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Abstract: This paper presents SmartFall, an Android app that uses accelerometer data collected from a
commodity-based smartwatch Internet of Things (IoT) device to detect falls. The smartwatch is paired
with a smartphone that runs the SmartFall application, which performs the computation necessary
for the prediction of falls in real time without incurring latency in communicating with a cloud server,
while also preserving data privacy. We experimented with both traditional (Support Vector Machine
and Naive Bayes) and non-traditional (Deep Learning) machine learning algorithms for the creation
of fall detection models using three different fall datasets (Smartwatch, Notch, Farseeing). Our results
show that a Deep Learning model for fall detection generally outperforms more traditional models
across the three datasets. This is attributed to the Deep Learning model’s ability to automatically
learn subtle features from the raw accelerometer data that are not available to Naive Bayes and
Support Vector Machine, which are restricted to learning from a small set of extracted features
manually specified. Furthermore, the Deep Learning model exhibits a better ability to generalize to
new users when predicting falls, an important quality of any model that is to be successful in the real
world. We also present a three-layer open IoT system architecture used in SmartFall, which can be
easily adapted for the collection and analysis of other sensor data modalities (e.g., heart rate, skin
temperature, walking patterns) that enables remote monitoring of a subject’s wellbeing.

Keywords: fall detection; deep learning; recurrent neural network; smart health; IoT application; IoT
architecture; smartwatch

1. Introduction

The Internet of Things (IoT) is a domain that represents the next most exciting technological
revolution since the Internet. IoT will bring endless opportunities and impact every corner of our
planet. In the healthcare domain, IoT promises to bring personalized health tracking and monitoring
ever closer to the consumers. This phenomenon is evidenced in a recent Wall Street Journal article
entitled “Staying Connected is Crucial to Staying Healthy” (WSJ, June 29, 2015). Modern smartphones
and related devices now contain more sensors than ever before. Data from sensors can be collected
more easily and more accurately. In 2014, it is estimated that 46 million people are using IoT-based
health and fitness applications. Currently, the predominant IoT-based health applications are in sports
and fitness. However, disease management or preventive care health applications are becoming
more prevalent. The urgency for investment in health monitoring IoT technology is also echoed by a
recent Wall Street Journal article (July 21, 2018) entitled “United States is Running Out of CareGivers”.
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By 2020, there will be 56 million people aged 65 and above as compared with 40 million in 2010. In [1],
a system called VitalRadio is reported to be able to monitor health metrics such as breathing, heart rate,
walking patterns, gait, and emotional state of a person from a distance. Recently, there is a surge in the
number of the real-time preventive care applications such as those for detecting falls in elderly patients
due to the aging population [2]. Previous work in fall detection required specialized hardware and
software which is expensive to maintain. In [3], the authors reviewed 57 projects that used wearable
devices to detect falls in elderly. However, only 7.1% of the projects reported testing their models in
a real-world setting. The same paper also pointed out that a wearable wristwatch for fall detection
has the added benefit of being non-intrusive and not incurring any additional injuries during a fall.
Indeed, the main challenge for fall detection is the ability to create a highly accurate detection model
that can run on unobtrusive and inexpensive devices. Sensors attached to the torso of the monitored
subject have shown the ability to achieve higher detection accuracy; however, often in real life the
elderly refuse to wear such sensors both for practical and psychological reasons.

We investigated both traditional (Support Vector Machine and Naive Bayes) and non-traditional
(Deep Learning) machine learning techniques for the creation of fall models using three different
datasets. Two of the datasets were collected by our team using a Microsoft Band 2 smartwatch [4],
and a Notch [5] sensor. The dataset contains different simulated fall events and activities of daily living
(ADLs) performed by a group of volunteer test subjects. The third dataset contains data coming from
the Farseeing real-world fall repository [6]. The Smartwatch dataset is clearly needed since we are
using a smartwatch device. Knowing the performance of our model on this dataset helps with the
creation of a model that can be used in real life. The Farseeing dataset was the only one containing real
falls from elderly people. While this dataset is not collected using smartwatch devices, it is still useful
to compare how the Deep Learning model performs and compares against the traditional models.
Evaluation of the models on Farseeing also helps to gain the insight on how the models deal with
activity data that would realistically be seen with elderly people. The Notch dataset contains a much
wider variety of ADLs collected by a wrist-mounted Notch sensor. Performance metrics for this dataset
gives us a better idea of how the models perform and compare on a more complex wrist dataset. Notch
also allows for a more precise labeling mechanism. Using the application provided to record Notch
data, a user can visualize the data after it is recorded and set labels where falls happened at specific
times. This helps examine the possibility that the model is being restricted by inaccurate labeling on
the other two datasets. More information about each dataset is provided in Section 4.1.

In both the offline and online/real-time tests, Naive Bayes (NB) achieved a higher recall as
compared with Support Vector Machine (SVM) under the traditional machine learning technique
across the three datasets. Among the two traditional models, SVM is better in classifying ADLs,
but it misses many critical falls. To the best of our knowledge, this is the first effort to conduct
an in-depth study on using the Deep Learning (Deep) model, a non-traditional machine learning
technique for fall detection using a wrist-worn watch. Our results show that a Deep Learning model
for fall detection generally outperforms more traditional models across the three datasets.

As noted in the literature, a significant danger with falling in elderly adults is the inability to
get up after the fall, which is reported to occur in 30% of the time. Currently, there are around eight
million adults aged 65 and over that use medical alert systems like LifeLine, Medical Guardian and Life
Alert [7]. The average cost of using such a system is 25 dollars per month. Our system is developed as
an open source project and SmartFall will be offered as a free app. Another major problem in using
these medical alert system is that, there is the danger that the person might not be conscious to press
the Life Alert’s emergency button after a bad fall. With our SmartFall system, the detection of the fall
in real time and the ability of sending a text message and a GPS location to a trusted family member,
friend, or call 911 in real time ensure a better survival or improved care for the subject after a fall.
The main contributions of the paper are:

• An in-depth study of both traditional and non-traditional machine learning algorithms for fall
detection on three different fall datasets.
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• A demonstration that the fall detection model trained using deep learning has better accuracy than
models trained using either SVM or NB in predicting falls based on live wrist-worn acceleration
data tested in both offline and online/real-time experiments.

