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Correlation Analysis-Based Classification
of Human Activity Time Series

Akshay Malhotra , Ioannis D. Schizas , and Vangelis Metsis

Abstract— Segmentation of sequential sensor data streams and
classification of each segment are common steps in tasks dealing
with the detection of events of interest in such data. In this paper,
we introduce two correlation analysis-based methods for classi-
fying time series data generated by sensors. Our first method is
a lightweight supervised approach utilizing principal component
analysis to jointly segment data and classify each segment into a
class corresponding to an event of interest. The second method
relies on unsupervised canonical correlation analysis to segment
time series by clustering together consecutive data points that
belong to the same event. Both methods operate without the need
for prior feature extraction from the data. The theoretical model
of the two methods and the solution to the resulting optimization
problem are presented in detail. Classification of human activity
from inertial measurement unit sensor data is used as a case
study to demonstrate the applicability and effectiveness of the
proposed methods.

Index Terms— Activity detection, correlation analysis, segmen-
tation, classification.

I. INTRODUCTION

EVENT detection from sensor data appearing in the form
of time series is a problem that is often encountered

due to the advent of multimodal sensing systems that collect
heterogeneous data streams about a process or phenomenon
of interest. Such data points can also be regarded as a signal
which has been digitally sampled at a given frequency, thus
forming a sequence of discrete-time data. The problem of
detecting events of interest in such data can be viewed as
the problem of classifying one or more segments from the
sequence to one of a set of predefined classes.

A well-studied application is that of human activity recog-
nition from sensors which are attached either to the human
subject or the environment [1]. One of the most commonly
used sensor types used in such applications is inertial mea-
surement units (IMUs), which often come in the form of
simple accelerometers [2]. However, the types of signals that
can be represented as time series can vary greatly, depending
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on the sensor properties and the source that generates them.
Another obvious example is physiological biosignals collected
in various situations including medical applications, sports,
and psychophysiological tests.

Signal segmentation is usually a challenging but necessary
step of the event detection process, as the total duration of the
signal cannot be treated as a whole. In most existing works,
researchers take the straightforward approach of splitting the
signal into windows (segments) of fixed size, and classifying
each segment in isolation. However, such an approach is not
optimal for a number of reasons. First, the size of the segments
has to be manually specified by the user; second, occurring
events may occupy only a small portion of one segment or may
exceed the segment size; third, an event may span across
multiple segments. Thus, an adaptive segmentation approach is
desirable, which can split the signal into segments of different
sizes, based on the properties of the signal.

Even though image segmentation has attracted a lot of
attention and a number of methods have been proposed, exist-
ing time series segmentations techniques [3]–[7] are limited
both in number and in utility, because i) they usually rely on
the signal amplitude to perform segmentation; or ii) cannot
handle multi-channel heterogeneous biosignals acquired by
multimodal sensors; or iii) are sensitive in the presence of
noise.

For instanse, the scheme proposed in [7] gives a general
procedure for segmenting audio signals by first extracting a
sequence of short-term and mid-term feature vectors, then
normalizing the extracted features, and finally computing a dis-
similarity measure for each pair of successive feature vectors
to detect the local maxima. The locations of the maxima are
the endpoints of the detected segments. However, the need for
prior feature extraction alone is a disadvantage of the method,
as the engineering of features to be extracted is a manual
process and there are no universally acceptable features for
every signal type.

From the classification perspective, activity detection has
seen increased interest in the last few years. Much of the
recent work have focused on Support Vector Machine (SVM)-
based approaches. Reyes-Ortiz et al. [8] and Micucci et al. [9]
have collected datasets from a range of activities and pre-
sented results of an SVM-based classifier. More specifically,
Reyes-Ortiz et al. [8] have combined an SVM-based classifier
with a heuristic filtering approach to propose a probabilistic
SVM. Micucci et al. [9] have presented results with four differ-
ent classifiers including a K-nearest neighbor classifier, SVM,
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a neural network and a random forrest classifier. A similar
analysis over multiple clustering schemes for the data in [8]
can be found in [10]. The schemes presented in these papers
rely on some form of a priori segmentation and/or feature
extraction stage.

Gupta et al. [11] and Gusain et al. [12] have proposed
strategies considering an ensemble of SVMs for classification.
The misclassified data of each SVM’s output is used to train
a new SVM. Further, an Adaboost type weighting strategy is
used for giving weights to each of the SVMs. Such techniques
provide slight improvement in performance over traditional
SVMs at the cost of increased training resources, but are
more suited for online learning applications where the data
arrives in batches and SVMs are trained over only a small
section of the data. Zdravevski et al. [13] have tried to leverage
the information from gyroscopes and body accelerometers
to supplement the total accelerometer data and presented
their results over multiple supervised clustering algorithms.
Tan and Huang [14] have proposed a half cosine fuzzy cluster-
ing scheme, this scheme too is supplemented by a prior feature
extraction and a PCA-based feature dimensionality reduc-
tion stage. A survey of different techniques applied towards
the classification task in activity detection can be found
in [15].

In this work, we introduce two novel correlation
analysis-based methods that work directly on the captured
signal and do not require any a priori segmentation or feature
extraction step prior to performing classification. Since the
proposed schemes can directly classify the time series data,
segmentation is automatically achieved as part of the process.
The first method is a supervised approach which relies on PCA
decomposition to segment time series data into segments of
varying length, and classify each of those segments into one
of a predefined set of classes. As in any supervised learning
approach, this method requires prior training on labeled data.
The second method, which is based on canonical correlation
analysis (CCA), is an extension of our previously published
framework of linear CCA [16]. Here we extend the linear
scheme to its kernelized variant which is capable of handling
nonlinear dependencies in the data. The correlation framework
is further penalized with a norm-one regularization to induce
sparsity required for clustering. This method operates in an
unsupervised manner in the sense that it does not require prior
training. The only input parameter from the user is the number
of existing classes. This is on par with certain clustering
algorithms, which require the user to specify the number of
clusters. Each segment generated by the CCA-based method
can be subsequently classified by mapping its corresponding
cluster to one of a known set of classes or by using one of
the many existing classification algorithms.

