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Abstract—Rheumatoid Arthritis (RA) is a chronic disease that
leads to inflammation of joints and the surrounding tissues and
is a major cause of reduced quality of life and disability. RA
can also cause major organ damage and is an independent risk
factor for cardiovascular disease. Physical Therapy (PT) and
Physical Activity (PA) have been shown to mitigate the effects
of the disease, however, lack of motivation and low adherence of
the patients reduce the benefits of PT and PA. In this paper,
we present a cyberphysical system intended to preserve the
functional Range-Of-Motion (ROM) and cardiovascular health
in persons with RA, by promoting their physical activity levels
and enhancing their physical therapy routines. The system uses
game-based activities to increase user motivation and vision-
based motion tracking to ensure patient compliance with the
prescribed physical therapy routines and activity levels.

I. INTRODUCTION

Rheumatoid Arthritis (RA) is a chronic systemic inflam-
matory disease typically involving joints on both sides of the
body (hands, wrists, feet, knees). The prevalence of RA is 1%,
with women affected three to five times as often as men [1].
RA pathology often leads to articular cartilage destruction and
may result in joint ankylosis (stiffening). RA can also cause
major organ damage; it produces diffuse inflammation in the
lungs, the membrane around the heart (pericardium) and is an
independent risk factor for cardiovascular disease [2].

It is estimated that RA reduces lifespan by 5 to 10 years and
significantly increases morbidity [3]. Work disability among
people with RA is markedly higher than in the general
population resulting in huge loses for employees & employers;
two-thirds of people with RA lose an average of 39 working
days each year [4]. In the US, RA-associated costs translate
to an annual cost of $19.3 billion. Adding the intangible costs
of quality-of-life deterioration ($10.3 billion) and premature
mortality ($9.6 billion), total annual societal costs of RA
(direct, indirect, and intangible) increases to $39.2 billion [5].

Preserving functional range of motion (ROM) and enhanc-
ing cardiovascular health in persons with RA is a primary
goal of physical therapy (PT) and is essential to ensuring
maximal independence and quality of life. Physical therapy
(PT) involves prescription of appropriate exercises to maxi-
mize joint ROM, muscle force production and enhance aerobic
conditioning. Patient education in self-management techniques

is a key component of physical therapy and essential to
promoting Physical Activity (PA) and reducing deleterious
effects of physical inactivity. Therefore, physical therapists
address both exercise and physical activity.

The positive effects of PT are widely acknowledged in
the literature (e.g., [6], [7]). Persons with RA who exercise
regularly show improvements in muscle strength, ROM, pain,
physical function, blood pressure, blood sugar, and aerobic
capacity [8]. Further, exercise is associated with improvements
in disease activity, bone mineral density and reduced mortality
[9]. However, a major obstacle and key motivation for this
project is that long-term engagement in exercise among pa-
tients with chronic conditions, such as RA, is poor and does
not exceed 50% when patients are not supervised [10].

Systems that measure the three-dimensional (3-D) body mo-
tion are of great importance, because they provide clinicians
with early and quantitative evidence for improved clinical
decision making. However, these systems are not routinely
integrated into daily clinical interactions because they exact
high costs, require the subject to wear obtrusive body markers
and require the engagement of the user. As a result, the
vast majority of clinical movement analysis is conducted
through manual and unreliable direct observation, and only at
designated times. The challenges listed below form the basis
upon which we build the hypotheses for the proposed work.

• How to develop affordable yet accurate systems to mea-
sure body motion.

• How to engage the patients in the rehabilitation process
without the presence of physical therapy experts.

• How to adapt any RA physical therapy system to the
specific needs of the patient.

• How to monitor and evaluate the exercises that are
clinically useful to patients with RA.

In this paper, we present our preliminary results in our effort
to create RPLAY, a cyberphysical system which, through the
tight collaboration between human and computer, aspires to
enhance traditional physical therapy. The system uses game-
like activities to motivate and engage the patients in perform-
ing the prescribed routines and vision-based motion tracking
and recognition to monitor the physical activity of the patient



to ensure compliance.

