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Abstract. Current research in biomedical informatics involves 
analysis of multiple heterogeneous data sets. This includes 
patient demographics, clinical and pathology data, treatment 
history, patient outcomes as well as gene expression, DNA 
sequences and other information sources such as gene ontology. 
Analysis of these data sets could lead to better disease diag-
nosis, prognosis, treatment and drug discovery. In this report, 
we present a novel machine learning framework for brain tumor 
classification based on heterogeneous data fusion of metabolic 
and molecular datasets, including state-of-the-art high-reso-
lution magic angle spinning (HRMAS) proton (1H) magnetic 
resonance spectroscopy and gene transcriptome profiling, 
obtained from intact brain tumor biopsies. Our experimental 
results show that our novel framework outperforms any analysis 
using individual dataset.

Introduction

Brain tumors are the second most common cancer of childhood, 
and comprise approximately 25% of all pediatric cancers. Over 
3,400 children are diagnosed in the US each year; of these, approx-
imately 2,600 will be under the age of 15. Brain tumors, although 
more treatable in younger ages, are the leading cause of solid 
tumor cancer death in children; they are the third leading cause 
of cancer death in young adults ages 20-39. Many researchers 
are looking for efficient and reliable ways to early diagnose brain 
tumor types and detect related biomarkers through different 
biomedical images or biological data. The machine learning 
algorithms have been playing the most important role during 
those heterogeneous biomedical/biological datasets analysis to 
classify different brain tumor types and detect biomarkers. In 
this study we examine brain tumor samples coming from both 
children and adults.

Magnetic resonance spectroscopic (MRS) studies of brain 
biomarkers can provide statistically significant biomarkers for 
tumor grade differentiation and improved predictors of cancer 
patient survival (1). Instead of selecting biomarkers based on 
microscopic histology and tumor morphology, the introduc-
tion of microarray technology improves the discovery rates 
of different types of cancers through monitoring thousands of 
gene expressions in a parallel, in a rapid and efficient manner 
(2,3). Because the genes are aberrantly expressed in tumor cells, 
researchers can use their aberrant expression as biomarkers that 
correspond to and facilitate precise diagnoses and/or therapy 
outcomes of malignant transformation.

Different data sources are likely to contain different and partly 
independent information about the brain tumor. Combining those 
complementary pieces of information can be expected to enhance 
the brain tumor diagnosis and biomarkers detection. Recently, 
several studies have attempted to correlate imaging findings with 
molecular markers, but no consistent associations have emerged 
and many of the imaging features that characterize tumors 
currently lack biological or molecular correlates (4,5). Much of 
the information encoded within neuroimaging studies therefore 
remains unaccounted for and incompletely characterized at the 
molecular level (6). This report presents a computational and 
machine learning based framework for integrating heterogeneous 
genome-scale gene expression and MRS data to classify the 
different brain tumor types and detect biomarkers. We employ 
wrapper method to integrate the feature selection process of 
both gene expression and MRS. Three popular feature selection 
methods, Relief-F (RF), information gain (IG) and χ2-statistic 
(χ2), are performed to filter out the redundant features in both 
datasets. The experimental results show our framework using the 
combination of two datasets outperforms any individual dataset 
on sample classification accuracy that is the standard validation 
criterion in cancer classification and biomarker detection. Our 
data fusion framework exhibits great potential on heterogeneous 
data fusion between biomedical image and biological datasets 
and it could be extended to another cancer diseases study.

Materials and methods

Advancements in the diagnosis and prognosis of brain tumor 
patients, and thus in their survival and quality of life, can be 
achieved using biomarkers that facilitate improved tumor typing. 
In our research, we apply state-of-the-art, high-resolution magic 
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angle spinning (HRMAS) proton (1H) MRS and gene transcrip-
tome profiling to intact brain tumor biopsies, to evaluate the 
discrimination accuracy for tumor typing of each of the above 
methods separately and in combination. We used 46 samples 
of normal (control) and brain tumor biopsies from which we 
obtained ex vivo HRMAS 1H MRS and gene expression data 
respectively. The samples came from tissue biopsies taken from 
16 different people. Out of the 46 biopsies that were analyzed, 
9 of them were control biopsies from epileptic surgeries and the 
rest 37 were brain tumor biopsies. The tumor biopsies belonged 
to 5 different categories: 11 glioblastoma multiforme (GBM); 8 
anaplastic astrocytoma (AA); 7 meningioma; 7 schwanoma; and 
5 from adenocarcinoma.