• A three-layer open IoT system architecture and a real-time fall detection app that is privacy
preserving and has an intuitive user interface (UI) for use by the elderly.

The remainder of this paper is organized as follows. In Section 2, we review the existing work on
fall detection and emphasize on research works that specifically address fall detection using wearable
devices. In Section 3, we provide a detailed description of the system architecture of our fall detection
framework and the design of the UI. In Section 4, we describe the three fall datasets we used for
fall detection and present our fall detection methods. In Section 5, we present the evaluation of the
SVM, NB and Deep Learning models in both online and offline experiments, and finally in Section 6,
we present our conclusion and future work.

2. Related Work

The World Health Organization (WHO) reported that 28–35% of people aged 65 and above
fall each year. This rate increases to 32–42% for those over 70 years of age. Thus, a great deal of
research has been conducted on fall detection and prevention. The early works in this area were
concentrated on specially built hardware that a person could wear or installed in a specific facility.
The fall detection devices in general try to detect a change in body orientation from upright to lying
that occurs immediately after a large negative acceleration to signal a fall. Those early wearable devices
are not well-accepted by elderly people because of their obtrusiveness and limited mobility. However,
modern smartphones and related devices now contain more sensors than ever before. Data from
those devices can be collected more easily and more accurately with the increase in the computing
power of those devices. Smartphones are also widespread and widely used daily by people of all ages.
There is thus a dramatic increase in the research on smartphone-based fall detection and prevention in
the last few years. This is highlighted in the survey paper [8]. The smartphone-based fall detection
solutions in general collect accelerometer, gyroscope and magnetometer data for fall detection. Among
the collected sensor data, the accelerometer is the most widely used. The collected sensor data were
analyzed using two broad types of algorithms. The first is the threshold-based algorithm which is less
complex and requires less computation power. The second is the machine learning-based fall detection
solutions. We will review both type of works below.

A threshold-based algorithm using a trunk-mounted bi-axial gyroscope sensor is described in [9].
Ten young healthy male subjects performed simulated falls and the bi-axial gyroscope signals were
recorded during each simulated fall. Each subject performed three identical sets of 8 different falls.
Eight elderly persons were also recruited to perform ADLs that could be mistaken for falls such as
sitting down, standing up, walking, getting in and out of the car, lying down and standing up from
bed. The paper showed that by setting three thresholds that relate to the resultant angular velocity,
angular acceleration, and change in trunk angle signals, a 100% specificity was obtained. However,
there was no discussion on the practicality of attaching a trunk-mounted sensor on a person for a
prolonged period. The restriction on the mobility of people and the privacy issue of data storage were
not discussed as well. There is also research work utilizing a thresholding technique set to only detect
falls resulting in acceleration greater than 6 G (Gravity). While this will work very well for “hard” falls,
we find that many of our falls were far below 6 G, producing around 3.5 G. A wrist-mounted device
may encounter even smaller acceleration than 3.5 G if the subject does not use their hands to stop their
fall. This type of fall is of special importance because an injury is more likely as the fall was not “caught”
by the faller’s hands. This is one of the reasons machine learning approaches are considered more
robust than thresholding techniques. Even though in controlled conditions thresholding techniques
may appear to be superior, they often do not perform well on anomalous data, such as falls that only
reach a maximum force of 3.5 G.
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A promising use of machine learning algorithms is recently presented by Guirry in [10] for
classifying ADLs with 93.45% accuracy using SVM and 94.6% accuracy using C4.5 decision trees.
These ADLs include: running, walking, going up and down stairs, sitting and standing up. Their
setup includes a Samsung Nexus Galaxy smartphone and the Motorola MOTOACTV smartwatch.
Data were collected from the accelerometer, magnetometer, gyroscope, barometer, GPS, and light
sensors. They synthesized a total of 21 features from all the sensors. They did not specifically address
the fall detection problem.

The SVM learning algorithm has also been used for fall detection by other scholars in [11]. These
scholars used a trunk-mounted tri-axial sensor (a specialized hardware) to collect data. They were able
to achieve 99.14% accuracy with four features using only high-pass and low-pass accelerometer data.
They used a 0.1 s sliding window to record minimum and maximum directional acceleration in that
time period for a feature. We drew inspiration from this approach as it allowed us to access temporal
data within each sampling point rather than having to choose a generalized feature for the whole
duration which might not reflect a true fall. Other work in fall detection has focused on using multiple
sensors attached to the subject. For instance, sensors can be placed on the lapel, trunk, ankle, pocket,
and wrist. These systems typically show marvelous results of 100% accuracy but lack convenience,
portability, and are more computationally intense for a smartphone due to more data being collected
and processed.

In [12], a fall detection system architecture using multiple sensors with four traditional machine
learning algorithms (SVM, NB, Decision Tree and KNN) was studied. The paper is the first to propose
using ANOVA analysis to evaluate the statistical significant of differences observed by varying the
number of sensors and the choice of a particular machine learning algorithm. The main conclusion
from this paper is that sensors placed close to the gravity center of the human body (i.e., chest and
waist) are the most effective. A similar paper in [13] conducted a study on the effect of the sensor
location on the accuracy of fall detection. They experimented with six different traditional machine
learning algorithms including dynamic time warping and artificial neural network. They showed that
99.96% sensitivity can be achieved with a waist sensor location using the KNN algorithm. Our work
is focused on using a wrist-worn watch as the only sensor and thus cannot leverage these research
results on other sensor locations.

A recent paper [14] on fall detection using on-wrist wearable accelerometer data concluded that
threshold-based fall detection system is a promising direction because of the above 90% accuracy
in fall detection with the added bonus of reduced computation cost. We disagree with this because
the dynamic of fall cannot be captured in any rule-based or threshold-based system. The paper also
pointed out the lack of real-world validation of majority of fall detection systems which we want to
address in this paper.

There has also been some work on using Recurrent Neural Networks (RNNs) to detect falls;
however, to our knowledge, no such work uses accelerometer data collected by a smartwatch to detect
falls. In [15], the authors describe an RNN architecture in which accelerometer signal is fed into 2 Long
Short-Term Memory (LSTM) layers, and the output of these layers is passed through 2 feed-forward
neural networks. The second of these networks produces a probability that a fall has occurred.
The model is trained and evaluated on the URFD dataset [16], which contains accelerometer data
taken from a sensor placed on the pelvis, and produces a 95.71% accuracy. The authors also describe a
method to obtain additional training data by performing random rotations on the acceleration signal;
training a model with this data gives an accuracy of 98.57%.