Depending on the nature of the application, either the
supervised or the unsupervised approach may be preferable.
The supervised, PCA-based approach is lightweight and can
be suitable for real-time signal segmentation and classification
on low-power or embedded devices. The unsupervised, CCA
based approach can be utilized when training data are not
readily available. It should be pointed out that both methods
described here do not require the extraction of features from

Fig. 1. A block diagram representation of the signal model considered in (1).
Here it has been considered that the i-th activity is being performed by the
user, thus ci (n) = 1 whereas, all others are zero.

the signals being analyzed to achieve the segmentation and
classification tasks.

We tested the utility and performance of our methods on
two publicly available human activity recognition datasets, and
one similar dataset generated by our team, and our findings are
presented here. The classification performance of our super-
vised approach is competitive to the existing state-of-the-art
approaches which use more elaborate and heavyweight feature
extraction and classification algorithms. We also evaluated the
classification performance of our unsupervised approach on
the same datasets, even though its direct output is not class
labels but rather segmentation and assignment of each segment
to a cluster. The classification, as explained in section III-C2,
was performed by mapping each cluster to one of the known
classes.

The rest of this paper is organized as follows. Section II
formulates the activity detection process as a segmentation
and classification problem. In Section III, the proposed corre-
lation analysis based algorithms are discussed. In section IV,
the algorithm effectiveness is demonstrated by applying it
in three different datasets. Finally, Section V provides the
concluding remarks.

II. PROBLEM FORMULATION

A. Problem Statement

Consider a discrete time series w(n), which is assumed
to be the output of a sensor (e.g. an accelerometer signal).
The objective is to find the time instants corresponding to an
activity that results in a change of the characteristics of the
signal w(n), modeled here as

w(n) =
Q∑

i=1

ci (n)
L−1∑

nc=0

hi (nc)si (n − nc)+ � (n) (1)

where, si (n) represents the signal corresponding to the i -th
activity. The signal si (n) can be further visualized as a series
of epochs generated by the user while performing an activity,
and it can be represented as

si (n) =
T∑

τ=1

se
i (n − τ P),

where, se
i (n) can be considered to be an epoch. The total

number of distinct activities (e.g. walking, sleeping, climbing
up the stairs, etc.) is represented as Q. ci (n) is a binary
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variable, it is one for the activity that is happening at the time
instant n and zero for all other Q−1 activities. � (n) represents
the noise in the signal. The source to sensor relationship
is considered as an impulse response, hi (nc), that models
the channel imperfections when recording an activity signal.
We choose to represent the source to sensor relationship
using a convolution based model to cover a more generic set
of source to sensor relationships that may be applicable in
applications beyond the activity detection based framework
presented here. The impulse response hi can be a scalar (a
single tap filter) or it may even be the same for all of the
different signals. It must be noted that the type and length of
impulse response has no bearing on the algorithms proposed
here and is not required as part of these algorithms. Also,
it must be noted that since w(n) is the output of the sensor
recorded by an analog-to-digital converter (ADC), we consider
a discrete representation of time in 1 and throughout the rest
of the paper.

To identify the segments of w(n) corresponding to differ-
ent activities, the signal is split into frames of P samples
each. Note that, the signal w(n) can have segments in which
none of the activities are happening (i.e ci (n) = 0 ∀i ∈
1, ..., Q). Such segments are irrelevant to the activity seg-
mentation and classification objective. Therefore the signal is
passed through a pre-processing stage to filter out the frames
unrepresentative of any activity before being used by the two
proposed algorithms.

Consider the signal in Fig. 2(a), corresponding to the
accelerometer output of a smartphone while the user is
performing different activities. Fig. 2(c) and 2(d) show the
zoomed in versions of the signal where the user is walking
and climbing-up the stairs, respectively. As it can be seen,
the data has repetitive patterns or epochs during each of these
activities which are distinctively different from the epochs
corresponding to the other activity. Lets say there are Ne

frames of relevance. The signal can thus be considered as a
set of Ne vectors each having P entries. Thus, we can utilize
the statistical correlation between these vectors corresponding
to the same activity to identify the vectors pertaining to the
same activity. For the purpose of identifying the correlation
between signals we propose the use of the following two
techniques: 1) a Principal Component Analysis (PCA) based
framework and 2) a Canonical Correlation Analysis (CCA)
based framework [17]. The theoretical basis of the two frame-
works is explained in detail in the following section.

III. METHODS

A. Pre-Processing

The objective here is to find the frames representing the
repetitive structures or the epochs and use them as vectors
for the CCA and PCA-based classification. It is important to
understand that the epochs or the frames need to be synced
along a common reference point to effectively apply the cor-
relation analysis-based algorithms. Since all the epochs have
a distinguishable peak, Fig. 2(c) and 2(d), we center the data
around this peak and select a set of samples around it. There
are multiple schemes present in the literature (eg. [18], [19])

Fig. 2. Example of a sample acceleration signal over multiple activities.
Fig. (a) shows the signal from the three accelerometer channels (X, Y, Z)
separately, Fig. (b) shows the absolute value (magnitude) of the signal vector
across the XYZ components, Fig. (c) zooms in on the portion of the Z-axis
signal with walking as the activity, and Fig (d) zooms in on the portion of
the Z-axis signal with climbing up-stairs as the activity. The repetitive epochs
for the two activities can be clearly seen in the signal. The epochs from the
two activities have different structure, this structural differences are utilized
by CCA for classification.

to isolate epochs. In this work, since our primary objective
and the contribution is not the epoch-based classification,
we use a rather simplistic approach to isolate the epochs to
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form the frames with a nominal accuracy and a rather low
computational complexity.