II. RELATED WORK

Lately, gaming has attracted considerable attention due to
the potential to provide a promising alternative or enhancement
to the traditional rehabilitation therapies e.g., [11], [12]. In
many cases, traditional rehabilitation exercises do not yield
the expected results due to poor patient adherence with the
prescribed routines [10]. People with kinetic disabilities report
that traditional rehabilitation tasks can be mundane and boring,
due to their repetitive nature. In addition, the lack of direct
patient feedback regarding their progress diminishes their
motivation to continue. Traditional rehabilitation is also often
too hard to do during periods of RA flare-ups, leading to
inactivity even when the pain phase is gone. Finally, lack of
computational sensing and measurement in traditional therapy
may result in errors when interpreting evaluation data.

Virtual reality (VR) shows great promise in creating sys-
tematic human testing and treatment environments where
virtual representations of real environments can be precisely
controlled and guided according to therapy needs. VR provides
live feedback to a person doing PT and can act as a motivator
for many situations. Furthermore, the gaming factor helps the
subject forget about their problem and surroundings and focus
directly on the task. Previous studies [13] demonstrate in-
creased motivation in adults when using a virtual environment
integrated with gaming.

Although the traditional conception of games is aimed
at entertainment, for example driving games or first-person-
shooters, lately, the markets have shifted attention towards
commercial console games targeted at the “keep-fit” segment.
Such games are called “exergames” [14]. In these games, users
usually see a simulated virtual representation of themselves
(Avatar) or part of themselves (tracked limbs) and they are
asked to perform a task by moving their body. Such games
are intuitive and suitable for uses with no previous gaming
experience. However, commercial games are not designed to
meet the needs of patients with disabilities and give feedback
to the therapists.

Although such VR systems have been experimentally tested
in many situations where physical therapy is required, for
example stroke rehabilitation, or cerebral palsy patients [15],
[16], they have not found their way towards every day, at-
home use. A major prohibiting factor is the large cost of
most of the existing VR systems [17]. In addition, they are
cumbersome to use: most existing systems require users to
carry electromagnetic sensors or attach special markers on
their body for tracking purposes, limiting their usability and
user friendliness. More simple, camera-based systems, e.g.,
[18], have either smaller user requirements or no special
equipment, e.g. colored gloves. However, they are not accurate
enough for the needs of RA rehabilitation.

Currently, most video capture systems track only single
plane movement. However in RA, tracking of the exact Range-
Of-Motion (ROM) is often necessary to assess disability,
improvement or deterioration over time. Capturing 3D human

motion from video, without using artificial markers, remains a
challenge. Numerous approaches have been proposed, but the
accuracy of the current state of the art remains far behind
the accuracy attained using special-purpose motion capture
systems such as VICON 1.

To address this problem, a common approach is to estimate
the pose from multiple calibrated static cameras rather than
from a single camera [19], [20], [21], [22]. One disadvantage
of this approach is that camera calibration can be a time-
consuming process and must precede data collection. Further-
more, every time a camera changes position, whether by plan
or by accident, recalibration is required. Consequently, the
capturing space is limited, and confined to a studio where
the cameras have been set up.

In an at-home setting, where the system must be easy to set
up and use by non-technical users, calibrated multi-camera
systems are not an option. Hasler et al. [23] describe a video-
based motion capture method from moving cameras that are
calibrated on the fly, thus matching the setup that we aim to
create. However, the method requires a 3D body scan of the
person, something which is also impractical in our proposed
setting. Many approaches for articulated pose estimation study
the tracking version of the problem. The goal here is, given
a set of estimates for the previous frame, to update those
estimates given the observations in the current frame [24],
[20], [21], [22], [25]. However, such methods do not address
the challenging problem of how to initialize pose estimates
in the first frame, and how to recover from errors. A key
goal of our system is initialize and recover from errors fully
automatically.

Estimating articulated pose from a single image is an ap-
proach that can, in principle, lead to automatic tracker initial-
ization and recovery. Such methods have been proposed in the
literature, e.g., [26], [27]. However, such methods suffer from
significantly lower accuracy than tracking methods, which is
to be expected as searching over the entire space of poses is
more difficult than searching over poses similar to the pose
in the previous frame. While the above-mentioned methods
constitute significant theoretical contributions to the state of
the art, they have demonstrated levels of accuracy that are far
from sufficient for use in real-world applications. In contrast,
our goal is to have a real-world system that actually works
robustly and produces useful and meaningful measurements.