The authors in [17] also propose an RNN to detect falls using accelerometer data. The core of
their neural network architecture consists of a fully connected layer, which processes the raw data,
followed by 2 LSTM layers, and ending with another fully connected layer. They also have some
normalization and dropout layers in their architecture. The authors train and test their model with
the SisFall dataset [18], which contains accelerometer data sampled at 200 Hz collected from a sensor
attached to the belt buckle. In order to deal with a large imbalance in training data, of which ADLs form
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the vast majority, the authors define a weighted-cross entropy loss function, based on the frequency of
each class in the dataset, that they use to train their model. In the end, their model attains a 97.16%
accuracy on falls and a 94.14% accuracy on ADLs.

Our work differs primarily from these two papers in that we seek to develop a fall detection model
that obtains accelerometer data from an off the shelf smartwatch rather than specialized equipment
placed near the center of the body. This presents several challenges not addressed in these papers’
methodology. Because of its placement on the wrist, a smartwatch will naturally show more fluctuation
in its measurements than a sensor placed on the pelvis or belt buckle. The scholars in [18] also use
accelerometer data sampled at a 200 Hz frequency obtained by specialized equipment; this is a
significantly higher than the frequency used by our smartwatch, which samples at 31.25 Hz. We also
have the additional restriction that the model we develop should not consume so many computational
resources that it cannot be run on a smartphone. Thus, while there has been some work done on deep
learning for fall detection, we have additional constraints that make these works not directly relevant
for our purposes.

In summary, many different machine learning algorithms such as the SVM, NB, KNN, Decision
Trees, and Neural Networks have been applied to fall detection with some success. However, very few
of those models have been tested in real time and on a wrist watch. Recently, an Android Wear-based
commercial fall detection application called RightMinder [19] was released on Google Play. While the
goal of RightMinder is very similar to ours, no technical details are available on the accuracy of the fall
detection model and the management of the collected sensor data. We installed RightMinder and tried
with 10 different simulated falls, it only detected 5 out of the 10 falls.

3. System Architecture

Figure 1 shows an overview of the IoT system architecture supporting our SmartFall application.
It is a three-layered architecture with the smartwatch on the edge and the smartphone in the middle
layer which runs the SmartFall application. In many IoT applications, it is critical that data can be
stored locally to preserve privacy and is in close proximity to the program that processes and analyzes
the data in real time. However, the smartphone has a limited storage and computation capacity and
there is thus a need to periodically remove the sensed data or transfer the sensor data (with consent
from user) to a server securely for continuous refinement of the fall detection model and for the
long-term archival. The inner most layer serves as the heavy-duty computational platform which
consists of multiple services including a web server to host applications that can visualize aggregated
sensor data for public health education, a sensor database for archiving and visualizing sensed data
from the smartwatch of the user who has given the consent (these data can be set up to be remotely
accessible by the caregiver using a secure protocol that is HIPAA compliant), and machine learning
services for analysis of the archived data for continuous refinement of the fall detection model. Data
privacy is a big concern in health monitoring systems. In SmartFall, the data archived to the server are
all de-identified and indexed by a randomly generated key which is only known to the watch wearer
and the associated caregiver. It is impossible for any hacker to identify which sensor data is coming
from which user on the server side.

This three-layer IoT system architecture is not specific to developing the fall detection IoT
application. For example, we have also successfully used the same architecture for developing
an IoT application for the prediction of blood alcohol content using the skin temperature and heart
rate sensor data in [20]. In summary, this architecture has the potential to serve as a scalable service
platform for IoT data for all kinds of devices and the associated applications.

Our long-term goal is to be able to support all existing smartwatches that can be paired with either
Android or IOS-based smartphones. However, the Microsoft Band 2 was chosen as the wrist-worn
device over other options in this prototyping phase due to the variety of sensors it supports and the
low cost of acquiring the watch. The Microsoft Band 2 has the capability to track heart rate, galvanic
skin response, barometric pressure, skin temperature, UV ray intensity, GPS location, skin capacitance,
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ambient light, sound, and, of course, it has an accelerometer and gyroscope. The Microsoft Band 2 also
has multiple sampling rate options. The Nexus 5X smartphone was chosen to run our fall detection IoT
application and receive sensor data from the smartwatch via a low-power Bluetooth communication
protocol. This Nexus smartphone has a 1.8 GHz hexa-core processor and 2 gigabytes of RAM memory.
This proved sufficient for real-time computation of the features, and for making the predictions, using
models which were pre-trained offline.

Figure 1. Architecture of SmartFall IoT system.

3.1. Data Archiving and UI Design

We have implemented an archiving service which can be configured with a protocol where a
participating user (with consent) can transmit all or selected sensed data in three minutes chunk to a
designated server via a WiFi connection periodically. These sensor data can be used for the creation of
other applications that provide other health monitoring benefit such as daily activities recognition and
the overall wellbeing assessment of the user. Another critical service provided by the archiving service
is the ability to transmit both false positive and true positive fall data via a REST-based web service
periodically to a server. These archived false positive and true positive data samples can be used for
re-training of the fall model and adapt the fall detection dynamically for a particular user.

When a fall has been detected by SmartFall on the phone, an alert text message can be sent to
the carer upon confirmation by the user (via voice command on the phone or a simple interaction
with the SmartFall as shown in Figure 2). The SmartFall interface is designed such that if a user is
unconscious after a fall, the message can be configured to be sent automatically to the carer after a
specified duration as shown in center screen in Figure 2. The alert message could include the user’s
GPS location and other health metrics, such as the heart rate and the body temperature at the time of
the fall. Figure 2 shows three of the UIs for the SmartFall application. The screen on the left shows the
home screen UI for the application and the screen on the center shows the UI when a fall is detected.
We followed the best practices advocated in [21] for the design of the UI for the elderly. The three
main principles we adopted were strict color scheme with high contrasts, legible and big fonts, simple
description of the system to engage them to use it.

