formula becomes:

ζk = α+
α(µk − xk)

T (µk − xk)

max(σ2
k, γ)

(6)

γ =
α ∗ (1− E sen)2

1− α

The threshold γ is partially dependent on α, and we can
tune the parameter E sen to get different γ values.

The normalized ζk in equation 6 written as:

εk =
ζk − α

1− α
=

α(µk − xk)
T (µk − xk)

(1− α)max(σ2
k, γ)

(7)

3.3. Moving objects segmentation from Image Ec-
centricity

The finite memory eccentricity formulation can be
adapted to image streams. For example, a 3-channel
RGB image at time k can be represented as xk ={
Ri,j

k , Gi,j
k , Bi,j

k

}
, where (i, j) is a pixel index of the im-

age. For an image in a video stream, each pixel is inde-
pendent from the others and we treat it as a separate data
stream. Therefore, each pixel’s eccentricity value is com-
puted based on equation 7. At each time instance k, an
eccentricity map, Ek, with the same size of the image will
be generated [4].

We can generate a moving objects segmentation mask Sk

based on the eccentricity map Ek with an anomaly detection
threshold M [4], where

Sk =

{
0, Ek ≤ M
1, Ek > M

(8)

For a pixel location, if its εk value is smaller than the thresh-
old M , we can consider that at the current video frame,
this pixel value does not significantly change compared with
previous frames. So it can be considered stationary and as-
sign a 0 value in the segmentation map. On the contrary,
whenever the εk is greater than the threshold M , this pixel
is considered part of a moving object, so assign 1 value in
the segmentation map.

Figure 2: Visual examples of Eccentricity-based images.
(a) are video frames captured by traffic monitoring cameras
mounted on vantage points. (b) are the eccentricity maps
generated based on previous frames. (c) are moving object
segmentation maps that are generated based on equation 8.
(d) are sparse foreground images that only contain moving
objects pixel values.

Values list

Locations list
... ...

38x38x512

19x19x1024

10x10x512

5x5x256
3x3x256

1x1x256

Sparse Conv 
1_1 to 4_3 Conv 5_1,2,3 Conv 8, 9, 10, 11

SparseToDense

Detection Conv

Sparse Image
Inputs

Figure 3: Sparse convolution based single shot object de-
tection (Sparse-SSD) model.

The threshold M is defined as:

M =
α(m2 + 1)

2

We use m = 3 in all experiments. Some examples of Ek

and Sk are shown in Figure 2.

3.4. Sparse Convolution object detection models

We modify a VGG-based [28] single shot object detec-
tion (SSD) model to use sparse convolution instead of reag-
ular dense convolution. The model architecture is shown in
Figure 3. This model takes the compressed format sparse
images as input, which contains a list of pixel indices of
nonempty pixels and a list of corresponding pixel values.
When building the Sparse-SSD model, we replace the first
ten convolution layers (from 1 1 to 4 3) of the VGG back-
bone network with sparse convolution layers using the deep
learning model library introduced in [11]. Then the out-
put of the convolution 4 3 layer will be passed through a
SparseToDense layer to convert the feature map to the dense
format. After that, the model architecture is the same as the
original VGG16-SSD model design [21].
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Figure 4: Pascal Dataset foreground image processing and
detection examples. (c) Foreground images are generated
by applying (b) segmentation maps to (a) Original images.
(c) images will be transformed to the compressed format
and passed to the Sparse-SSD model 3. (d) shows the de-
tection output of inputs (c). The Sparse-SSD model has a
similar detection performance to the Dense counterpart.

4. Experiment and Results

4.1. Sparse model inference speedup

The first experiment is to reveal how sparse convolution-
based object detection models can help decrease the infer-
ence time.

4.1.1 Data pre-processing

The PASCAL [7] dataset is selected to conduct this exper-
iment. We use the PASCAL 2007 and 2012 trainval set
as our model training data and the 2007 test set as testing
data. Such data split is consistent with the original SSD pa-
per [21]. The model is trained with original full images.
When preparing the foreground objects sparse images, we
use the provided segmentation maps from the dataset as
masks and apply them to the original images. The gener-
ated foreground images are used as inputs to the model for
inference. Figure 4 shows a few processing and detection
examples.

4.1.2 Model training and testing setup

We train a dense version SSD300 model on the training set
described in section 4.1.1. The model is trained on a sin-
gle GPU, with a starter learning rate 1e-3. The model is
trained for 120000 iterations with the learning rate decaying
by 90% at the iterations 8000 and 10000. The momentum is
set to 0.9 and weight decay set to 5e-4. The trained model
testing on dense testing set mAP is 0.759. Such result is
correspond with the original paper [21].

Mean Average Precision
Data Split Dense Model Sparse Model

All Foregrounds 0.747 0.739
0% 50% Sparsity 0.855 0.829

50% 60% Sparsity 0.770 0.858
60% 70% Sparsity 0.837 0.846
70% 80% Sparsity 0.821 0.792
80% 90% Sparsity 0.677 0.666
90% 100% Sparsity 0.65 0.79

Table 1: The Dense-SSD and Sparse-SSD detection accu-
racy on different subsets of the foreground PASCAL test
set.