The first step is to remove the parts of the signal which
are devoid of any activity. As seen in Fig. 2(a), the first
7000 samples consists of approximately constant valued sig-
nals, corresponding to user standing or sitting states. During
this period the variance of the signal, computed over a window,
is small in magnitude.

w̄(n) =
{
w(n), i f �2(w(n)) ≥ thresh1
0, otherwise

(2)

where, the function �2(.) represents the variance of the signal
calculated over a time window [n − L/2, ..., n, ...n + L/2 − 1]
with L being the window length and thresh1 indicating a
predetermined threshold.

Next, a simple peak detection algorithm is employed that
finds the peaks and isolates P samples around it to form
the frame. The signal magnitude is first compared against a
predetermined threshold, thresh2. The parts of the signal that
are greater than the threshold are checked for local peaks (i.e
neighboring samples have a magnitude lesser than the current
sample). Also, since epochs extend over at least a few samples,
two consecutive epochs (or two consecutive peaks) have to be
separated by at least a certain number of samples, ϑ1. Thus, all
the peaks which are under ϑ1 samples away are discarded. The
value of L used for evaluating the variance cannot be too small
since it should be able to observe the signal statistics over a
period comparable to the epoch and again it cannot be too large
so that a large number of consecutive samples, devoid of any
activity, get coupled with an epoch and are considered for the
analysis. Although many combinations of L and thresh1 may
give reasonable results, we suggest the use of values in the
range P/2 < L < 2P . The frames starting at, or around,
the peak of the epoch are then used as vectors for the
CCA or PCA-based classification. Thus the n-th frame is given
by, ωn = {w̄(nt − P̂ + 1), ..., w̄(nt ), ..., w̄(nt + (P − P̂))}T ,
where nt is the time instant corresponding to the peak of the
t-th epoch and P̂ is an integer such that P̂ ∈ [0, P − 1]. The
above mentioned approach performs reasonably well. Since
the focus of the paper is not the epoch detection and frame
construction algorithm, we move our attention to the two
classification approaches proposed here. The pre-processing
stage for vectorization can be easily replaced with any other
approach from the literature (like [18] and [19]) and can be
used as an input to the algorithms presented later on.

B. PCA-Based Activity Classification

Principal component analysis is used as an approach for
dimensionality reduction to identify the set of principal basis
vectors on which the data can be projected and thus, repre-
sented in a low dimensional space. In the current case we
have data vectors of P dimensions each, we use PCA to
find ψ principal components and represent this data in a ψ
dimension space. Projecting the data onto a lower dimension
space causes some loss of information. This loss or error can
be measured by projecting the data back into the P dimension
space to get a reconstructed estimate of the data and evaluate

the mean square error (MSE). The PCA is utilized here for
activity detection and classification by identifying the principal
components for each activity and then, for any new data
vector, finding a reconstructed estimate using the principal
eigenvectors for each of the considered activities. The MSE
between the reconstructed data vector and the original data
vector (or the reconstruction error) will be the lowest for the
activity the data vector represents.

The proposed technique is divided into a training phase
and an online phase. For training, it is assumed that the
labeled sensor data are available and this data are used to learn
their structure and the underlying data correlation. The trained
model is then used during the online stage to identify which
frames of the given signal correspond to different activities.

1) Training: After the signal has been pre-processed and
the individual epochs have been generated, a set of epochs
corresponding to each of the activities to be identified are
selected to form the training set. For a given size of a
dataset, the percentage of the total epochs used for training
has a direct correspondence to the accuracy of the activity
classification, as larger training sets yield better accuracy.
Another factor that affects the performance is the length of
the epoch. As explained earlier we select samples around the
peak of the epoch to form the data vector, if the length is too
small, the accuracy is low. Similarly, if the length is too large,
the samples from the neighboring epochs get included in the
data vector. Epochs resulting from isolated events and epochs
at the beginning and end of an activity segment have data
points belonging to other activities, and thus are not similar to
the other data vectors of the same activity, and are therefore
misclassified.

Let set �q contain all ωn corresponding to the activity q
and let �t

q ⊂ �q be the set containing the training vectors and
�vq ⊂ �q be the set containing the validation vectors, where
|�t

q | + |�vq | = |�q | and �t
q ∪�vq = �q . Thus, we form the

covariance matrix as

�̂q = 1

Nq
e

Nq
e∑

n=1

[ωn − mq][ωn − mq]T ,ωn ∈ �t
q (3)

where mq := 1
Nq

e

∑
n∈�t

q
ωn denotes the sample-average esti-

mate for the mean of ωn and Nq
e = |�t

q |.
This is followed by principal component analysis (PCA) of

the averaged �̂q to identify the eigenvectors of the training
data. The eigenvectors corresponding to the ψ highest eigen
values, i.e. {νq

1 , ..ν
q
i , ..ν

q
ψ } are selected for the reconstruction

in the validation phase. The eigenvectors ν
q
i are P dimen-

sional. This procedure is repeated for all Q classes.
2) Validation: In the validation phase the reconstruction

error is used as a metric to allocate a class to the data vectors

ωn ∈
Q⋃

q=1
�vq . The data vectors ωn are projected onto the

eigenvectors {νq
1 , ..ν

q
i , ..ν

q
ψ } for each class.