Using the Kinect sensor has led to reasonable accuracy
to allow deployment as part of the Xbox, which is a mass-
market consumer product [28]. A method for pose estimation
using Kinect is described in [29], where a randomized decision
forest is built from a lot of training image pairs under a
fully-supervised training (depth image and body part image).
The previous method, as well as the Microsoft SDK in
general, are proprietary and not open source, and thus they
do not lend themselves to domain-specific improvements and
customizations by others. In contrast, the code developed for
this project will be open source and publicly available online.

1http://www.vicon.com/



Fig. 1. A heat-map visualization of the depth sensing input of a person lying
in bed as obtained by the Kinect depth sensor.

III. FRAMEWORK

Two major goals of our RPLAY system are the development
of rehabilitation games that are created in accordance to the
prescribed exercise routines and the accurate tracking and
recognition of the performed motion activities. The rehabil-
itation games will guide the patients to perform the types
of motion that will benefit their condition in a similar way
as the traditional exercises. Subsequently, the motion tracking
and recognition component will identify which motion activ-
ities/exercises have been performed and how.

Video-based tracking is ideal in this case, because it is
minimally invasive and can be adapted to track the required
motion types. The Kinect sensor can provide 3-dimensional
information regarding the tracked subject and does not require
stereo calibration. In addition it is relatively inexpensive com-
pared to other existing solutions. For that reason we use it as
our video capturing device.

Kinect is a motion sensing input device designed by Mi-
crosoft for the Xbox 360 video game console [28]. Kinect out-
puts 3 different data streams, RGB video stream, depth sensing
video stream and audio. The video output frame rate is 30 Hz.
The RGB video stream uses 8-bit VGA resolution (640× 480
pixels), while the monochrome depth sensing video stream is
in VGA resolution (640×480 pixels) with 11-bit depth, which
provides 2,048 levels of sensitivity. In our experiments we used
only the depth sensing video stream. The depth sensor consists
of an infrared laser projector combined with a monochrome
CMOS sensor, which captures video data in 3D under any
ambient light conditions. The 3D input that we get regarding
the subject’s body posture is more informative compared to
the 2D information that we could get from the RGB video.
The value of each pixel in a depth video stream frame is the
distance, in millimeters, of the corresponding surface part of
the object from the sensor. Figure 1 shows an example of
how the depth sensing data obtained by Kinect would look
like using a heat-map visualization.

A. Rehabilitation Games

Using rehabilitation games as opposed to the traditional
exercise routines introduces a number of advantages: (1) The

Fig. 2. An example of Kinect based apple picking game where the user tries
to catch the apples from a tree by moving their hands in the 3-D space. On
the left image we can see a user playing the game and on the right image we
see a closer view of screen during the game. The left part of the screen shows
the skeletal representation of the player - used for debugging purposes.

user gets real-time performance feedback, which increases mo-
tivation. (2) By simulating real-world activities, the performed
exercises have greater validity, which means that the degree
of relevance or similarity that a test or training system has to
the “real” world is high. (3) Certain interface modifications
contingent on user’s impairment are possible. (4) The use of
virtual humans can showcase the exercises that the users need
to perform and immediate feedback can be given to the user
in case of poor adherence. (5) pacing and difficulty level can
be adapted to meet the patient’s needs.

Since the designed games will be used for rehabilitation
purposes, instead of plain entertainment, and the main target
group of users will be individuals of a certain age, the game
behavior has to be easily parameterizable by the therapists, and
games should be intuitive in their use by the patients so that
they do not pose additional challenges which may discourage
them from engaging.

In our previous work [30], in collaboration with occupa-
tional therapists, we have successfully developed a library of
touch screen-based games for rehabilitation of children with
Cerebral Palsy (CP). Such games measure the reaction speed,
the arm control accuracy, the improvement over time and other
parameters of importance for patients with CP.

However, touch screen-based games are not suitable for re-
habilitation of RA patients, since the purpose of RA exercises
is to increase or maintain the range-of-motion of the patients
and increase physical activity rather than improve arm/finger
control. In this case, games that involve the whole body (arms,
torso, and legs) are preferable. To achieve that purpose we are
creating a new library of games based on video tracking using
the Kinect sensor. One such example is our apple-picking
game shown in Figure 2, where the user has to extend his/her
arms to certain directions in order to catch the apples on an
apple tree by guiding a virtual hand appearing on the screen.
The apples can be placed in such positions that force the
user to move their hands towards the required directions and
with the required speed according to the prescribed exercise
routines.