4.1.3 Load pre-trained weights to Sparse-SSD model

The Sparse-SSD model parameters we used for experiments
are loaded from the pre-trained Dense-SSD model. How-
ever, the Sparse-SSD model built based on the sparse con-
volution library [11] has a different saved model parameter
shape. We will have to convert the dense model parame-
ters from each layer to the proper shape that fits the Sparse-
SSD model. We first get each layer’s state dict from the
Dense-SSD. Suppose a layer is a convolution layer, and the
corresponding layer in the Sparse-SSD is a sparse convo-
lution layer. In that case, we reshape such state dict from
the shape [output, input, kernelwidth, kernelheight] to
the shape [kernelwidth∗kernelheight, 1, input, output].
For example, a convolution layer has the weight tensor
shaped [128, 64, 3, 3]. After conversion, its shape will be-
come [9, 1, 64, 128]. Then we apply the converted convolu-
tion weight matrix to the sparse convolution. If the current
layer is not a convolution layer, such as bias or pooling,
we apply the same state dict from a Dense-SSD layer to a
Sparse-SSD layer.

4.1.4 Inference performance comparison

At first, we verify if the Sparse-SSD model can successfully
detect objects from sparse inputs and how it performs com-
pared with the Dense-SSD model. We prepared foreground
test images based on the PACAL2007 test set and separated
them into groups by different sparsity ratios. An image’s
sparsity ratio is computed as:

sparsity = number of empty pixels/image size (9)

From the table1, we can see that the Sparse-SSD model per-
formed as well as the Dense-SSD model in all sparse image
groups. Such results verify the efficacy of using Sparse-
SSD to detect objects from sparse images.

In the next experiment, we want to know how the Sparse-
SSD model can speed up the object detection inference
process. Figure 5a and Figure 5b show our findings. We
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Figure 5: Inference speed comparison between Sparse-SSD
and Dense-SSD when input images have different sparsity
ratios.

compute the single image average inference time and FPS
(frames per second) on Dense-SSD and Sparse-SSD. The
testing set is the same as the ones used in Table 1. From
the experimental results, we can find that the inference
speed of the Dense-SSD model is stable with various sparse
ratio inputs. However, the Sparse-SSD inference speed
largely depends on how sparse the input images are. The
Sparse-SSD model we build will achieve significant infer-
ence speedup when the input images are more than 80%
sparsity. When the inputs have more than 90% sparsity ra-
tio, we can achieve nearly 2x speedup compared to Dense-
SSD inferences.

4.2. Image eccentricity analysis speedup

From section 4.1.4, we verified that when foreground im-
ages are generated with accurate segmentation maps, the
Sparse-SSD model can achieve equivalent detection perfor-

mance compared to the Dense-SSD model. And when the
input images are sparse enough, the Sparse-SSD model can
achieve significant inference speedup. Therefore, in this ex-
periment, we will test how the eccentricity algorithm-based
segmentation maps can help to extract moving foreground
objects and how the proposed processing pipeline can be
used in real-world scenarios.

4.2.1 Dataset and data pre-processing

We used a real-world surveillance dataset collected by the
Ford research group to test the performance of the proposed
method. This dataset is collected from stationary cameras
at different street intersections. It contains a total of 1081
recordings which were collected at different locations, un-
der different weather and lighting conditions, and across
a half-year period. Two data examples are shown in Fig-
ure 2(a). Each record has around 2-3 minutes consecutive
frames with a 10FPS collection rate. We divide the total
recordings into an 80/20 split for the training set and test-
ing set, resulting in 1,380,320 images in the training set and
345,132 images in the testing set. Since the images in a
recording are mostly identical, to reduce the training time,
we shuffled the images in the training set and randomly se-
lected 10% of the images to train the model. Furthermore,
since the eccentricity analysis will filter out any stable ob-
jects, we need to modify the annotations to only retain mov-
ing objects. There were 18 different object categories la-
beled, but we only selected 6 of them during training and
testing. The categories retained were Bus, Car, Pedestrian,
Pedestrian With Object, Truck, and Construction Vehicle.
We also marked very small objects and partially occluded
objects as difficult to detect objects.

4.2.2 Experiment setups and results

We use the same VGG16-SSD300 architecture as used in
section 4.1. The model is trained on Google Cloud com-
pute machine with 2 NVIDIA Tesla T4 GPUs. The training
hyper-parameters are set the same as in section 4.1 except
for training it with more iterations. The trained model test-
ing mAP is 0.215. The average precision for each categories
are Bus: 0.276, Car: 0.296, Construction Vehicle: 0.180,
Pedestrian: 0.137, Pedestrian With Object: 0.125, Truck:
0.276. Such detection results are satisfied considering the
detection difficulty of this dataset.