ζ
q
i = (ωn − mq)

T ν
q
i ∀ i ∈ {1, ..., ψ} & q ∈ {1, ..., Q} (4)

where, ζ q
i is the projection of the data vector onto the i -th

principal eigenvector representing class q .
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The data is then reconstructed using the eigenvectors as:

ω̂
q
n =

ψ∑

i=1

ν
q
i ζ

q
i (5)

Next, the reconstruction error for each class is evaluated as:

	q = ||(ωn − mq)− ω̂
q
n ||22 (6)

where, 	q represents the error using the principal eigenvectors
corresponding to each class or activity. Each data vector is
classified to the class for which the reconstruction error is the
lowest.

Algorithm 1 PCA-Based Activity Classification
1: Epoch detection and vectorization of w(n) to form ωn .
2: Form �̂q using the framed data ωn from �t

q using (3).

3: Find the ψ principal eigenvectors of �̂q .
4: Calculate the reconstruction error and assign the class with

the lowest 	q .

3) Multiset PCA: In the algorithm discussed above, one
set of principal components νq

i were used for each of the
Q classes. To achieve better performance, multiple set of
principal components can be used to represent each of the Q
classes. Having multiple set of principal component for each
of the classes provides the flexibility of accommodating for
different activity patterns across users.

Consider the case where for a given activity q , the training
set �t

q is divided into B subsets, such that we have �t
q =

⋃B
β=1�

β
q

t
. Thus during the training stage, the covariance

matrix �̂
β
q should be calculated for each of the B training

subsets separately similar to the operation in (3). Thus post
PCA, for the q-th class we will have B sets of eigenvectors,
where the β-th set of principal eigenvectors is given by

{νqβ

1 , ..ν
qβ

i , ..ν
qβ

ψ }.
For the validation stage, the reconstruction error has to be

evaluated Q × B times instead of Q, as was the case for the
single set PCA. As before, the data vector is classified to the
class for which the reconstruction error is the lowest.

Since each of the epochs is classified based on the activity,
the activity/class label for neighboring epochs can be used to
identify the segments of the signal where a particular activity
was being performed by the user.

C. CCA-Based Clustering and Classification

Unlike the PCA-based approach, where we have a training
phase and require labeled data, the CCA is an unsupervised
algorithm. It needs no training data or any priors about the
distribution. The only information required is the number
of classes, Q, in which the data should be segregated. The
objective for the CCA-based scheme is to cluster consecutive
epochs (belonging to the same activity type) together, thus
forming segments. Given the set of Ne epoch vectors that
contain the information about q activities, the objective is to
classify the Ne vectors into Q classes.

Given the Ne × P data matrix, containing the data from all
the epochs, consider splitting the rows in two non-overlapping
groups of data vectors x ∈ R

Nx
e ×P and y ∈ R

N y
e ×P where

N x
e + N y

e = Ne . This formulation makes the following
underlying assumptions: 1) the number of classes Q, is lesser
than the number of epoch vectors, Ne ; and 2) each group
of data vectors, x and y, have at least one representative
vector from each class. These assumptions are easily fulfilled
for any real-world application, as Ne is much larger than Q.
Also, for forming the non-overlapping sets x and y, alternate
vector/epochs appearing in the series are grouped together.
Thus the cardinality of the two sets x and y, (i.e. N x

e and
N y

e ) is approximately the same (≈ Ne/2). Such a division
process ensures that the cardinality of each set is much larger
than Q. Further, in any real world situation, it is plausible to
assume that the user will not discontinue an activity after every
epoch, but will rather continue in the same activity for several
epochs, alternatingly allocating vectors/epochs into different
groups ensures that epochs from each activity are present in
both the groups x and y.

To cluster the Ne epoch vectors according to the activity
they sense, we make use of the statistical correlations that
vectors in x and y groups exhibit when representing the
same activity. Using CCA we can identify the entries of the
two vectors, x, and y, that are maximally correlated and by
imposing a �1 norm regularization, as shown in [16], we can
utilize the CCA framework as a clustering algorithm. The
modified CCA framework with the �1 norm regularization is
given as:

(Ê, D̂) = arg min
E,D

P−1
∑

τ∈P ||yτ − EDxτ ||22
+

∑Q

ρ=1
λE
ρ ||E:ρ ||1 +

∑Q

ρ=1
λD
ρ ||Dρ:||1, (7)

where the subscript τ indicates the time index of the vector and
xτ and yτ are the R

Nx
e ×1 vectors containing the epoch vectors

with time index τ = 1, ..., P . The set P = {1, ..., P} contains
all the time instances between 1 and P . D̂ ∈ R

Q×Nx
e and Ê ∈

R
N y

e ×Q are the sparse matrices indicating the clustering. The
sparsity is introduced as a result of the �1 norm regularization
part in the modified CCA framework. The support (non-zero
entries) of each row of D in Eq. (7) will indicate which entries
in xτ contain information about the same activity. Note that
the rows of D are expected to be sparse since not all entries
of xτ correspond to the same activity. Thus, it is pertinent
to impose sparsity across each row of D that represents a
different activity. This enables activity clustering among the
entries of xτ . Similarly, the columns of E can be forced to
be sparse and their support will point to these entries of yτ
that represent the same physical activity. Ideally, the matrix D̂
should have a single non-zero entry in each of the N x

e columns
and similarly for the matrix Ê there should be only one
non-zero entry in each of the N y

e rows. However, in practice
the row-entry with the strongest amplitude is treated as the
non-zero entry pointing to the activity, whereas the entries of
negligible amplitude are treated as zeros. The position of the
strongest in amplitude non-zero entry indicates which of the Q
activities does the epoch vector relate to. It should be noted
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that xτ and yτ are not used to represent the epoch vectors
but are a means to divide the entire set of epoch vectors into
two sets of vectors, which is required for applying CCA. The
operator � · �1 refers to �1 norm, while the parameters λD

ρ

and λE
ρ correspond to sparsity controlling coefficients in D

and E, respectively. Interestingly, sparsity across rows for D
(columns for E) can be viewed as sparsity across columns
for D (rows for E) after rearranging terms.