We will briefly highlight some of the key features of SmartFall app. The home screen (left most
screen in Figure 2) launches the SmartFall app when the user pressed the “ACTIVATE” button. A user
can terminate the application by pressing the “SAVE YOUR ACTIVITIES” button. This will archive all
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the sensed data to the designated server and close the application. When a fall is detected, the screen
in the middle of Figure 2 will be displayed with a programmable sound. The user is shown a screen
with three buttons. The “NEED HELP” button will send a text message to the carer. The “FELL BUT
OK” button will save the sensed data during that prediction interval as true positives. The “I’M OKAY”
button will save these data as false positives. If the user did not interact with any of these three buttons,
after a specified duration (e.g., 25 s), an alert message will be sent to the carer. The UI screen on the right
most is for the one-time initialization of the user profile before the application can be launched. This UI
includes setting up the contact details of the carer. Note that minimal personal data is collected and
all those data are stored locally in the phone’s internal SQLite database. The automatically generated
user-id is used by the system to differentiate different user’s data on the server. During data archiving,
only this user-id and the selected sensed data such as the accelerometer data are sent to the server.

Figure 2. SmartFall User Interface.

4. Methodology

4.1. Data Collection

It is impossible to collect simulated fall data from the elderly group of people which our
application is targeted to because of higher likelihood of injuries. Currently, the only real-world fall
data for elderly people (above 65 years old) available for research is from the Farseeing consortium [6].
This dataset contains a total of 23 falls sampled between 20 to 100 Hz using specialized sensors such
as ActivePAL3 or McRobert Dynaport MiniMod. Since the sensor data of Farseeing was collected at
various frequencies, we needed to resample all the data to 31.25 Hz, the frequency of our smartwatch.
Resampling to the smartwatch frequency can help in answering the question of how well algorithms
can perform at lower frequencies supported by low-power devices such as smartwatches. Performing
tests on data with different frequencies is not as important to us, as it may not accurately reflect how
our model would perform on real data received from a smartwatch at 31.25 Hz. We down-sampled the
100 Hz sensor data by removing random samples until the correct frequency of 31.25 Hz was obtained.
The 20 Hz data was upsampled to 31.25 Hz by adding in random samples, where each sample was an
average of the samples directly before and after it.

The Smartwatch dataset was collected from seven volunteers each wearing a MS Band watch.
These seven subjects were all of good health and were recruited to perform simulated falls and ADLs.
Their ages ranged from 21–55, height ranged from 5 ft to 6.5 ft. and the weight from 100 lbs to 230 lbs.
Each subject was told to wear the smartwatch on his/her left hand and performed a pre-determined set
of ADLs consisting of: jogging, sitting down, throwing an object, and waving their hands. This initial
set of ADLs were chosen based on the fact there are common activities that involved movement of
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the arms. These datasets were automatically labeled as “NotFall”. We then asked the same subject to
perform four types of falls onto a 12-inch-high mattress on the floor; front, back, left, and right falls.
Each subject repeated each type of fall 10 times. We experimented with the sampling rates of 4 Hz,
1.25 Hz, and 62.5 Hz supported by the smartwatch, and settled with 31.25 Hz. We found that the data
sampling frequency of 4 Hz, although it consumes fewer resources, missed too many critical sample
points within the critical phase of a fall. On the other hand, the use of the higher sampling frequency
of 62.5 Hz provided by the watch was flooding the application with too much data and incurred a
high computation cost which is impractical for real-time prediction of falls. This dataset is available
from http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet under the smartwatch folder.

We implemented a data collection service on the smartphone to have a button that, when pressed,
labels data as “Fall” and otherwise “NotFall”. Data was thus labeled in real time as it was collected,
by the researcher holding the smartphone. However, the pressing of the button can introduce errors
such as the button is being pressed too late, too early, or too long for a fall activity. To mitigate these
errors, we post-processed the collected data to ensure that data points related to the critical phase of
a fall were labeled as “Fall”. This is done by checking that for each fall data file, the highest peak of
acceleration, and data points before and after that point, were always labeled as “Fall”.

The Notch dataset was collected from simulated fall data and ADLs using a wrist-worn Notch
sensor [5]. The Notch system consists of multiple individual sensors which can be placed at different
parts of the human body to collect motion data and reconstruct a full-body skeleton representation of
the movements. We used the full array of sensors to reconstruct the movements for labeling purposes
but utilized the data coming only from the sensor placed on the wrist for fall detection. We recruited
seven volunteers with the age ranging from 20 to 35, heights from 5 ft to 6 ft and weights from 100 to
200 lbs. The Notch sensor is paired to an Android device (a tablet) via Bluetooth through a custom-built
data collection app. After the Notch sensor is calibrated, it is given to a volunteer and strapped to
his/her wrist. The sensor is calibrated once more while asking the volunteer to maintain a specific
pose. Data collection is then initiated. A list of seven ADLs (sitting, getting up, jogging, throwing an
object, waving, taking a drink, and going up and down stairs) and four type of falls (front, back, left,
right) both soft and hard falls are read aloud for the volunteer to perform. When the list is finished the
collection is stopped and the data is downloaded to the tablet from the sensors’ memory. This dataset
is available from http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet under the Notch folder.

4.2. Traditional Machine Learning Model

We experimented with two traditional machine learning algorithms. The first one is SVM, which
is widely used in the literature for fall detection. The second one is NB, which is computationally
more efficient. This efficiency in computation has also been observed by other authors in [22].
They demonstrated that NB could classify fall in less than 0.3 s as compared to Decision Tree which
took more than 6 s.

4.2.1. Feature Selection

For traditional machine learning algorithms (SVM and NB), before any learning can occur, the
raw fall data collected must be processed to extract a set of features to be used for creating the model.

In our experiments, four features we extracted, which are: (1) length of the acceleration vector at
the time of sampling (Ares), (2) minimum resultant acceleration in a 750 ms sliding window (Smin),
(3) maximum resultant acceleration in the same 750 ms sliding window (Smax), and (4) the Euclidean
norm of the difference between maximum and minimum acceleration in the same sliding window
(∆S). The determination of the four features that we used for training a model to recognize a fall was
influenced by the concept of a critical phase of a fall, described in [23]. The critical phase of a fall
encompasses the free-fall stage, the impact, and the dampening oscillations to rest. Figure 3a shows
what we would expect to see from the definition of a normal fall which is defined by the critical phase.
Note the height of the graph; the highest acceleration recorded for this fall was a fairly reasonable

http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet
http://www.cs.txstate.edu/~hn12/data/SmartFallDataSet
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5.5 G. We can also see the dampening oscillations in the latter half of the fall. However, because our
accelerometer is wrist-mounted, not all falls follow this pattern. Figure 3b shows a fall that has a
reasonable maximum acceleration (the peak), but almost completely lacks the weightlessness portion
we would expect. In Figure 3c, the overall fall pattern is similar but the scale is completely different.
The maximum acceleration never exceeded 3 G. These latter two examples may appear to be anomalies
but are actually extremely prevalent especially for the left and right fall data we collected.