We select a single recording to test the Sparse-SSD in-
ference speedup with the help of eccentricity analysis gen-
erated segmentation maps. This recording contains a total
number of 2664 images. The distribution of foreground im-
age sparsities are shown in Figure 6. Such images are gener-
ated with eccentricity threshold α = 0.1 and E sen = 0.3.
We can observe from Figure 6 that almost all generated
foreground images have a sparsity ratio of more than 90%.
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Figure 6: Foreground images sparsity ratio count in a 4.5
minutes traffic camera captured video segment.

Dense-SSD Sparse-SSD
Total Inf time (s) 309.227± 7.220 190.082± 1.417

Single Inf time (s) 0.115± 0.022 0.072± 0.016
FPS 8.61 14.01

Table 2: The inference time comparison between Dense-
SSD and Sparse-SSD on real-world surveillance dataset.

Recall from the results we got from section 4.1.4, within
this sparsity ratio, the Sparse-SSD model can significantly
improve the inference speed. Table 2 illustrate such findings
in detail.

4.3. Eccentricity thresholds ablation study

This experiment studies how different eccentricity
thresholds affect the foreground images’ sparsity and infer-
ence speed. Two eccentricity thresholds can be tuned to
generate different sparsity-level foreground images. One is
a constant forgetting factor, α ∈ [0, 1]. This parameter is
the reciprocal of the moving k (how many previous frames
to consider to compute the current frame eccentricity map).
The smaller the α, the more frames to consider, the more ec-
centricity computations, and the more detailed foreground
images. The other one is eccentricity sensitivity threshold,
Esen ∈ [0, 1]. The smaller the Esen, the less sensitive the
current eccentricity map is to eccentricity value changes,
and the sparser the foreground images are. A few exam-
ples of different thresholds generated segmentation maps
are shown in Figure 7.

We selected a combination of different α and Esen val-
ues to test the average segmentation maps’ sparsity and cor-
responding inference speed. The results are shown in Fig-
ures 8 and 9. These two figures show that inference time is
inversely proportional to the input foreground image spar-
sity ratio. They also demonstrate how various eccentricity
thresholds will affect image sparsity and inference speed.

Figure 7: Examples of various Eccentricity thresholds gen-
erated segmentation maps.
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Figure 8: Eccentricity thresholds segmentation maps spar-
sity comparison with different combination of α and Esen.
The red horizontal line indicates the image sparsity from
which we can see significant inference speedup using the
Sparse-SSD model.

The red horizontal line in Figure 9 indicates the average in-
ference time of the Dense-SSD model. Below this line, we
find many combinations of eccentricity thresholds that can
make Sparse-SSD achieve an inference speedup.

5. Discussion and future work

From Table 1 we find that the sparse-convolution will
not cause detection performance degradation when the fore-
ground objects are perfectly segmented. However, eccen-
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Figure 9: Sparse image inference time comparison with
different combination of α and Esen. The red horizontal
line indicates the average inference time of the Dense-SSD
model.

tricity algorithm generated segmentation maps will cause
some foreground objects to be partially visible. This phe-
nomenon will cause the detection accuracy to drop since
the inference object features are distorted compared to the
training samples. To solve this problem, we can consider
adding another post-processing method to the segmentation
maps to improve their quality. Meanwhile, we need to train
the object detection model with sparse and noisy training
samples instead of original images captured from cameras.

In future work, we will replace more dense convolution
layers with sparse counterparts when building the object de-
tection model. And create multiple sparse counterparts of
start-of-the-art object detection models. The sparse convo-
lution library we chose for experiments has not yet provided
enough support to all kinds of convolution layers. They are
also not built as effectively as they should compare with the
latest features of deep learning libraries such as PyTorch,
TensorFlow, etc. If we use a more efficient sparse con-
volution implementation, our detection pipeline could save
significant overhead computation time and see more wall-
clock time speedups.

6. Conclusion

This paper proposes an efficient moving object detec-
tion pipeline that utilizes the image eccentricity algorithm
to generate moving object segmentation maps and leverage
sparse convolutions to build object detection models to re-
duce inference-time computations when processing sparse
images. We first studied the relationship between sparse-
convolution-based object detection model inference speed
and the sparsity ratio of sparse input images. Then we con-
ducted experiments on a real-world traffic camera dataset to
verify the efficacy of our detection pipeline. Among the

eccentricity analysis algorithm, we studied how different
eccentricity thresholds affect the quality of the generated
segmentation maps, the object detection inference speed,
and corresponding detection accuracy. The experimental re-
sults show that when the input images have a sparsity ratio
of more than 80%, our prototype sparse-convolution object
detection model can achieve a 1.5x - 2x inference speedup
with negligible detection accuracy drop. Our experiments
also find that in real-world static traffic cameras, the similar-
ity among consecutive frames is more than 90%, which ver-
ifies that a huge amount of computations are redundant and
can be safely removed from the object detection pipeline to
speed it up. These results demonstrate the promising future
of using traffic monitoring cameras as auxiliary sensors for
autonomous vehicle systems.
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