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Abstract: Machine learning tasks involving biomedical signals frequently grapple with issues such
as limited data availability, imbalanced datasets, labeling complexities, and the interference of mea-
surement noise. These challenges often hinder the optimal training of machine learning algorithms.
Addressing these concerns, we introduce BioDiffusion, a diffusion-based probabilistic model opti-
mized for the synthesis of multivariate biomedical signals. BioDiffusion demonstrates excellence
in producing high-fidelity, non-stationary, multivariate signals for a range of tasks including un-
conditional, label-conditional, and signal-conditional generation. Leveraging these synthesized
signals offers a notable solution to the aforementioned challenges. Our research encompasses both
qualitative and quantitative assessments of the synthesized data quality, underscoring its capacity to
bolster accuracy in machine learning tasks tied to biomedical signals. Furthermore, when juxtaposed
with current leading time-series generative models, empirical evidence suggests that BioDiffusion
outperforms them in biomedical signal generation quality.

Keywords: biomedical signal synthesis; generative AI; diffusion probabilistic model; deep learning;
machine learning

1. Introduction

Biomedical signal processing is significant across many common computing applica-
tions. The need for accurate, dependable data has been a driving force for innovations that
have lead to improved assistive technologies and deeper insights into diagnostics, patient
monitoring, and therapeutics. Electrocardiograms (ECGs), electroencephalograms (EEGs),
and data from human activity sensors represent a treasure trove of information. Their anal-
ysis has ushered in transformative breakthroughs, but not without associated challenges.

One major hurdle faced in biomedical signal processing is the intricacies that arise due
to limited dataset size, imbalances in datasets, artificial noise, and anomalies. These factors
can critically compromise the performance of machine learning models, necessitating the
development of innovative solutions. Historically, approaches like data augmentation, data
resampling, and statistical analyses have been employed to mitigate these challenges. Yet,
the inherently non-stationary and multivariate characteristics of biomedical signals add
another layer of complexity. Encouragingly, recent research trends highlight an uptick in
leveraging deep learning for enhancing the preprocessing of biomedical signals [1–3].

Deep learning, though powerful, is often constrained by the nuances of biomedical
datasets. Recognizing these challenges, our study introduces the BioDiffusion model, a
diffusion-based probabilistic approach tailored for biomedical signal generation. Designed
to adeptly handle a plethora of generation tasks, BioDiffusion serves as a holistic solution to
biomedical signal synthesis challenges. From expanding training dataset sizes to anomaly
removal and super-resolution, our model’s adaptability offers a promising avenue for more
efficient and precise analysis techniques in clinical applications.
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Inspired by the Stable Diffusion model’s ability in image synthesis [4], we adapt the
BioDiffusion model to work similarly with the unique traits of biomedical signals. To evaluate
our model, we engage in a multi-faceted assessment, employing visual similarity comparisons,
dimensionality reduction technologies like UMAP [5], and similarity scores such as wavelet
coherence. Additionally, our research delves into the potential of synthesized signals for training
new models, juxtaposing synthetic signals against real signals.

Through rigorous benchmarking against contemporary time-series synthesis models,
our findings demonstrate the BioDiffusion model’s superior performance in generating
high-fidelity biomedical signals. The implications of our proposed model are profound; it
presents a significant stride toward enhancing diagnostics, improving patient monitoring,
and advancing biomedical research.
Main Contributions:

• Presentation of the BioDiffusion model, our innovative diffusion-based probabilistic
approach tailored to address the complexities inherent in biomedical signal generation.

• Demonstration of our model’s versatility in handling diverse generation tasks, pre-
senting a unified solution to biomedical signal synthesis.

• Comprehensive evaluation of the BioDiffusion model through both qualitative and
quantitative metrics, underscoring its effectiveness and precision.

• Comparative analysis highlighting the superior capability of BioDiffusion in biomedi-
cal signal synthesis relative to existing state-of-the-art models.

The remainder of this paper is structured as follows: Section 2 delves into pertinent works
related to signal synthesis. Section 3 provides an overview of Diffusion Probabilistic Models.
Section 4 details our methodologies, including the development of BioDiffusion models and
the evaluation metrics employed. Section 5 describes our experimental setup, the datasets
used, and conducts a comparative analysis highlighting BioDiffusion’s superior performance.
Section 6 addresses the significance, advantages, limitations, and future directions of our work.
Finally, Section 7 concludes the paper. The source code can be found via the following link:
https://github.com/imics-lab/biodiffusion (accessed on 5 March 2024).

2. Related Work

This section catalogs the pertinent literature in the fields of generative models for signal
synthesis, particularly those using diffusion. Our objective is to offer a comprehensive
perspective on their evolution, strengths, and constraints, especially in the context of
time-series signal synthesis.

2.1. Generative Models in Signal Synthesis

Generative models aim to discern the inherent structure of data, enabling the genera-
tion of new samples mirroring the original data. Several paradigmatic approaches within
generative models for time-series synthesis include:

• Generative Adversarial Networks (GANs): Composed of two adversarial networks—
the generator and the discriminator—GANs aim for the generator to improve its
synthetic data samples to deceive the discriminator. Their capabilities extend to var-
ious data types including time-series signals. Notable implementations include the
transformer-based GAN by Xiaomin L. et al. [6] which sets a benchmark for syn-
thetic time-series signal fidelity, TimeGAN by Jinsung Y. et al. [7] tailoring GANs
for realistic time-series data, and the Recurrent Conditional GAN (RCGAN) by
Cristóbal E. et al. [8] for time-series generation. Despite their proficiency in crafting
realistic samples, GANs can exhibit training instability and suffer from mode collapse.