To improve the performance and to take into account any
non-linearities in the epochs over a period of time, we will
utilize a nonlinear kernel mappings in the formulation in (7).
Such a formulation offers more robustness to minor changes
in the data while keeping the computation cost under control
by employing the kernel trick [20].

Thus, the non linear mapping φ(·) (where, φ : R
Nx

e →
R

Nx
e ×F and F represents the dimensionality of a higher dimen-

sional feature space) is applied independently across each
dimension of the input vectors xτ → φ(xτ ) and yτ → φ(yτ ),
respectively. Thus, φ(xτ ) = [φ̂(x1

τ ), ..., φ̂(x
Nx

e
τ )]T , where φ̂ :

R → R
F . Therefore, the modified form of equation (7) is

given as

(Ê, D̂) = arg min
E,D

P−1
∑

τ∈P ||φ(yτ )− EDφ(xτ )||22
+

∑Q

ρ=1
λE
ρ ||E:ρ ||1 +

∑Q

ρ=1
λD
ρ ||Dρ:||1. (8)

The cost function in (8) consists of two parts, the first one
representing the CCA framework (henceforth mentioned as
J s(E,D)) and the second being the �1 norm regularization
part, denote as Jreg(E,D)). To minimize the cost in (8) we
utilize the gradient descent method to update the clustering
matrices E and D. Since it is an iterative approach the k-th
iteration for the update is found by utilizing the following
recursive update rule:

Êk = Êk−1 − c∇E
Êk−1,D̂k−1

J (E,D), (9a)

D̂k = D̂k−1 − c∇D
Êk−1,D̂k−1

J (E,D) (9b)

where c > 0 is the step-size. Note that ∇E
Êk−1,D̂k−1

J (E,D) and

∇D
Êk−1,D̂k−1

J (E,D) refer to the partial derivatives of J (E,D)
with respect to E and D, respectively. It should be noted that
since the update equations (9a) and (9b) are dependent on
E and D, at the k-th iteration we utilize the matrix values
obtained for these matrices at the (k − 1)-th iteration. Here
we have utilized a Jacobi type update where the new value
is dependent only on the previous state. A Gauss-Seidel type
update, where if Êk is evaluated first, then for evaluating D̂k

the current value of Êk can be used instead of using Êk−1.
Nonetheless, the performance was essentially the same for
both types of updates.

For ease of notation we replace Êk−1 and D̂k−1 with E and
D to get the following:

∇E J (E,D) = δ J s(E,D)
δE

+ δ J reg(E,D)
δE

, (10a)

∇D J (E,D) = δ J s(E,D)
δD

+ δ J reg(E,D)
δD

. (10b)

The second term in eqs. (10a) and (10b) represent the
sub-gradient of the �1 norm regularization part of equation (8).
The sub-gradients are given as:

δ J reg(E,D)
δE

= sgn(E)diag(λE), (11a)

δ J reg(E,D)
δD

= diag(λD)sgn(D). (11b)

where the matrices diag(λD) and diag(λE) are diagonal matri-
ces whose ρ-th elements are λD

ρ and λE
ρ , which are the sparsity

controlling coefficients. The operator sgn(·) is the element
wise sign operator.

The first term in (10a) and (10b), J s(E,D) can be written
as:

J s(E,D) = tr(Ĉy − 2·E·D·Ĉxy + E·D·Ĉx·DT ·ET ) (12)

and thus correspondingly we have the non linearly mapped
expression:

J s(E,D) = tr(K̂y − 2·E·D·K̂xy + E·D·K̂x·DT ·ET ) (13)

where K̂x , K̂y, K̂xy denote the cross covariance matrix after
the non-linear mapping xτ → φ(xτ ) and yτ → φ(yτ ).

K̂y = P−1
∑

τ∈Ps

φ(yτ )φT (yτ ), (14a)

K̂x = P−1
∑

τ∈Ps

φ(xτ )φT (xτ ), (14b)

K̂xy = P−1
∑

τ∈Ps

φ(xτ )φT (yτ ). (14c)

Thus we can obtain the first term of the equations (10a)
and (10b), the partial sub gradients of J s(ED) w.r.t E and D by
partial derivative of (13). The partial derivatives are given as

δ J s(E,D)
δE

= −2·K̂T
xy·DT + E·D·K̂T

x · DT + E·D·K̂x·DT ,

δ J s(E,D)
δD

= −2·ET ·K̂T
xy + ET ·E·D·K̂T

x + ET ·E·D·K̂x.

Next we discuss some details about obtaining the kernel
covariance matrices and how can we achieve the zero mean
behavior (or kernel centering) in the mapped non-linear space.