HRMAS 1H MRS. Magnetic resonance spectroscopic (MRS) 
studies of brain biomarkers can provide statistically signifi-
cant biomarkers for tumor grade differentiation and improved 
predictors of cancer patient survival (1). Ex vivo high-resolution 
magic angle spinning (HRMAS) proton (1H) MRS of unpro-
cessed tissue samples can help interpret in vivo 1H MRS results, 
to improve the analysis of micro-heterogeneity in high-grade 
tumors (7). Furthermore, two-dimensional HRMAS 1H MRS 
enables more detailed and unequivocal assignments of biologi-
cally important metabolites in intact tissue samples (8). In Fig. 1, 
an ex vivo HRMAS 1H MR spectrum of a 1.9 mg anaplastic 
ganglioglioma tissue biopsy is shown together with metabolites 
values that correspond to each frequency of the spectrum. Please 
see more detailed information in ref. 9.

Microscale genomics. A major focus in cancer research is to 
identify genes, using DNA-microarrays, that are aberrantly 
expressed in tumor cells, and to use their aberrant expression 
as biomarkers that correspond to and facilitate precise diag-
noses and/or therapy outcomes of malignant transformation 
(10). In our study, the Affymetrix GeneChip U133Plus® DNA 
microarray of the complete human genome was used to perform 
transcriptome profiling on each specimen for two different 
experimental conditions, minus or plus previous HRMAS NMR 
analysis. The raw expression data were analyzed for probe 
intensities using the Affymetrix GeneChip expression analysis 
manual procedures; and the data were normalized using current 
R implementations of RMA algorithms (11).

Combining MRS and genomic data. While several studies have 
utilized MRS data or genomic data to promote cancer classifica-
tion, to date these two methods have not been combined and 
cross-validated to analyze the same cancer samples. Herein, we 
implement a combined quantitative biochemical and molecular 
approach to identify diagnostic biomarker profiles for tumor 
fingerprinting that can facilitate the efficient monitoring of anti-
cancer therapies and improve the survival and quality of life of 
cancer patients. The MRS and genomic data strongly correlate, 
to further demonstrate the biological relevance of MRS for 
tumor typing (9). Also, the levels of specific metabolites, such 
as choline containing metabolites, are altered in tumor tissue, 
and these changes correspond to the differential expression of 
Kennedy cycle genes responsible for the biosynthesis of choline 
phospholipids (such as phosphatidylcholine) and suggested to be 
altered with malignant transformation (12). These data demon-
strate the validity of our combined approach to produce and 

utilize MRS/genomic biomarker profiles to type brain tumor 
tissue.

Classification and feature selection methods. Classification 
aims to build an efficient and effective model for predicting class 
labels of unknown data. In our case the aim is to build a model 
that will be able to discriminate between different tumor types 
given a set of gene expression values or MRS metabolite values 
or a combination of them. Classification techniques have been 
widely used in microarray analysis to predict sample phenotypes 
based on gene expression patterns. Li et al have performed a 
comparative study of multiclass classification methods for tissue 
classification based on gene expression (13). They have conducted 
comprehensive experiments using various classification methods 
including SVM (14) with different multiclass decomposition 
techniques, Naive Bayes (15), K-nearest neighbor and decision 
trees (16).

Since the main purpose of this study is not to assess the clas-
sification performance of different classification algorithms but 
to evaluate the potential gain of combining more than one type of 
data for tumor typing, we only experimented with Naïve Bayes 
(NB) and support vector machines (SVM) with RBF kernel.

Another related task is feature selection that selects a small 
subset of discriminative features. Feature selection has several 
advantages, especially for the gene expression data. First, it 
reduces the risk of over fitting by removing noisy features thereby 
improving the predictive accuracy. Second, the important 
features found can potentially reveal that specific chromosomal 
regions are consistently aberrant for particular cancers. There is 
biological support that a few key genetic alterations correspond 
to the malignant transformation of a cell (17). Determination 
of these regions from gene expression datasets can allow for 
high-resolution global gene expression analysis to genes in these 
regions and thereby can help in focusing investigative efforts for 
understanding cancer on them.

Existing feature selection methods broadly fall into two 
categories, wrapper and filter methods. Wrapper methods use 
the predictive accuracy of predetermined classification algo-
rithms, such as SVM, as the criteria to determine the goodness 
of a subset of features (18). Filter methods select features based 
on discriminant criteria that rely on the characteristics of data, 
independent of any classification algorithm (19). Filter methods 
are limited in scoring the predictive power of combined features, 
and thus have shown to be less powerful in predictive accuracy 
as compared to wrapper methods (20). In our experiments we 
used feature selection method from both major categories. We 
experimented with Relief-F (RF), information gain (IG), and 
χ2-statistic (χ2), filter methods and we also used wrapper feature 
selection for each of the two types of classification algorithms.