• Variational Autoencoders (VAEs): VAEs, through their encoder–decoder architecture,
learn a probabilistic representation of data. Works such as that by Vincent F. et al. [9]
exploit VAEs for imputing missing multivariate time-series values, while Fu et al. [10]
leverage VAEs for augmenting time-series in human activity recognition. VAEs offer
more consistent training than GANs but may produce less diverse samples, contingent
on latent space distribution choices.

https://github.com/imics-lab/biodiffusion
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• Autoregressive Models: These models sequentially generate samples, with each new
element contingent on prior elements. WaveNet by Aaron van den Oord et al. [11]
exemplifies this, producing raw audio waveforms using dilated causal convolutions
for long-range temporal relationship capture. Although proficient in modeling tempo-
ral dynamics, their sequential nature can be computationally slow and may falter in
grasping extended dependencies.

• Other generative paradigms like Normalizing Flows, Restricted Boltzmann Machines,
and Non-negative Matrix Factorization have been explored. However, their efficacy
diminishes with multidimensional non-stationary time-series signals.

2.2. Diffusion Models for Time-Series Synthesis

Diffusion models harness latent variables to understand a dataset by modeling data
point propagation through a latent space. They function by adding Gaussian noise to
training data (forward diffusion) and subsequently reversing this process (reverse diffusion)
to retrieve the data [12]. Their utility has been demonstrated in diverse arenas like image
synthesis and molecule design [13].

Several prominent studies in diffusion models include:

• Yang L. et al.’s comprehensive discourse on deep learning-based diffusion models and
their applicability to time-series tasks [12].

• Garnier O. et al. augmenting diffusion models for infinite-dimensional spaces, target-
ing audio signals and time series [14].

• Kong et al.’s exploration into audio synthesis through diffusion models [15] and
Tashiro et al.’s venture into time-series imputation [16].

• Alcaraz et al.’s pursuit of time-series forecasting using diffusion models [17].

While these studies accentuate the capabilities of generative and diffusion models
for time-series synthesis, challenges remain in terms of scalability, stability, and fidelity,
especially for intricate biomedical signals. Our proposed BioDiffusion model stands as an
endeavor to surmount these challenges, deriving inspiration from prior works while inno-
vating for enhanced versatility and efficacy in biomedical signal synthesis. The forthcoming
section elucidates the methodology underlying BioDiffusion, illustrating its potential to
revolutionize biomedical signal synthesis.

3. Diffusion Probabilistic Models

This section provides an overview of the diffusion model theoretical foundations,
detailing key components and processes. It explains the forward and backward processes,
outlines the objectives of training a diffusion model, and describes how to incorporate
conditions into the model training process.

Diffusion models [18,19] consist of a forward process that iteratively degrades data
x0 ∼ q(x0) by adding Gaussian noise over T iterations:

q(xt | xt−1) = N
(

xt;
√

1 − βtxt−1, βtI
)

, (1)

q(x1:T | x0) =
T

∏
t=1

q(xt | xt−1). (2)

The reverse process incrementally restores the noise-corrupted data:

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)), (3)

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1 | xt). (4)

The forward process hyperparameters βt are set such that xT approximates a standard
normal distribution. The reverse process optimizes the evidence lower bound (ELBO) [20],
with the loss given by
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Lθ(x0) = Eq

[
LT(x0) + ∑

t>1
DKL(q(xt−1 | xt, x0)

∥pθ(xt−1 | xt))− log pθ(x0 | x1)],

(5)

where LT(x0) = DKL(q(xT | x0)∥p(xT)).
Following prior work [18,19], the reverse process parameters are

µθ(xt, t) =
1√
αt

(
xt −

βt√
1 − ᾱt

ϵθ(xt, t)
)

, (6)

Σii
θ (xt, t) = exp

(
log β̃t +

(
log βt − log β̃t

)
vi

θ(xt, t)
)

, (7)

with αt = 1 − βt, ᾱt = ∏t
s=1 αs, and β̃t =

1−ᾱt−1
1−ᾱt

βt.
Improved sample quality is achieved by optimizing modified losses, resembling

denoising score matching over multiple noise levels [19,21].
A critical aspect of diffusion models is the extension to conditional data generation,

wherein both the data, x0, and a set of conditions, c, are incorporated. The conditions can be
any additional information or constraints provided externally, influencing the generative
process. By assimilating c, the reverse process becomes

pθ(xt−1 | xt, c) = N (xt−1; µθ(xt, t, c), Σθ(xt, t, c)) (8)

Intuitively, c offers an avenue to guide the generative model, providing a degree
of control over the outputs. This inclusion makes diffusion models versatile, catering to
scenarios like content-specific image generation or style-conditioned audio synthesis.

For the diffusion model architecture, we employ a feed-forward neural network
(Section 4.4). It has distinct input layers for data, conditions c, and the time step. In line
with the approach in [12], our model leverages multi-scale structures through convolutional
layers, enabling the extraction of hierarchical information. The training strategy employs
early stopping, hinging on validation set ELBO to prevent overfitting. Table 1 explains the
notations used in the upper equations.

Table 1. Explanations of notation in diffusion model equations.