(a) Normal pattern of a fall. (b) Fall without free-fall phase. (c) Shorter duration fall.

Figure 3. Different fall signal patterns.

We used the Euclidean norm to measure the length (magnitude) of acceleration and velocity
vectors. That is, for any vector~r in R3, we used:

‖~r‖2 =
√

r2
x + r2

y + r2
z (1)

Ares, resultant acceleration, is defined as the magnitude of the acceleration vector at the start of a fall.
Using Equation (1), we defined:

Ares = ‖A‖2 (2)

∆S, adapted from Liu and Cheng’s paper in [11], is the magnitude of the difference between minimum
and maximum acceleration in a 750 ms sliding window. That is, using Equation (1), we defined:

∆S = ‖Smax − Smin‖2 (3)

where Smin and Smax adapted from Jantaraprim et. al’s paper [23] are defined as the minimum and
maximum resultant acceleration in a sliding window of 750 ms. In the original implementation by
Jantaraprim et al. and Liu and Cheng’s, the sliding window was designated to be 0.1 s. In the literature
there is little consensus on what sliding window size is optimal for the calculation of Smin and Smax.
0.2 to 2 s windows have been used but windows between about 0.5 and 1 s were more common. When
computing over streaming data, the computation must accommodate data at the boundary of a sliding
window and thus it is important to set an overlapping threshold. We experimented with various
window sizes of 500 ms to 1000 ms and different overlaps from 90% to 50%. The combination of 750 ms
window size with 50% overlap achieved the best accuracy rate.

SVM and NB models are trained to predict fall on a sample by sample basis, categorizing each
sample as a fall or not a fall. This method does not necessarily suit the nature of the activities we are
trying to detect as detecting a fall constitutes finding a pattern from a succession of sample points as
shown in Figure 3. This means the final prediction of whether a movement of the wrist is a fall or
not a fall must be derived by a second step which counts a range of consecutive positive fall labels
within a prediction interval. To determine this range, we experimented with the model in real life
using activities that could be defined in two categories: (1) short-term spikes in acceleration and (2)
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long-term increases in acceleration. Activities that could be categorized as (1) are various hand and
arm gestures such as waving, throwing an object, and punching. An activity that would belong in
category (2) would be running or exercising involving arm movements which is demarcated by a
sudden increase in acceleration that is maintained over a duration of at least three seconds (i.e., longer
than a typical fall). Our initial experimental result which is discussed in our earlier paper [24] shows a
threshold between 3 and 50 as the ideal in the sense that it gives the highest recall and accuracy in fall
prediction when tested. The pseudo codes of our traditional machine learning fall prediction depicted
in Algorithm 1 consists of fall features computation, classification of each fall instance (using either
SVM or NB), and the final prediction of fall or not fall by counting the number of consecutive fall
predicted within a sliding window.

Algorithm 1 Prediction algorithm
Input: AccelerometerData (Ax, Ay, Az) in CSV file
Output: prediction of true or false of a fall
slidingWindow = 750 ms
consecutiveCount = 0
prediction = f alse
for all AccelerometerData in slidingWindow do

Compute Ares, ∆S, Smin, Smax
Write to CSV file

end for
Initialize the prediction interval (i.e., which data sample in the CVS file to start the prediction)
traditionModel = the trained NB or SVM fall detection model
for all instance in predictionInteval do

label = traditionalModel.classifyInstance(instance)
if (label == ”Fall”) then

++consecutiveCount
else if (3 <= consecutiveCount <= 50) then

prediction = true
consecutiveCount = 0

else

consecutiveCount = 0
end if

end for
return prediction

4.3. Deep Learning Model

Next, we experiment with a non-traditional machine learning approach, namely Deep Learning,
in order to evaluate its suitability for the task of fall detection and the possibility of achieving higher
accuracy compared to the traditional algorithms.

One of the disadvantages of traditional machine learning algorithms is the need for a priori
feature extraction from the data. Feature extraction and selection are tasks that need to be performed
before any learning can occur. The types of features to be extracted have to be manually specified
and thus their effectiveness heavily depends on the ingenuity of the researcher. Each signal has
different temporal and frequency domain characteristics [25]. This makes feature extraction and
selection a complicated task, which can heavily affect the performance of the machine learning model.
For example, in [26] the accuracy of the SVM algorithm varies depending on the feature selection
method used. In feature-dependent methods, the main difficulty is to extract the appropriate features.
In certain types of data, to extract high quality features we need human-like understanding of the
raw data.
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Deep learning comes to solve this problem by eliminating the need for separate feature extraction,
selection and model training phases. Deep learning refers to the process of machine learning using
deep neural networks. Deep neural networks are biologically inspired variants of the Multiple Layer
Perceptrons (MLPs) [27]. Deep learning has shown significant improvements in areas such as image
classification and object detection. In early object detection approaches, people extracted features
and fed these features to learning algorithms (e.g., SVM) to successfully detect objects of interest
(e.g., pedestrians) in the image. However, when these methods were used to detect several classes
other than pedestrians e.g., car, sign or tracks, the accuracy of the model dropped [28].

The use of deep convolutional neural networks (CNNs) showed a notable increase in the
performance of detecting objects using highly challenging datasets [29]. The two most common
implementations of deep neural networks are CNNs [29] and RNNs [30]. CNN is a type of feed-forward
artificial neural network which takes fixed size inputs and generates fixed-size outputs. CNNs are
ideal for images and video processing. RNNs, unlike feed-forward neural networks, can use their
internal memory to process arbitrary sequences of inputs. RNNs use time-series information, which
means that past data points can influence the decision regarding current data points. RNNs are ideal
for the analysis of temporal data, such as speech and sensor data streams. In summary, due the
sequential nature of the data points collected from accelerometers, RNNs are better suited to our fall
detection task.