1) Algorithmic Details: As part of the kernelized CCA
framework we utilize one of the most commonly used kernel,
the Gaussian radial basis function (RBF) kernel. The entries
of this kernel matrix are given as follows:

ki, j
x (τ, τ �) = exp

(
−||xi

τ − x j
τ � ||2

2σ 2

)
, (15)

where xi
τ and x j

τ � correspond to the i -th and the j -th com-
ponent of the vector xτ and xτ � , respectively. The variance
σ 2 decides the spread upto which the data (in this case the
magnitude of difference, ||xi

τ − x j
τ � ||2 is relevant or produces

a kernel entry that can impact the CCA process. This is one
of the most important parameter for the kernelized CCA and
has to be appropriately selected as it directly and significantly
impacts the clustering performance.
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Another important step in the kernel matrix calculation is
the centering. In the linear CCA case (12), the covariance
matrix Ĉx is evaluated with zero mean data vectors. Similarly,
post the non-linear transformation of the data to obtain φ(xτ )
and φ(yτ ), the average quantities φ̄(x) := P−1 ∑

τ∈P φ(xτ )
and φ̄(y) := P−1 ∑

τ∈P φ(yτ ) have to be subtracted respec-
tively from the two quantities, [21]. Since the values φ(xτ )
and φ(yτ ) are never explicitly calculated the centering or the
zero mean operation can be effectively achieved as follows:

K̂x = P−1
∑

τ∈P [φ(xτ )− φ̄(x)][φ(xτ )− φ̄(x)]T

where the (i, j)th entry of K̂x , namely [K̂x ]i, j can be written
as [K̂x ]i, j = P−1 ∑

τ∈P [K̂x(τ )]i, j with

[K̂x(τ )]i, j : = [[φ(xτ )− φ̄(x)]i ] · [[φ(xτ )− φ̄(x)] j ]T

= ki, j
x (τ, τ )− P−1

∑
τ �∈P ki, j

x (τ, τ �)

−P−1
∑

τ �∈P k j,i
x (τ, τ �)

+P−2
∑

τ �,τ ��∈P ki, j
x (τ �, τ ��), (16)

as evident from the above equation, ki, j
x (τ, τ �) := [φ(xτ )]i ·

φ(xτ �)] j = φ̂(xi
τ ) · φ̂(x j

τ �).
Since the cost function in (8) is non-convex and a gradient

descent scheme can potentially get stuck in a local minima,
the initialization of matrices D and E plays an important role.
To find a reasonable estimate of D and E matrices, and hence
the clusters, we initialize the matrices with multiple set of
random entries at iteration k = 0 in (9a) and (9b). The set
of initialization entries that achieves the lowest value for the
cost function in (8) is considered as the final output. The
nonzero entries in D and E matrices are then used to find the
corresponding cluster for each of the input vectors. Since, each
column of D and row of E may have more than one non-zero
entries, each vector in x (or y) is assigned to the cluster
corresponding to the entry with the highest absolute magnitude
in the corresponding column of D (row of E). A summary of
the clustering algorithm can be found in Algorithm 2. Further
details regarding the selection of λE

ρ and λD
ρ can be found

in [16].

Algorithm 2 Kernelized CCA-Based Classification

1: Initialize matrices D̂0 and Ê0 by random values.
2: Calculate the kernel matrices K̂x, K̂y and K̂xy utilizing

(14a),(14b),(14c), the kernel trick, (15) and (16).
3: Update E, D recursively using eqs. (9a) and (9b). Repeat

multiple times with different random initializations at k =
0.

4: Cluster the epochs using the nonzero entries’ indices of the
q rows of D and q columns of E.

2) Segment Classification: Since CCA is an unsupervised
clustering scheme, there are no pre-defined labels associated
with each cluster. Thus, to report classification accuracy,
in accordance with existing schemes in [22] and [23], we fur-
ther classify each detected segment into one of the known
classes as follows. First, we map each cluster to one of the

Fig. 3. A sample CCA output for activity detection for a given data stream
taken from the SBHAR data set. For the CCA output and the ground truth,
a magnitude of 1 represents the activity of walking, 2 represents the activity of
climbing-up the stairs and 3 represents the activity of going down the stairs.

known classes by looking at the known (ground truth) label
of each segment. The label of the majority of the segments
assigned to each cluster decides the class that maps to that
cluster. Subsequently, the segments whose ground truth label
does not agree with the label (class) assigned to its cluster is
counted as a misclassification. Fig. 3 shows a sample CCA
output and its comparison with the ground truth labels.

IV. CASE STUDIES

In this section we test the performance of the proposed
approaches, the kernel regularized canonical correlation analy-
sis (CCA) and the PCA-based approach on 3 different activity
data-sets.

For the CCA based algorithm we have used a Gaussian
kernel with a variance of σ 2 = 10−1.5, 10−2 and 101

for the SBHAR [8], UniMiB [9] and Texas State datasets,
respectively. The λD

i and λE
i value were kept fixed at 0.1 and

a step size of c = 5 × 10−4 was used. The values should
be appropriately selected such that each column of D and
each row of E have at least one non zero element, or the
scheme suggested in [16] can also be used. The gradient
descent iterations were executed up-till the error drops below
a factor of 10−6. For each trial of CCA, the D and E clustering
matrices are randomly initialized.

In the PCA algorithm we have considered the number of
eigenvectors used for reconstruction as ψ = 15. To understand
the impact of the size of the training data on the accuracy of
the scheme we average out the results over 10 Monte Carlo
iterations while randomly selecting different epochs from the
signal for training and keeping the rest of them for validation.
We elaborate on the impact of having different epoch lengths
and on using different amounts of training data in the later
sections.

For the simulations, in the case of CCA, the algorithm is
applied towards each user signal separately and the results
presented are averaged across all the users for each of the
data-sets being considered. In the case of PCA we obtain the
results using a 5-fold cross validation over the entire dataset.
Tables II-VII show the confusion matrices obtained, including
the Precision, Recall and F1-Score per class, as well as the
macro-average over all classes and the total classification
accuracy.
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TABLE I

CONFUSION MATRIX FOR A THREE-CLASS (A, B, C) CLASSIFICATION
PROBLEM. PRECISION (P), RECALL (R), AND F1-SCORE (F1)

METRICS ARE ALSO SHOWN

Assuming a three-class problem with classes A, B and C,
the confusion matrices are presented in the format shown
in Table I. The Precision (P), Recall (R) and F1-score (F1)
for class i is calculated respectively as:

Pi = T Pi/(T Pi + F Pi ),

Ri = T Pi/(T Pi + F Ni ),

F1i = 2 × Pi × Ri/(Pi + Ri ),

where T P = True Positive predictions, F P = False Positive,
F N = False Negative, and Eij is the error rate of instances
of class i missclasified as j .