Symbol Description

x0 Original data point
q Forward diffusion process transaction kernel
T Total number of iterations in the forward process
t Specific iteration step in the forward and reverse processes
xt Data point at iteration t

N (x; µ, Σ) The general notation for the Gaussian distribution of x with the mean µ and the covariance Σ
βt Variance schedule parameter at iteration t
I Identity matrix
p Reverse diffusion process transaction kernel

µ(xt, t) Mean of the reverse process distribution at time t
Σ(xt, t) Covariance of the reverse process distribution at time t
Lθ(x0) Loss function for the diffusion model parameterized by θ

Eq Expectation of the reverse process q
DKL Kullback–Leibler divergence

µθ(xt, t) Mean of the reverse process at time t, parameterized by θ

Σii
θ (xt, t) Diagonal covariance matrix of the reverse process at time t, parameterized by θ

αt Variance accumulation parameter at iteration t
ᾱt Cumulative product of 1 − βt from time 1 to t
βt Adjusted variance schedule parameter at iteration t
c Set of conditions or additional information provided externally

pθ(xt−1|xt, c) Reverse diffusion process of xt−1 given xt and conditions c, parameterized by θ
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4. Methodology

In this section, we elaborate on the training and inference methodologies of the
BioDiffusion model as employed in our study. Additionally, we describe the architecture of
the diffusion model and the metrics implemented to validate the fidelity of synthetic data
generated by the diffusion model.

4.1. Unconditional Diffusion Models

The unconditional diffusion model employs a Markov chain-based generation process,
converting data iteratively between its original form and noise. This intricate transforma-
tion is portrayed in Figure 1.

Forward Process: Starting with the original signal, it is incrementally perturbed
with Gaussian noise over a series of diffusion steps, spanning [0, T]. By the end of step
T, the resulting signal retains the dimensions of the original but its data values adopt a
normal distribution.

Backward Process: Initiating this process, signals derived from Gaussian noise serve
as inputs at diffusion step T. As the model retraces the steps back to 0, it methodically
diminishes the noise. Each step t consumes the previous step’s output (t + 1) as its input.
A crucial aspect during this phase is the evaluation of the Kullback-Leibler divergence
(KL divergence) [22] between signals at the corresponding steps in both the forward and
backward processes. The objective is to minimize this divergence. When the backward
process culminates at step 0, the signals generated should closely mirror the original ones.

Signal Generation: Post training, the model is equipped to accept random Gaussian
noise. By invoking the backward process, it can craft synthetic signals. This procedure is
dubbed "unconditional" due to the absence of stipulations on the signal generation from
the noise. Such a design empowers the diffusion model to assimilate the dataset’s entire
distribution, endowing it with the capability to potentially produce any signal within the
dataset’s feature space.

Figure 1. Unconditional Diffusion process.

4.2. Label-Conditional Diffusion Models

Label-conditional diffusion models extend the framework of their unconditional
counterparts by integrating scalar labels with each input datum. This inclusion of labels
not only shapes the diffusion process but also allows for more targeted synthesis of signals,
as elaborated below.

Forward Process with Labels: In this process, as depicted in Figure 2, original signals
are systematically associated with their corresponding labels. Within the U-Net architecture
(detailed in Section 4.4), each residual block is enriched with both the scalar label and the
ongoing diffusion timestep, leveraging an embedding technique.

Backward Process with Labels: Here, the diffusion model ingests noise, drawn from
a normal distribution, in tandem with a designated label. As the model progresses through
the diffusion steps, there is a persistent focus on quantifying and minimizing the KL
divergence between the signals emerging from the forward and backward processes.
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Synthetic Signal Generation: The culmination of this methodology is a trained
diffusion model possessing dual capabilities. It is not only attuned to the holistic data
distribution of the dataset, but is also adept at crafting synthetic signals pertinent to a
delineated class.

Figure 2. Label Conditional Diffusion process.

4.3. Signal-Conditional Diffusion Models

Signal-conditional diffusion models, visualized in Figure 3, introduce a nuanced
methodology where signal conditions play a pivotal role exclusively during the backward
diffusion phase, differentiating it from label-conditional approaches.

Forward Process: The forward diffusion process in the case of signal conditioning is
the same as the original, unconditional diffusion.

Backward Diffusion with Signal Conditioning: For the backward phase, a perturbed
signal forms the conditional input, which could stem from an original signal sample tainted
by noise, artifacts, or even be a downsampled version mirroring the original signal’s
dimensions. This conditional signal is amalgamated with noise drawn from a normal
distribution. Following this combination, a convolutional layer refines it to align with the
original signal’s structure. The remainder of the backward process strives to cleanse the
noise and produce a clean signal resembling the original signal it was seeded with.

Figure 3. Signal Conditional Diffusion process.

4.4. U-Net Architecture

The U-Net model depicted in Figure 4 is an encoder–decoder-type convolutional
neural network architecture specifically designed for effectiveness in signal processing
tasks. We modify the model depicted in work [23] to fit for time-series signals instead
of N x N images. It features a symmetric structure with two primary pathways: the
contraction path (encoder) and the expansion path (decoder). In Figure 4, the Down Sample
block shows the encoder, and the Up Sample block shows the decoder.



Bioengineering 2024, 11, 299 7 of 20

The encoder consists of convolutional and max pooling layers that aim to capture the
context within the input signal. This part of the network compresses the input, reducing its
dimensionality to allow for the model to learn intrinsic patterns and features of the input
data. The architecture comprises several blocks, each containing a convolutional operation
followed by a residual block, which aids in learning an identity function and prevents
degradation of network performance with increasing depth. Posterior to each residual
block is an attention layer, which directs the model’s focus to the most salient features
for reconstruction.
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size layers

Figure 4. Description of the U-Net architecture for signals with skip connections.

The decoder path expands the feature representation to precisely localize and re-
construct the signal. In U-Net, the up-sampling layers within the decoder increment the
resolution of the output from the bottleneck. Subsequent to each up-sampling is a con-
volutional operation that constructs high-resolution features. A defining aspect of the
U-Net is its skip connections that concatenate feature maps from the encoder to the decoder,
integrating high-level and low-level features. This fusion allows for accurate localization
by combining the general features from the contraction path with the detailed features in
the expansion path.