A popular variant of the traditional RNN contains units called gated recurrent units (GRU).
A GRU network is similar to a LSTM network [31]. Both contain gating mechanisms that look to
solve the vanishing gradient problem. GRU networks have been shown to converge as well as LSTM
networks and require less computation as they do not contain as many trainable parameters. This is
ideal for the computation constrained smartphone. This type of RNN network architecture underlies
our Deep Learning model. It helps capture activities over a longer period of time so that they can be
better distinguished from others. We believe it has an advantage over threshold-based algorithms for
this reason. Many regular activities can briefly trigger high acceleration values, and threshold-based
models often have a hard time telling these apart from falls. Looking at many data points at once
allows us to make more robust distinctions between activities.

Figure 4 displays our model architecture:

Figure 4. RNN Model Architecture.

The model contains an input layer, two hidden layers, and an output layer. The input layer
contains 3 nodes for the raw data; the accelerometer x,y,z vectors. It then feeds through our hidden
layers: a recurrent layer (GRU) of size 20 ReLU nodes, and a fully connected layer of size 20 ReLU
nodes. The output is a 2 node SoftMax layer which outputs a predicted probability that a fall
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has occurred. This model is lightweight relative to many deep learning architectures, and makes
inference computation much more efficient for mobile devices. RNNs are traditionally trained with
backpropagation through time (BPTT), so it is necessary to specify how many steps n in the past the
network should be trained on. This parameter is important since our falls and activities occur over a
period of time. If we train the network on only a few steps in the past, it will not capture the full scope
of the activity. However, if we train it over too many steps, the network may take into account past
accelerometer data that is not relevant. We settled on using n ≈ 40 steps for this model. This means
each prediction the model makes takes into account ≈1.28 s of data. This is enough time to capture the
aspects of a fall, as well as to rule out some activities as falls.

Model predictions (i.e., predictions produced by the neural architecture) begin once the number
of sensor data points acquired is equal to the number of steps. Every model prediction thereafter will
only require one additional data point, as the model will slide one data point at a time, reusing all
of the previous data points except for the least recent. However, before producing a final prediction,
we generate a heuristic value based on the probabilities produced by several model predictions.
We compute the average value of 10 consecutive probabilities, and compare this with a pre-defined
threshold value. If the average probability breaches this threshold, then it is considered a fall prediction.
This helps to avoid isolated positive model predictions from triggering a false positive. Figure 5 outlines
this schematic.

Figure 5. Prediction scheme for deep learning.

5. Evaluation

Our goal is to be able to detect accurately whether someone has fallen in real time based on the
motion sensed by a smartwatch that a person is wearing on their wrist. We do not want to miss a fall,
which implies a fall detection model with a high Recall or Sensitivity. A missed fall is represented
in our evaluation experiments as a false negative (FN). We also do not want to have too many false
alarms, which in our evaluation as represented as false positives (FPs), and thus, we want to achieve a
high precision. In particular recall, precision, and overall accuracy are calculated as:

Recall = Sensitivity = TP/(TP + FN)

Precision = TP/(TP + FP)

Accuracy = (TP + TN)/(TP + TN + FP + FN)
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where true positives (TP) is the number of correctly detected falls. The number of True Negatives (TN)
is not of particular interest to this application as negative instances represent non-falls and, in practice,
they greatly outnumber the number of positive instances.

In this section, we first present our method for evaluating a model on the three datasets described
in Section 4. We then present the results of training and evaluating three models—NB, SVM, and Deep
Learning—on the datasets. We also discuss the results of running these three models in real time with
volunteers wearing smartwatches. We conclude with a comparison of the three models, and what this
means for our Deep Learning model.

The three datasets on which we train and evaluate the three models are the Farseeing, Smartwatch,
and Notch datasets, described in Section 4. Each dataset contains continuous accelerometer data, and
each data point is marked with “Fall” or “NotFall”. For our purposes, a “Fall” instance is a series of
consecutive data points marked “Fall”—this corresponds to the interval of time in which a person
is falling. The Smartwatch dataset is also labeled with ADL information, which makes it easy to tell
where each “ADL” instance starts and stops. The Notch and Farseeing datasets, however, are not
labeled with ADL intervals; they have only continuous accelerometer data marked with “NotFall”.
Thus, it is harder to determine intervals in which a single ADL occurs, since ADLs typically appear
back-to-back. Therefore, for these datasets, we will consider an “ADL” instance to be a 1-s interval of
consecutive data points marked “NotFall”. Because there are many more data points marked “NotFall”
than “Fall” in the Notch and Farseeing datasets, this formulation will produce far more ADL activities
than falls. The number of falls and ADLs in each dataset is given in Table 1.

Table 1. Number of falls and ADL’s by dataset.

# Falls # ADLs

Smartwatch 91 90
Notch 107 2456

Farseeing 23 27,412

As described in Section 4.2.1, a NB or SVM model makes a final fall prediction when the algorithm
outputs between 3 and 50 consecutive data points predicted as fall. We determine if this prediction
is correct by checking if any of the predicted consecutive falls match the label on the corresponding
row of the dataset. We do a similar process to determine if a Deep Learning model’s fall prediction is
correct. As described in Section 4.3, a Deep Learning model produces a prediction after computing
the heuristic, which is the average of probabilities generated by the neural network architecture over
10 windows of n steps, after comparing this heuristic to a pre-defined threshold. When a Deep Learning
model makes a fall prediction, we determine if that prediction is correct by checking the labels in the
dataset corresponding to the final row of each of the 10 windows. If any of these labels is a “Fall”,
the prediction is deemed to be correct.

The results of training and evaluating a NB, SVM, and Deep Learning model on the three datasets
are presented in Table 2. For the Smartwatch dataset, each model is trained on two-thirds of the
data and is tested on the remaining third. The Notch and Farseeing datasets are analyzed using a
leave-one-out strategy where the models are trained on all user files but one. Even though the data in
these datasets is pre-recorded, we simulate an online environment by processing the data as if it were
being received live from a smartwatch. This effectively allows us to test various models in a real-world
situation without the expense of constantly recruiting volunteers.
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Table 2. Offline results by algorithm on 3 datasets.