For example, for class A:

F PA = EB A + EC A, F NA = E AB + E AC ,

PA = T PA/(T PA + F PA) = T PA/(T PA + EB A + EC A),

RA = T PA/(T PA + F NA) = T PA/(T PA + E AB + E AC ),

F1A = 2 × PA × RA/(PA + RA).

The total Accuracy is calculated as:

Accuracy =
∑

i

T Pi/(
∑

i

T Pi +
∑

i j

Ei j )

A. SBHAR Dataset

The first data-set is the Smartphone-based Human Activity
Recognition (SBHAR) dataset [8]. The data-set contains a
set of 3 major activities (walking, walking-up the stairs and
walking down the stairs). In addition to this, there is data for
other stationary events like standing, sitting and laying, which
we don’t consider as events of interest for this study. In our
simulations we utilize the XYZ-axis of the accelerometer data
to recognize the three major activities in this data. The signals
are recorded at a sampling frequency of 50Hz.

For a few of the data samples from this dataset the average
value of the signal shifts significantly with time and this
interferes with the thresholds used by the pre-processing
stage, thus a few of the epochs were not picked up by the
pre-processing stage and were not used for the classification
stage. The epoch structure in these signals is perfectly fine
and thus the PCA and CCA based techniques suggested in
this paper are still valid to these signals by adapting the
pre-processing part or by using a different scheme for epoch
detection. The files are around 6.4 minutes in length on an
average. Thus a total of almost 5400 epochs across all the
signals have been considered.

TABLE II

CONFUSION MATRIX FOR PCA WITH 5-FOLD VALIDATION USING THE
SBHAR DATASET. W = WALKING, U = UPSTAIRS, D = DOWNSTAIRS

Fig. 4. Percentage error for the PCA based scheme in the SBHAR data-set
with different number of training samples.

TABLE III

CONFUSION MATRIX FOR CCA USING THE SBHAR DATASET.
W = WALKING, U = UPSTAIRS, D = DOWNSTAIRS

TABLE IV

COMPARISON WITH OTHER METHODS IN LITERATURE
FOR SBHAR DATASET

For the PCA based approach, as it can be seen from
Fig. 4 the error decreases as the number of training samples
increases. The overall error is less than 3% with training data
being limited to 25% of the full data-set, beyond that the error
slowly decreases as more training data is used. Even with a
minimal training data set of 10% the overall error is just 8%.
The error is considerably higher with the climbing upstairs
data. This is mainly because the epoch structure for climbing
down the stairs is not as well formed or structured in its shape
as compared to the epochs during walking or climbing down
portions of the signal.

Table II gives the classification performance measures for
our PCA-based approach when applying a 5-fold cross val-
idation. The confusion matrix for the CCA case is given
in Table III. The overall classification accuracies achieved by
our algorithms are 98.8% and 76.7% respectively.

Reyes-Ortiz et al. [8] report a similar accuracy of 98%
on the same dataset using their Probabilistic-SVM approach
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TABLE V

CONFUSION MATRIX FOR PCA WITH 5-FOLD VALIDATION USING THE UNIMIB DATASET. SUS = STANDING-UP FROM SITTING, SUL = STANDING-UP
FROM LYING-DOWN W = WALKING, R = RUNNING, U = UPSTAIRS J = JUMPING, D = DOWNSTAIRS, LDS = LYING-DOWN

FROM STANDING, SD = SITIING-DOWN

Fig. 5. Percentage error with PCA for different epoch lengths in the SBHAR
data-set.

when considering the same three activities (walking, walking
upstairs, walking downstairs), after they filter out segments
that represent postural transitions. However, their approach
relies on prior feature extraction (561 features per window)
and a fixed-size window segmentation (2.56 sec). In addition to
this, we have also reported results from two techniques which
have been popular for classification with EEG signals and in
audio signal processing. Blankertz et al. [24] have utilized
a linear discriminant analysis (LDA) with shrinkage based
classifier for classifying the EEG signals. Kaya et al. [25] use
a more heuristic scheme of finding local binary patterns (LBP)
for feature extraction, this is followed by an SVM classifier.
The LBP based schemes have also been used in speech
processing [26] and for face recognition [27], but for the
purpose of comparison given here we have implemented the
scheme as it is used with the EEG signals in [25]. The results
have been summarized in Table IV.

Another parameter that impacts the performance of the
algorithm is the epoch length or the data vector length. As seen
in Fig. 5, with the epoch length being small, the error is high
since the correlations cannot be accurately observed. As the
length of the epoch is increased the accuracy increases. Once
the epoch length is increased beyond a threshold, in this case
210, the error starts to increase, as mentioned before this is
due to the epoch containing the samples from the neighboring
epochs. Similar behavior can be observed even when the length
is varied in the case of CCA, as evident in Fig. 6.

B. UniMiB Dataset

The second data set is the University of Milano Bicocca
Smartphone-based Human Activity Recognition (UniMiB)
dataset [9]. This set has data from 30 users performing a much
wider range of activities, a total of 17 activities including

Fig. 6. Percentage error with CCA for different epoch lengths in the SBHAR
data-set.