In the diffusion model’s training and inference process, the U-Net underpins the
architecture and is adapted to generate time-series signals. Signals at a given time step xt
are concatenated with their corresponding time step embeddings and other conditional
embeddings, such as low-quality signals or class labels, to provide the model with context
for signal generation. These embeddings serve as conditions that direct the diffusion
process towards generating the desired signal types.

During training, the U-Net learns to reverse the diffusion process by generating signals
at time t − 1 from those at time t, effectively learning to denoise signals. This iterative
process is repeated from the final time step T to t = 0, where the model generates a clean
signal from one that has been fully diffused. This reverse iteration mirrors the forward
diffusion process, enabling the model to reconstruct the original signal from its noisy
counterpart and complete the U-Net’s training within the diffusion model framework.

4.5. Synthetic Sisnals Validation Metrics

In this section, we detail the metrics employed to validate the fidelity of the synthetic
signals generated by our BioDiffusion model.

4.5.1. Wavelet Coherence Score

Wavelet coherence is a statistical tool designed to assess whether two time series
exhibit common oscillations at specific frequencies during a given time interval. It is
calculated by taking the squared magnitude of the cross-wavelet spectrum and dividing
it by the product of the power spectra of the individual signals. The resulting coherence
values range from 0 to 1, with 1 indicating perfect coherence, signifying that the two signals
are in complete synchrony at certain frequencies. This tool is particularly adept at analyzing
non-stationary signals, where spectral content evolves over time. In our previous study [6],
we modify this metric to measure the similarity between two sets of signals. We use the
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same method in this paper to compute the similarity between a set of real signals and a set
of synthetic signals from the same category.

4.5.2. Discriminative Score

Discriminative score is proposed in [7] as a way to quantitatively measure the similarity
between sequences from the original and generated datasets. To accomplish this, the
authors train a post hoc time-series classification model by optimizing a 2-layer LSTM to
distinguish between the two datasets. In this method, each original sequence is labeled as
real, while each generated sequence is labeled as not real. An off-the-shelf RNN classifier
is trained to distinguish between the two classes as a standard supervised task. The
classification error on the held-out test set is reported, which provides a quantitative
assessment of the similarity between the two datasets.

4.5.3. Umap Visualizations for Qualitative Signal Similarity Comparison

UMAP’s [5] approach to dimensionality reduction is rooted in manifold learning and
topological data analysis. The algorithm begins by constructing a high-dimensional graph
of the data, where each point is connected to its nearest neighbors in a way that reflects
the local structure of the manifold. Then, UMAP optimizes the layout of this graph in
lower-dimensional space using a force-directed layout approach, resulting in a projection
that emphasizes the most important relationships and structures within the data.

We use the following steps to generate UMAP visualization plots and qualitatively
compare the similarity between two sets of signals:

1. Preparation of Signal Data: Flattening of both real set and synthetic set of signals
into feature vectors.

2. Dimensionality Reduction: Application of UMAP to reduce the high-dimensional
feature space of each signal set to a two-dimensional (2D) embedding.

3. Visualization: Plotting of the UMAP embeddings of both signal sets in the same
coordinate system. Then, observation of the overlap and distribution of the two
sets in the reduced space. Clusters of points from different sets that co-locate in the
embedding space indicate a higher similarity.

4.5.4. F1-Score for Imbalanced Dataset Classification Performance Evaluation

We use the F1-score to check the imbalanced dataset classification performance. The
choice to utilize the F1-score rather than accuracy as the primary metric for comparing
classification performance on imbalanced datasets is intentional and is grounded in the
limitations of accuracy as a measure in such contexts. The F1-score is a statistical measure
used to evaluate the accuracy of a binary classification model. It considers both the precision
(p) and the recall (r) of the test to compute the score:

p =
TP

TP + FP

r =
TP

TP + FN
where TP is the number of true positive results, FP is the number of false positive results,
and FN is the number of false negative results.

The F1 score is the harmonic mean of precision and recall, which produces a single
score that balances both by assigning equal weight to false positives and false negatives:

F1 = 2 × p × r
p + r

F1 =
2TP

2TP + FP + FN
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By calculating and comparing the F1 scores for each class, we can gain a deeper
understanding of the model’s performance across the entire range of classes, especially
those that are underrepresented. This ensures a more robust and fair assessment of the
model’s true predictive power.

5. Experimental Results

This section presents the various methodologies employed by our BioDiffusion models
in the synthesis of biomedical signals. We partition our approach into three categories:
unconditional, label-conditional, and signal-conditional diffusion processes. Our qual-
itative and quantitative evaluations underscore the efficacy of the generated synthetic
data. We also benchmark our findings against state-of-the-art methods, underscoring the
advantages of our model and pinpointing areas that need to be further developed. We aim
to demonstrate that diffusion models are promising candidates for crafting high-caliber
biomedical signals, potentially transforming myriad biomedical arenas.

5.1. Datasets

Our model’s performance is evaluated using three datasets: the Simulated dataset,
the UniMiB human activity recognition (HAR) dataset [24], and the MIT-BIH Arrhythmia
Database [25,26].

• The Simulated dataset is a synthetic dataset with different signal patterns. These
synthetic patterns are created using a combination of bell, funnel, and cylinder shapes.
The dataset is generated for five classes, each with different characteristics, which are
determined by their parameters. The parameters can be average amplitude, variance
amplitude, variance pattern, etc. Each signal has 512 timesteps and one channel
dimension. We can choose them to be any length and any dimension. Each class
of signals in this dataset is evenly distributed. We use this dataset to test whether
the diffusion model can learn the signal patterns properly before learning on more
complicated, imbalanced real-world datasets.