The basic idea of Relief-F (21) is to draw instances at random, 
compute their nearest neighbors, and adjust a feature weighting 
vector to give more weight to features that discriminate the 
instance from neighbors of different classes. Specifically, it tries 
to find a good estimate of the following probability to assign as 
the weight for each feature f.

wf = P(different value of ƒ⎪ different class) - P(different value of ƒ⎪ same class)

Information gain (IG) (22) measures the number of bits of infor-
mation obtained for class prediction by knowing the value of a 
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feature. Let {ci}m

i=1 denote the set of classes. Let V be the set of 
possible values for feature ƒ. The information gain of a feature f 
is defined to be:

The χ2-statistic (χ2) (23) measures the lack of independence 
between f and c. It is defined as follows:

where V is the set of possible values for feature ƒ, Ai(f = υ) is the 
number of instances in class ci with f = υ Ei(f = υ) is the expected 
value of Ai(f = υ). Ei(f = υ) is computed with Ei(f = υ) = P(f = υ)
P(ci)N, where N is the total number of instances.

Results

Initially we aimed at evaluating how well the classifiers would 
perform when applying them to each of our datasets separately. 
For that purpose we performed 10-fold cross validation over 
our 46 samples by using a combination of feature selection and 
classification methods.

Table Ι shows the classification accuracy of Naïve Bayes 
(NB) and SVM classifiers when using all 16 metabolites and 
when using a feature selection method. Clearly the wrapper 
feature selection method gives the better accuracy across all 
classifiers, followed by the case where we use all metabolites for 
classification. The SVM classifier using RBF kernel consistently 
shows the best performance in this type of data. The decision 
of keeping the top 6 metabolites when using the filter feature 
selection methods was based on the fact that that was the best 
number of features that were selected by using the wrapper 
feature selection method for each classification algorithm.

For the problem of the multiclass classification using gene 
expression data only, we followed a hybrid feature selection 

method combining filter and wrapper approaches. Using wrapper 
approach to select a few top genes starting from an initial number 
of thousands of genes is computationally prohibiting, and using 
filter approach to select less than 100 genes does not give good 
classification accuracy because the final set of selected genes 
contains genes that are highly correlated to each other, thus 
giving a redundant set of genes. In our approach, first we selected 
the top 100 genes using filter feature selection and then we used 
wrapper feature selection to further reduce the number of genes 
to be used resulting usually in a number between 5 and 15 genes.

The experimental results (Table ΙΙ) show that in this type 
of data the Naïve Bayes was by far the best classification 

Figure 1. Ex vivo HRMAS 1H MR spectrum of a 5.8-mg glioblastoma multiforme (GBM) tissue biopsy. Val, valine; OH-but, OH-butyrate; Lac, lactate; Ala, 
alanine; Lys, lysine; Glx, β-CH2 of glutamine and glutamate; Glu, glutamate; Gln, glutamine; Cr, creatine; Tau, taurine; Myo, myo-inositol; Hypo, hypotaurine; 
Scy, scyllo-inositol; Gly, glycine; α-CH of aliphatic amino acids; PE, phosphoetanolamine; Thr, threonine; PC, phoshocholine; Cho, choline. The insert shows 
the choline containing compounds region.

Table I. Classification accuracy for the 6-class problem using 
MRS data only.

 NB (%) SVM (%)

All metabolites 70.21 72.34
χ2 (top 6) 46.81 51.06
IG (top 6) 46.81 51.06
RF (top 6) 63.83 68.09
Wrapper 72.34 78.72

Table II. Classification accuracy using gene expression data only.

 NB (%) SVM (%)

χ2 + wrapper 82.98 46.81
IG + wrapper 80.85 61.70
RF + wrapper 61.70 57.44
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algorithm obtaining a maximum accuracy of 82.98% accuracy 
when combined with χ2 and wrapper feature selection.

Finally, we tested the classification accuracy of our methods 
by using a combination of features from both gene expres-
sion and MRS data. For the MRS data we tested the wrapper 
feature selection method which performed best in our previous 
experiments. For the gene expression data we used the feature 
selection method that we described above, i.e., combination of 
filter and wrapper feature selection. After completing the feature 
selection stage separately for each of the datasets we combined 
the selected features by putting them in the same feature vector 
space and using that space for classification. Table III shows 
the classification accuracy results of our experiments. In most 
cases, the combination of features sets from the two datasets 
yield significantly better accuracy than each of them separately. 
In general Naïve Bayes gives the best performance with a 
maximum accuracy of 87.23% when using wrapper feature 
selection for metabolites and a combination of information gain 
and wrapper feature selection for genes.

Discussion

In this report, we propose a machine learning based data fusion 
framework which integrates heterogeneous data sources to type 
different brain tumors. Our method employs real biomedical/
biological MRS and genomic data and applies a combination of 
popular feature selection and classification methods to evaluate 
the tumor type discrimination capabilities of the two datasets 
separately and together. The feature selection process identifies a 
number of biomarkers from each dataset which are subsequently 
used as features for the classification process. The experimental 
results show that our data fusion framework outperforms each 
individual dataset in the brain tumor multi-class classification 
problem. Since our framework is a general method, it can also 
be applied to any other biomedical and biological data fusion for 
sample classification and biomarker detection.
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