TABLE VI

CONFUSION MATRIX FOR CCA USING THE UNIMIB DATA-SET.
(EQUAL EPOCHS) W = WALKING, R = RUNNING, J = JUMPING

9 daily activities like walking, running, climbing the stairs.
The data is pre-split to represent the individual epochs from
each of the activities and thus no pre-processing has been done
on this data. To showcase the performance over a wider set of
activities, we use data pertaining to all the 9 daily activities for
this data set. The signals are recorded at a sampling frequency
of 50Hz and the dataset for these 9 activities amounts to a total
of 7565 epochs. The data from XYZ-axis of the accelerometer
is utilized towards classification.

The accuracies of the PCA and CCA schemes for the
UniMiB dataset are given in the form of a confusion matrix
in Tables V and VI, respectively. For the set of daily activities,
the PCA based scheme gives an overall accuracy of 94.1%.
The macro average accuracy (MAA), or the average of the
accuracies of individual activities is 90.3%. In table VII we
have compared the performance of the two proposed schemes
against the results from Micucci et al. [9] who have reported
results on the same dataset with a k-nearest neighbor (KNN)
classifier, a support vector machine (SVM) based classifier,
an artificial neural network (ANN) and a random-forest (RF)
classifier. Along with this, we have also reported the accuracies
of the two EEG classification schemes in the table.

The number of PC sets used plays a significant role in the
accuracy of the PCA based scheme. In Fig. 8 we can see the
impact of increasing the number of principal component sets
on the macro average accuracy (MAA) across all the classes.
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TABLE VII

COMPARISON WITH OTHER METHODS IN LITERATURE
FOR UNIMIB DATASET

TABLE VIII

CONFUSION MATRIX FOR PCA WITH 5-FOLD VALIDATION USING
THE TEXAS STATE DATA-SET. W = WALKING,

U = UPSTAIRS, D = DOWNSTAIRS

Fig. 7. Percentage error for the PCA based scheme in the UniMiB data-set
with different number of training samples.

Fig. 8. Percentage macro average accuracy (MAA) for the PCA based scheme
in the UniMiB data-set with different number of principal component (PC)
sets used.

The MAA increases utill the number of sets is increased
to 10 but remains constant after that. This improvement in
accuracy though comes at an increased computational cost,
especially in regard to the validation. While using B set PCA,
the computational cost is increased by a factor of B compared
to the single set PCA. This happens because for any incoming
epoch, the reconstruction error has to be computed for each
of the B PC sets, as explained in section III-B3. But as seen
in Fig. 8, the improvement in accuracy saturates pretty quickly
and thus for practical purposes, B has a small value. Also,
since validation primarily involves the projection of a vector on
to the principal components, which is not an expensive opera-
tion even if it is done B times, the complexity of the multiset
PCA remains considerably low from a practical use standpoint.

CCA being unsupervised, does not require any training data
as existing supervised methods, though it is challenged by the

TABLE IX

CONFUSION MATRIX FOR CCA USING THE TEXAS STATE DATA-SET

Fig. 9. The accelerometer axes of the Bioradio [28] physiological monitoring
device (left) and a photo showing a person wearing the device on their waist
during the data collection session (right).

presence of many different classes that need to be separated
in a dataset. For the CCA based unsupervised clustering
approach, we have only presented the clustering accuracies
for 3 classes. We are currently improving the approach to
reduce computational complexity and enable data clustering
in the presence of larger number of clusters. The CCA based
approach gives an overall accuracy and a MAA of 71.1% each.

C. Texas State Dataset

The third dataset that we tested was collected by our team
at Texas State University, and it is a relatively small data-set,
including 3 users performing 5 activities (i.e. walking on a
level surface, going downstairs, going upstairs, standing and
sitting). The user repeats the activity sequence five times. The
total duration of each run was about 2 minutes and 40 seconds.
3-dimensional acceleration data at a sampling rate of 250 Hz
were collected using a BioRadio device [28] mounted on the
waist of each subject (see Fig. 9). This data-set was mainly
created to facilitate the development stages of our methods.
Nonetheless, our experimental results are illustrated here as
an extra evaluation resource. The accuracy is lower compared
to the other datasets due to the small size of the dataset.

Based on the results provided for the proposed methods and
in comparison with other existing solutions tested across the
three datasets, it can be concluded that the PCA-based scheme
gives similar or higher accuracy compared to competitive
solutions. It has the added advantage of being cost-effective as
only few principal components are used for validation (15 for
this case study). The only drawback here is with regard to
the need for labeled training data, which may be constrained
in some applications. The CCA-based scheme, even-though
has lower accuracy compared to PCA (although it outper-
forms LDA based schemes in some datasets), is completely
unsupervised. It does not require any training data, which is
a basic requirement for all the other schemes mentioned here,
and this gives CCA an obvious advantage.
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Fig. 10. Percentage error for the PCA based scheme in the Texas State
data-set with different number of training samples.

V. DISCUSSION AND CONCLUSION

In this work, we have presented two novel correlation
analysis-based approaches for classifying signals represent-
ing time-series data. Depending on the application require-
ments, the proposed approaches are suitable for both super-
vised or unsupervised learning applications respectively. The
advantages of the proposed methods compared to existing
approaches can be summarized in the following:

• Both methods described here do not require the extraction
of features from the signals being analyzed to achieve the
segmentation and classification tasks.

• The signals do not need to be segmented in advance to be
used for classification. The segmentation process is part
of the overall optimization problem.

• The supervised, PCA-based approach is lightweight and
can be suitable for real-time signal classification on low-
power or embedded devices.

• The unsupervised, CCA-based approach can be utilized
when training data are not readily available.

As part of future work we plan to explore optimization
schemes to reduce the computational complexity of the CCA
based scheme. Since the optimization involved with CCA
is bi-convex in nature, [29]–[31] may provide relevant leads
towards solving this problem.
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