• The UniMiB Dataset [24] is gathered using smartwatches; this dataset contains nine hu-
man activity classes with each signal capturing 151 timesteps across three acceleration
dimensions. Adapted to our U-Net architecture, signals are resized to 128 timesteps.
The training set contains 6055 samples, with class distributions that peak at 1572 and
trough at 119 samples per class. The test set has 1524 samples, ranging from 32 to
413 samples per class, highlighting the dataset’s imbalance.

• The MIT-BIH Arrhythmia Dataset features 48 snippets of ambulatory ECG recordings
spanning half an hour each from 47 subjects across five heart conditions [25,26].
The samples, originally recorded at 125 Hz, are adjusted to 144 in length for U-Net
compatibility. The training set has 87,554 samples, with the majority class having
72,471 samples and the smallest class having 641. The test set includes 21,892 samples,
ranging from 162 to 18118 samples per class, again underlining the dataset’s imbalance.

For an in-depth exploration of the datasets, refer to the Appendix A.

5.2. Visualization of Raw Signals

To assess the fidelity of synthetic signals visually, we present a comparative plot
between several real and synthetic signals. For continuity, discrete signal values at each
sampling interval are interconnected. Figure 5 illustrates a set of both real and synthetic sig-
nals derived from three distinct datasets. An immediate examination reveals the capability
of our diffusion model in crafting synthetic signals that closely mirror the real signals.

5.3. Projection through Dimension Reduction

For each class in every dataset, an unconditional diffusion model is trained. The
UMAP projection of synthetic signals in relation to the original ones for select data classes
is depicted in Figure 6. Extended visualizations are accessible in the provided source code
repository. When scrutinized, it becomes evident that even for signals of considerable
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length (e.g., 512 timesteps), our diffusion model adeptly recognizes and replicates the
intricate signal patterns. Moreover, the synthetic signals span the entire feature spectrum
inhabited by the genuine signals.
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Figure 5. Raw signal comparison. Left column shows real raw signals. Right column shows synthetic
raw signals generated by the BioDiffusion model.
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Figure 6. The real and synthetic data UMAP projection on three classes of three datasets. Each red
dot represents one original signal after dimension reduction, whereas each blue dot represents one
synthetic signal. From the plots, we can see that the sets of synthetic signals have similar distributions
when compared to the sets of real signals in the 2D UMAP projection graphs.

5.4. Similarity Scores

Using label conditions in the BioDiffusion model not only emulates the synthetic
signal generation prowess of the unconditional model but also provides a guided synthesis
tailored for specific classes. While the raw signals and UMAP projections closely resemble
the ones in Figures 5 and 6, the main advantage lies in the training efficiency. A singu-
lar label-conditional diffusion model suffices for a multi-class dataset, in contrast to the
multiple models required by the unconditional counterpart for each class. Intriguingly,
when it comes to sparsely represented data classes, the label-conditional model potentially
outperforms the unconditional one. This edge is attributed to its capacity to generalize
patterns across the dataset and utilize this knowledge for class-specific synthesis.

To underscore the fidelity of signals generated by our diffusion models, we calculate
similarity scores across, wavelet coherence score and discriminative score, diverse signal
classes. The results are cataloged in Table 2. Our BioDiffusion model’s outputs closely align
with real signals, surpassing the fidelity of other similar techniques.
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Baseline Techniques:

• C-RNN-GAN: A pioneering GAN-based solution for sequential data synthesis using
two-layer LSTM for both generator and discriminator [27].

• RCWGAN: An enhanced version of C-RNN-GAN with conditional data input for
controlled generation [8].

• TimeGAN: A groundbreaking GAN framework that harnesses a latent space for
time-series synthesis, augmented with both supervised and unsupervised losses [7].

• SigCWGAN: Enhances the GAN process with conditional data and the Wasserstein
loss for stable training [28].

• TTS-GAN: A novel transformer-centric GAN model focusing on high-fidelity single-
class time-series generation [6].

• TTS-CGAN: An iterative version of TTS-GAN introducing a label-conditional trans-
former GAN, facilitating multi-class synthesis through a singular model [29].

Table 2. Comparison scores of real and synthetic data generated by different time-series generation
models. The BioDiffusion model consistently achieves a higher Wavelet Coherence score and a lower
Discriminative score in most instances, indicating that the synthetic signals it generates more closely
resemble real signals compared to those produced by other baseline models.

Wavelet Coherence score (the higher the better)

Models SittingDown Jumping Non-Ectopic FusionBeats

C-RNN-GAN 41.10 40.29 30.44 25.51
RCWGAN 39.90 38.85 29.72 22.97
TimeGAN 40.45 39.42 31.55 21.98

SigCWGAN 41.60 41.02 31.36 22.87
TTS-GAN 43.92 47.64 45.30 55.64

TTS-CGAN 45.07 47.64 47.79 58.34
BioDiffusion 78.17 90.30 89.30 91.81

Discriminative score (the lower the better)

Models SittingDown Jumping Non-Ectopic FusionBeats
C-RNN-GAN 0.308 0.304 0.189 0.493

RCWGAN 0.294 0.311 0.483 0.499
TimeGAN 0.261 0.217 0.464 0.312

SigCWGAN 0.310 0.308 0.413 0.491
TTS-GAN 0.294 0.167 0.107 0.380

TTS-CGAN 0.191 0.057 0.162 0.261
BioDiffusion 0.126 0.121 0.159 0.231

5.5. Utility of Synthetic Signals in Addressing Class Imbalance

To explore the potential of synthetic signals in rectifying class imbalance issues, we
constructed a classification experiment centered around the MIT-BIH dataset. This dataset,
while demonstrating commendable overall accuracy, manifests stark class imbalances, often
disadvantaging minority classes in terms of precision and recall.