NB SVM Deep

Smartwatch

Precision 0.60 0.68 0.77
Recall 0.92 0.86 1.0

ADL Acc. 0.38 0.60 0.70
Overall Acc. 0.65 0.73 0.85

Notch

Precision 0.58 0.53 0.79
Recall 0.89 0.80 0.89

ADL Acc. 0.97 0.97 0.99
Overall Acc. 0.97 0.96 0.99

Farseeing

Precision 0.005 0.44 0.37
Recall 0.82 0.55 1.0

ADL Acc. 0.87 0.99 0.99
Overall Acc. 0.87 0.99 0.99

The NB model demonstrates a recall greater than 0.8 on all three datasets—this demonstrates
that the model does well predicting falls. However, the model has a considerably lower precision
on each dataset, indicating a lot of FPs. In particular, the precision on the Farseeing dataset is 0.005;
this especially low number is a result of poor performance in the face of imbalanced data. In the
Farseeing dataset, there are over 1000 ADLs for each fall; in the Notch dataset, which is also imbalanced,
there are only 23 ADLs for each fall—this increase in imbalance is enough to substantially lower the
precision value between the two datasets despite only slightly lower accuracies on falls and ADLs.
It is also worth noting that the imbalance in fall and ADL data in the Notch and Farseeing datasets
causes the overall accuracy to be dominated by the ADL accuracy on all three models.

The SVM model demonstrates a similar pattern to the NB model in that it generally has a high
recall and a lower precision. With the exception of the Farseeing dataset, the SVM model has a recall
greater than or equal to 0.8, indicating that it does pretty well on falls. The low recall of 0.55 on the
Farseeing dataset challenges this; this may suggest that the model has a hard time identifying a rare
class in the midst of extremely imbalanced data. Like the NB model, the SVM also demonstrates a
lower precision value on every dataset, suggesting there are a lot of FPs. We believe that the primary
cause of this in both the NB and SVM models is that these models use derived acceleration features
rather than raw accelerometer data. This fundamentally limits the models, as they cannot discern
between certain directional characteristics of ADLs and falls that may only be accessible through raw
accelerometer data.

The Deep Learning model outperforms the NB and SVM model on every metric except for
precision on the Farseeing dataset, which is lower than the SVM precision. On the Smartwatch and
Farseeing dataset, the deep model has perfect recall, and it has a 0.89 recall on the Notch dataset.
This demonstrates that it does a very good job in identifying falls. Like the NB and SVM models,
the precision values for the deep model are comparatively lower than the corresponding recall values,
suggesting that it also struggles with FPs. However, with the exception of a slightly lower precision
than the SVM on the Farseeing data, the deep model’s precision is higher than both NB and SVM;
we believe that this is because the deep model is trained on the raw accelerometer data, which allows
it to extract helpful signals of ADLs that are not present in the derived acceleration features given to
the NB and SVM models. Also, like the NB model but unlike the SVM model, the deep model has a
substantially lower precision on the Farseeing dataset than the other two datasets; we believe that the
high level of imbalance in the Farseeing dataset may be behind this anomaly, especially as both the
fall accuracy and the ADL accuracy are considerably greater on the Farseeing dataset than either the
Smartwatch or Notch datasets.

In addition, we evaluated the same three models in real time by recruiting five volunteers of
various heights and weights who recorded each model’s predictions on various falls and ADLs. In this
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case, each model was trained on the entire Smartwatch dataset described in Section 4 and tested on
the volunteers, who each wore a smartwatch paired with the smartphone app. Each volunteer placed
the smartwatch on his or her left wrist, and was asked to do five each of front, back, left, and right
falls. To see how the model performs on non-fall data, each volunteer also performed five each of
sitting, waving (3 s), jogging (10+ s), and walking (10+ s) ADLs. Testing in this way lets us evaluate the
model’s capabilities in a true online situation as well as seeing how each model performs on specific
kinds of falls and ADLs. The other datasets are only labeled as “Fall” or “NotFall”, so it is not possible
to analyze which types of falls and ADLs the model detects. The real-time results can be found in
Table 3.

Table 3. Online results by algorithm.

NB SVM Deep

Falls

Back 0.60 0.20 0.84
Front 0.84 0.28 0.80
Left 0.80 0.28 0.96

Right 0.40 0.28 0.84

ADLs

Sitting 0.93 0.97 0.40
Waving 0.40 0.76 0.60
Jogging 0.8 0.72 0.64
Walking 1.00 0.92 0.56

Overall
Precision 0.62 0.62 0.64

Recall 0.66 0.26 0.86
Accuracy 0.64 0.56 0.70

Our NB model detects falls at a reasonable rate. Its detection rate, however, varies across the
different types of falls. Front and left falls are both detected by the NB model at a rate above 80%. Back
fall accuracy drops to 60%, and right falls are the lowest at 40%. The fact that the model performs much
better on left falls than right falls suggests that the model may be sensitive to the wrist the smartwatch
is placed on. Furthermore, the model’s poorer performance on back falls suggests that it performs
like a threshold-based algorithm, since the wrist movement in back falls is not as intense. Another
threshold-like behavior for this model is the tendency to perform well on light ADLs like sitting and
walking (obtaining over 93% accuracy on these activities), but poorly on more motion-intensive ADLs
like waving and jogging (obtaining less than 50% accuracy on these).

Our SVM model obtained much different results than the other two models. It scores the best on
nearly every ADL category, while performing quite poorly on falls themselves. We prioritize obtaining
TPs over not obtaining FPs, and so we consider our SVM model to have the worst performance by a
wide margin. Like the NB model, the SVM model behaves like a threshold-based algorithm; however,
it is far less sensitive than NB. This can be seen when looking at the ADL accuracies. While the
SVM performs the best of the three models on jogging and waving, it still performs worse on these
activities than it does on sitting and walking. The biggest difference between SVM and NB is the fall
results: the SVM performed the same on right falls and left falls, while NB performed better on left
falls. This suggests that our SVM model adapts better to different wrist placement, despite its overall
poor performance.