Experimental Setup: Our initial step involved training a 1D-CNN classification model
on the MIT-BIH Arrhythmia Dataset, a benchmark dataset in the field of cardiac signal
analysis. During this phase, we observed performance discrepancies across different
classes, particularly for minority classes, which exhibited lower precision and recall metrics.
This was largely attributed to the dataset’s inherent imbalance where dominant classes
overshadowed the minority classes, leading to a biased classifier.

To address this issue, we leveraged our developed BioDiffusion model, specifically
using its label-conditional version. This model was used to generate synthetic signals that
mirrored the characteristics of the underrepresented classes in the dataset. For instance,
we generated additional synthetic signals corresponding to less frequent arrhythmia types
such as ventricular ectopic beats (VEBs) and supraventricular ectopic beats (SVEBs), which
typically have fewer examples in the dataset.
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By incorporating these synthetic signals into the training set, we aimed to balance
the class distribution and thereby reduce the bias towards the more prevalent classes. The
addition of synthetic signals was carefully calibrated to ensure that the training set mirrored
a more equitable class distribution, which was previously skewed.

Post generation, the identical 1D-CNN classification model was retrained with the
new, balanced dataset. This model was then evaluated using the original, unchanged test
set to provide an unbiased assessment of performance improvement. The results showed a
marked increase in precision and recall for the minority classes, with the overall accuracy
of the model also improving.

For a comprehensive evaluation, we compared our method’s performance with tra-
ditional resampling techniques such as random oversampling as well as other generative
models that have been applied for signal synthesis in the literature. Our approach not only
yielded an enhanced balance in class representation, but also improved the generalizability
of the model, as evidenced by the performance metrics on the test set.

Results and Analysis: As presented in Table 3, synthetic signals crafted using our
BioDiffusion model not only enhanced the training set, but also significantly bolstered the
F1-score for the detection of minority classes. In contrast, signals synthesized by models
like RCWGAN and C-RNN-GAN led the downstream classifier to a biased classifica-
tion—predominantly towards the majority class (non-ectopic beats), effectively nullifying
the F1-score for other classes. It is pivotal to note that during these evaluations, the real test
set remained untouched and unseen throughout all generative model training phases.

Table 3. Per-class F1-scores for MIT-BIH classification using synthetic data to mitigate class imbalance.
Abbreviations: N = Non-Ectopic Beats, A = Superventricular Ectopic Beats, V = Ventricular Beats,
Q = Unknown Beats, F = Fusion Beats. The BioDiffusion model outperforms in most categories by
achieving higher F-1 scores and secures the highest average score. This suggests that augmenting
original imbalanced datasets with signals generated by the BioDiffusion model optimally enhances
the classification F-1 scores compared to other generative models.

N A V Q F Average

Imbalanced 0.97 0.25 0.75 0.38 0.89 0.648
Re-sampling 0.50 0.65 0.64 0.81 0.85 0.69

TimeGAN 0.60 0.48 0.75 0.48 0.93 0.648
SigCWGAN 0.59 0.60 0.80 0.58 0.93 0.7
TTS-GAN 0.60 0.77 0.75 0.60 0.91 0.726

TTS-CGAN 0.66 0.78 0.77 0.85 0.93 0.798
BioDiffusion 0.73 0.79 0.86 0.84 0.95 0.834

5.6. Biodiffusion in Biomedical Signal Denoising, Imputation, and Upsampling

In time-series signal collections, three predominant noise types are frequently encoun-
tered: thermal noise, electrode contact noise, and motion artifacts. Thermal noise arises
from the thermal agitation of electrons causing voltage or current fluctuations. Electrode
contact noise stems from the changing electrical characteristics between electrodes and
surfaces leading to signal baseline fluctuations. Motion artifacts, on the other hand, are
sudden spikes in signals caused by physical disturbances like movement, unrelated to
the actual biological activity being measured. These artifacts and noise types challenge
the robustness of signal processing techniques. Leveraging BioDiffusion, we successfully
denoised signals by taking the MIT-BIH dataset, adding artificial noise, and using it as an
input for the diffusion model. Example results is shown in Figure 7.

Furthermore, BioDiffusion efficiently handles signal imputation tasks. Missing values
in collected signals can be interpolated using our model, resulting in reconstructed signals
that are impressively close to the original signals, as displayed in Figure 8.

Differing sampling rates across biomedical signals, due to equipment variations,
necessitate resampling techniques. Traditional upsampling methods, while functional,
often fail to capture intricate relationships among signal features. This problem is addressed
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with our signal-conditional diffusion model designed for signal upsampling, resulting in
high-resolution signals that are almost indistinguishable from the originals.
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Figure 7. Example signal denoising results. First row: real signals. Second row: signals with noise.
Third row: denoised signals using BioDiffusion.
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Figure 8. Example signal imputation results. First row: real signals. Second row: signals with random
blanks. Third row: imputed signals by BioDiffusion model.

A notable application of BioDiffusion lies in the generation of individualized signals.
A scarcity of data samples from individual subjects can be a bottleneck for certain machine
learning applications. However, our approach allows for a diffusion model to be trained
on diverse signals, which is then fine-tuned using signals from an individual subject. This
method generates synthetic signals that retain the unique patterns of the subject, enabling
the expansion of subject-specific datasets.

For more visual examples of the output of BioDiffusion in upsampling and personal-
ized signal generation, please see Appendix D.

6. Discussion

The introduction of the BioDiffusion model in this study represents a significant ad-
vancement in the field of biomedical signal synthesis. Our model is capable of generating
novel instances of multi-channel biomedical signals, which is a notable enhancement over
previous methodologies. It possesses the flexibility to be trained on datasets encompassing
multiple classes, facilitating the application of transfer learning techniques across these
classes. Furthermore, it offers the option to be label-conditioned, enabling the generation
of instances belonging to a specific class during the inference phase. Additionally, the
model can be conditioned on an existing signal, potentially containing noise or incom-
plete data, to produce a refined version of that signal. The capability of the BioDiffusion
model to generate multi-channel signals is especially critical, filling a gap identified in the
existing literature.

The challenge of creating synthetic data through machine learning models and uti-
lizing these data to train new models is a question that extends its relevance beyond
biomedical signal generation. In the context of Large Language Models (LLMs), where the
demand for data by these models exceeds the creation of new human-generated content on
the web, it remains uncertain whether synthetic data produced by LLMs can contribute
to enhancing their own capabilities. Nonetheless, within the narrower scope of address-
ing class imbalance and improving signal quality, the generation of synthetic data has
demonstrated its effectiveness.
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In evaluating the quality of the signals generated by our model, we employed a
combination of qualitative and quantitative methods previously outlined in the scholarly
literature. However, it is important to acknowledge that current evaluation metrics are not
flawless. Unlike images and text, the qualitative assessment of synthetic signal samples by
humans is not straightforward, underscoring the imperative need for continued research
into developing more robust quantitative metrics for this purpose.

Our findings indicate that as the complexity of the source signals increases, the model’s
proficiency in generating high-quality synthetic counterparts decreases. This observation
underscores that the endeavor to create high-fidelity synthetic biosignals is far from over.
Future research should expand to encompass a broader spectrum of biomedical datasets,
especially those characterized by greater complexity and synthesis challenges. Investigating
a diverse array of model architectures and configurations, conducting sensitivity analyses to
understand the impact of various hyper-parameters on the model’s generative capabilities,
and tailoring model selection to specific signal characteristics are critical steps toward
enhancing the quality of synthetic signals.

Lastly, while our research demonstrates the potential for advancing machine learning
applications within the medical field, the area of biomedical signal synthesis remains
underexplored within the generative AI landscape. To realize its full potential, it is crucial
to encourage a greater number of researchers to delve into this domain. Collaborations with
medical and biological experts are essential, as their expertise can significantly contribute
to model refinement and the validation of synthetic data’s clinical relevance. Furthermore,
increased funding and dedication to the open sharing of medical data, in compliance with
ethical standards and privacy regulations, are imperative for fostering innovation and
pushing the boundaries of the field forward.

7. Conclusions

In conclusion, the proposed BioDiffusion model is a novel and versatile probabilis-
tic model specifically designed for generating synthetic biomedical signals. Our model
offers a comprehensive solution for various generation tasks, including unconditional,
label-conditional, and signal-conditional generation, which makes it a valuable tool for
biomedical signal synthesis. We evaluated the quality of the generated signals using quali-
tative and quantitative assessments and demonstrated the effectiveness and accuracy of
the BioDiffusion model in producing high-quality synthetic biomedical signals. Compared
to state-of-the-art time-series synthesis models, our BioDiffusion model consistently out-
performs its counterparts, showcasing its superiority and robustness in biomedical signal
generation. The model’s versatility and adaptability have the potential to significantly
contribute to the advancement of biomedical signal processing techniques, opening up new
possibilities for improved research outcomes and clinical applications.
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Appendix A. Dataset Details

More of the dataset details in Table A1.

Table A1. Dataset details.

Dataset Signal Type N Channels Type Total
Samples Classes Class Ratio Sample

Length

Simulated Simulated
signals

1 Train 20,000 5 1:1:1:1:1 512

1 Test 2000 5 1:1:1:1:1 512

UNIMIB
Accelerometer
signals

3 Train 6055 9
119:169:1394:
1572:737:600:
1068:228:168

128

3 Test 1524 9
34:47:344:
413:184:146:
256:68:32

128

MITBIH ECG
signals

1 Train 87,554 5
72,471:2223:
5788:641:6431 144

1 Test 21,892 5
18,118:556:
1448:162:1608 144

Appendix B. Training Details

We train an unconditional diffusion model per class per dataset. The training details
are as below.

Table A2. Unconditional diffusion model training details.

Architecture Training Diffusion

Base channels: 64 Optimizer: Adam Timesteps: 1000

Channel multipliers: 1, 2, 4, 8, 8 (Simulated Dataset) Batch size: 32 Noise schedule: cosine

Channel multipliers: 1, 2, 4, 8 (UNIMIB and MITBIH) Learning rate: 3 × 10−4 Loss: l1

Residual blocks groups: 8 Epochs: 100

Attention heads: 4 Hardware: NVIDIA RTX A5000

We train a label condition diffusion model per dataset. Each signal sample is paired
with a scalar label. The training details are as below.

Table A3. Label Condition diffusion model training details.