Our Deep Learning model performs the best on detecting falls. It is far better than the other
models at detecting falls with more unique wrist movements, such as back falls. Whereas both the
SVM and NB do quite poorly on back falls, the Deep Learning model detected back falls as well as
the other fall types. However, the Deep Learning model is not very accurate on ADLs. In ADLs that
contained quick and abrupt motion, such as jogging and waving, the Deep Learning model performed
slightly worse than the SVM. Unlike the SVM and NB models, however, the Deep Learning model
struggles more with lighter activities such as sitting and walking. For this reason, the Deep Learning
model can quickly be separated from threshold-based algorithms: it distinguishes well between quick
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intense movements (falling) and intense movements over a period of time (jogging/waving), but does
not distinguish lighter movements (sitting/walking) from the intense movements well. Along with
the good fall detection results, this is a strong indicator that the Deep Learning model does not rely
on just high acceleration values for its predictions. Feature extraction is a likely contributor to this
limitation for the NB and SVM models. The features that these models are trained with are all a direct
function of the resultant acceleration. We believe that the use of raw accelerometer data for our Deep
Learning model creates a much wider range of correlations that the model can pick up on. These
additional correlations can help the model avoid regressing on a single feature, such as just a high
acceleration value.

The Deep Learning, SVM, and NB models performed better overall on the offline Smartwatch
dataset than on the real-time experiments. One possible explanation for this is that many of the
participants in the Smartwatch dataset were included in both the training and testing of the models,
making it easier for the models to recognize patterns in the falls. The real-time experiments, however,
were tested on volunteers, whose data was not used to train the model. Thus, it is natural that the
models do not perform as well in the online setting.

It is also important to notice that the Deep Learning model generalizes much better to new
volunteers than the NB and SVM models. The SVM detected 85.7% of falls on the Smartwatch dataset,
dropping to 26% in real time, while NB detected 92.3% of falls on the Smartwatch data, dropping to
66% in real time; the Deep Learning model, however, dropped from a 100% detection rate to an 86%
rate. A potential cause for this is feature extraction. Both models that use extracted features showed a
significant performance drop in falls detected. This may indicate the extracted features are removing
important patterns in the raw data, thus oversimplifying the prediction and causing it to generalize
poorly. The Deep Learning model, which uses raw data, has the opportunity to learn patterns that
may help it to generalize.

In summary, our results show that a Deep Learning model for fall detection generally outperforms
more traditional models such as NB and SVM. Offline and online results indicate that our deep model
has both higher precision and higher recall than the NB and SVM models. We believe that this is due to
the deep model’s ability to learn subtle features from the raw accelerometer data that are not available
to NB and SVM, which are restricted to learning from a small set of extracted features. Furthermore,
the deep model exhibits a better ability to generalize to new users when predicting falls, an important
quality of any model that is to be successful in the real world. Despite the overall success of the Deep
Learning model, it still has challenges, primarily in its failure to properly classify ADLs, particularly
lighter ones such as sitting and walking. We believe that with further adjustments to the deep learning
architecture and parameters, it will be able to detect these motions at least as well as its NB and SVM
counterparts.

6. Conclusions

Many fall detection systems have been experimented and implemented in the last few years using
specialized sensors which are expensive and inconvenient to use. We believe the simplicity of only
having to wear a smartwatch would not only reduce costs, but would also be very convenient and
non-intrusive for the users. We performed in-depth evaluation of both traditional and non-traditional
machine learning algorithms using three datasets in order to determine what model will work best
on a wrist-mounted smartwatch’s accelerometer data for fall detection. The traditional machine
learning algorithms require pre-processed accelerometer data based on four selected features which
are Ares, ∆S, Smax and Smin. This pre-processing of the data resulted in the loss of important contextual
information. As discussed in Section 5, both NB and SVM do not generalize well as demonstrated with
the online/real-time test results of a recall of 26% for SVM and 66% with NB. Deep Learning can use
the raw accelerometer data without any pre-processing and achieve almost 100% accuracy using the
Smartwatch and the Farseeing datasets in the offline tests and only dropped to 86% with the online
test. In particular, the deep recurrent neural network works well on time-series data by considering
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past data points when making a single prediction. Deep Learning is also able to learn subtle features
from the raw accelerometer data that are not available to NB and SVM and is the most accurate in fall
detection using a wrist-worn watch. Our study also demonstrated that SVM while being a popular
model cited in various literatures for fall detection has the worst true positive rate of fall detection
across the three datasets. The 86% accuracy for deep learning is the best we have obtained based on
our real-world test. However, the medical field is often averse to a device that only works “most of the
time”. Therefore, it is our goal to further improve both the recall and precision of the Deep model by
making further adjustments to the deep learning architecture and parameters. We also plan to archive
both true positive and false positive data collected in our planned comprehensive real-world test to
continuously re-train the model.

In addition, we developed a real-time fall detection app called SmartFall running on an Android
phone with an intuitive UI for elderly people. SmartFall allows us to perform real-time/online test
of the three (NB, SVM, Deep) models from smartwatch’s accelerometer data with ease. Our current
real-time test just consists of asking new volunteers who did not contribute to the original smartwatch
dataset to perform scripted falls and ADLs using SmartFall. While this is by no mean a real-world test,
we gained important insight on the performance of the three models on different type of falls and type
of ADLs from this test. One of our immediate future works is to conduct a comprehensive real-world
test using SmartFall in a nursing home. In particular, we aim to use SmartFall to collect ADLs data from
the elderly and verify how many of those ADLs are falsely classified as falls to judge the practically
of our application. We will recruit five seniors for the test. Some of the questions we intent to study
are: (1) How long does each prediction take in real time? (2) How long will the battery last on the
smartwatch and the smartphone by running SmartFall continuously together with all the other apps
used regularly in a day by a senior? (3) How many hours seniors will typically wear smartwatches in
a day? (4) How much ADL data can be collected in a day from one senior? (5) Which ADL activity
generates the most FPs? (6) What are seniors’ main concerns regarding wearing smartwatches and
carrying smartphones around for fall detection?

SmartFall is designed to use an open three layers architecture which can be generalized to a
plug and play service platform for the development of other health IoT applications. For example,
our real-time collection of accelerometer data and the data labeling process can be reused for the
development of an IoT application that needs to track the arm movement of ADHD (Attention Deficit
Hyperactivity Disorder) children and provide early diagnosis and alerts.

We acknowledge that our fall detection model is trained using data from healthy volunteers,
which might not reflect the actual fall data from elderly people. It is impossible to collect simulated
fall data from the elderly group of people because of higher likelihood of injuries. We overcome that
by performing the evaluation of our models with the Farseeing dataset which contain real falls from
elderly people. The result in Table 2 shows that the model performance is not dependent on specific
accelerometer data.
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