Architecture Training Diffusion

Base dimensions: 64 Optimizer: Adam Diffusion timesteps: 1000

Channel multipliers: 1, 2, 4, 8, 8 (Simulated Dataset) Batch size: 32 Noise schedule: cosine

Channel multipliers: 1, 2, 4, 8 (UNIMIB and MITBIH) Learning rate: 3 × 10−4 Loss: l1

Number classes: 5 (Simulated and MITBIH dataset) Epochs: 100

Number classes: 9 (UNIMIB dataset) Hardware: NVIDIA GeForce 1080

Residual blocks groups: 8

Attention heads: 4

Conditional drop prob: 0.5

A signal-conditional model is trained on a specific class of data, and synthetic signals
are generated using distorted signals as conditional inputs. The distorted signals provided
to the model were not present in the training set, with the aim of assessing the model’s
ability to accurately restore them to their original form. Here, we present several possible
implementations of the model. It should be noted that these examples are not exhaustive,
and the model is capable of other implementations as well.
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Table A4. Signal Condition diffusion model training details.

Architecture Training Diffusion

Base channels: 64 Optimizer: Adam Timesteps: 2000

Channel multipliers: 1, 2, 4, 8, 8 Batch size: 32 Noise schedule: linear

Residual blocks groups: 2 Learning rate: 1 × 10−4 Loss: l1

Attention heads: 4 Iterations: 1,000,000

Hardware: NVIDIA GeForce 1080

Appendix C. More Visualizations about Label-Conditional Generation
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Figure A1. Real and synthetic signal UMAP projection on selected classes of simulated dataset.
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Figure A2. Real and synthetic signal UMAP projection on selected classes of UniMiB dataset.
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Figure A3. Real and synthetic signal UMAP projection on selected classes of MITBIH ECG dataset.

Appendix D. More Visualizations about Signal-Conditional Generation

Appendix D.1. Signal Denoising

We selected three types of noise that are frequently involved in time-series signal
collections. They are:

• Thermal noise, also known as white noise, a type of random electrical noise that
occurs in electronic circuits and arises from the thermal agitation of electrons, which
results in a fluctuation of the voltage or current that is independent of the signal
being measured.

• Electrode contact noise, also known as low-frequency drift, a type of noise that arises
in electronic measurements due to changes in the electrical characteristics of the contact
between the electrode and the surface being measured, which can cause fluctuations
in the baseline signal over time.

• Motion artifacts, also known as random spikes, unwanted signals that can occur
in physiological or biological measurements due to movement or other physical
disturbances, which can cause sudden, brief spikes in the recorded signal that are not
related to the underlying biological activity being measured.
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Figure A4 shows some random noise examples. We intentionally distort the signals
with such noise before using them as as signal condition inputs for the diffusion models.
Figure A5 shows how BioDiffusion can help remove signal artifacts. The top row shows
some real signals from the MITBIH dataset. The middle row shows the same signals with
added artificial noise. They are the input to the diffusion model. The bottom row shows the
generated synthetic signals, which ideally should be as much as the top row signals. Please
note that these signals are from the MITBIH testing set, which are unseen when training
the signal-conditional diffusion model.
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Figure A4. Three types of noises involved in biomedical signals. First row: thermal noise. Second
row: motion artifacts noise Third row: electrode noise.
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Figure A5. Example signal denoising results. First row: real signals. Second row: signals with noise.
Third row: denoised signals using BioDiffusion.

Appendix D.2. Signal Imputation

Signal imputation is another task that BioDiffusion can handle. Often, the collected
signals may omit some missing values. We can use BioDiffusion to fill in those blanks.
Figure A6 shows a few examples of signal imputation. The first row shows the original
signals. The second row shows the same signals with some randomly missing values
(values set to zero). We use them as signal conditions input to the diffusion model. The
third row shows the reconstructed signals. We can see that the synthetic signals fill in the
blanks and are very similar to the original signals.
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Figure A6. Example signal imputation results. First row: real signals. Second row: signals with
random blanks. Third row: imputed signals using BioDiffusion.

Appendix D.3. Signal Super-Resolution

Biomedical signals of identical types can possess distinct sampling rates due to the
usage of different equipment for collection. This necessitates the application of signal
downsampling or upsampling techniques to match the sampling rates when these signals
are used concurrently. However, conventional upsampling methods like Hamming win-
dows, linear/cubic interpolation, and zero-padding followed by low-pass filtering may fall
short in capturing intricate relationships among signal features. This shortcoming restricts
their capacity to generate high-quality, realistic upsampled signals. A potential solution
to this limitation can be found in deep learning-based super-resolution techniques. Our
signal-conditional diffusion model, designed for signal upsampling, is trained to create
high-resolution signals that closely resemble their original counterparts. This is illustrated
in Figure A7, where the model-generated signal exhibits features more akin to the original
signal than the downsampled version.
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Figure A7. This figure provides an example of signal super-resolution results, where the blue lines
represent one of the original signals with 512 timesteps, the upper graph orange line shows the
signal downsampled to 1/4 and then upsampled to 512 timesteps using the Scikit-Learn ‘resample()’
method, and the bottom graph orange line shows the super-resolution signal generated by the
diffusion model using the downsampled signal as conditional input.

Appendix D.4. Individual Signal Generation

One of the challenges that hinder machine learning applications on biomedical signals
is the insufficient quantity of data samples from each individual subject. To address this
issue, signal-conditional diffusion models can be utilized. Initially, a diffusion model is
trained on a specific type of signal from numerous subjects. Afterward, a small number of
signals from a single subject are utilized as conditional inputs to enable the diffusion model
to generate a multitude of synthetic signals that incorporate the distinctive data patterns of
that subject. As a result, synthetic signals can be employed to expand the dataset size of an
individual subject and facilitate the development of machine learning applications tailored
to that particular subject.
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Figure A8. Generated synthetic heartbeat signals from a single real signal. The left graph shows
10 synthetic signals. In the right graph, the blue line represents the original signal, and the green area
shows the value range of the 10 synthetic signals.
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