B. The RPLAY System

RPLAY will monitor patients, as they perform a daily
rehabilitation routine or play a rehabilitation game. We em-
ploy real-time computer vision technologies that capture the
3D motion of the patients, and recognize patients’ gestures
and activities. On the application level, the system has the
following functionalities. The system can determine:

1) What rehabilitation activities or exercises the patient
engages in and how much time is spent on each. These
data are then reported to the physical therapist, so that
he/she can quickly determine if the patient follows the
prescribed rehabilitation program and calibrate exercise
levels based on observed symptoms during exercise.

2) How well each activity is performed, especially the
estimated ROM exhibited in the activity. Such measure-
ments are then summarized, visualized and reported to
the therapist who uses this information on correct perfor-
mance of exercise to prevent possible deleterious effects
(e.g., bursitis, joint pain). The ROM improvements over
time are then stored into the database.

3) The metabolic equivalents computed from gross body
movements while the user performs the game activities
using gestures and body motion. This is important
feedback that will determine the amount of physical
activity performed and whether a patient is meeting
CDC recommendations for physical activity to maintain
cardiovascular health, given the elevated risk of cardio-
vascular disease in this population.

C. Motion Tracking and Recognition

While there is a significant body of literature studying the
problem of capturing and analyzing 3D human motion, most
existing approaches require multiple calibrated cameras or
other specialized equipment that do not satisfy the require-
ments of cost effectiveness and easy set up by non-technical
people. On the other hand, methods using a single camera
typically are not accurate enough for 3D motion capture. To
solve the problem of 3D human motion analysis, we use our
recently developed, Dynamic Space-Time Warping (DSTW)
algorithm [31]. Its key idea is that inaccurate estimation of a
person’s 3D motion can be sufficient for accurate recognition
of the patient’s activity. At the same time, recognizing the
specific activity the person is performing provides a powerful
additional constraint, that can refine the estimation of the
person’s 3D motion to a satisfactory of level accuracy.

In DSTW, two modules, a tracking module, and a recog-
nition module, communicate with each other. The tracking
module produces estimates of the person’s movements in each
frame, consisting of an estimated position for each body part
in each frame. The recognition module uses the estimates
obtained from the tracking module to recognize the kind of
motion (e.g., the type of rehabilitation exercise, or the type
of gesture that the person is making to control the game)
the person is performing. It is unrealistic to expect that the
tracking module will produce the correct answer at each

frame. The key difference between our Dynamic Space-Time
Warping (DSTW) method and competing approaches is that
the recognition module does not require the tracking module
to be highly accurate. Instead, in DSTW, we make the milder
assumption that the tracking module will produce, at each
frame, multiple candidate estimates (possibly several tens),
and that in almost all frames the correct estimate will be
included in those candidates. This level of accuracy is easier to
satisfy with existing methods, compared to a requirement that
in almost all frames the tracker can provide a single correct
estimate.

Since there are many possible answers for how the person is
tracked at each frame, there are even more candidate sequences
of such answers. A candidate motion sequence is formed by
choosing one candidate answer for a frame. Naturally, the
number of candidate motion sequences is exponential, in the
order of O(KT ), where K is the number of candidate answers
per frame and T is the number of frames. DSTW is based
on the following observation: as long as the correct answer
appears as a candidate answer in almost all frames, one of the
exponentially many candidate sequences will actually include
these correct answers. If we knew this sequence, it would
be easy to recognize what type of activity (e.g., a specific
rehabilitation exercise) it represents, as the number of such
activities is relatively small. The DSTW algorithm is exactly
designed to find, given a specific activity model, the candidate
sequence that optimally matches that activity model. Although,
as mentioned above, the number of candidate sequences is
exponential, DSTW identifies the optimal sequence in poly-
nomial time, and in practice the algorithm is fast enough for
real-time recognition [31].

Once the current activity has been identified, the proposed
system will measure the range of motion. The specialist will
specify in advance, for each activity, the moments in that
activity that correspond to motion extrema that need to be
measured. The DSTW algorithm will automatically identify
those moments, as well as the correct tracking estimate for
those moments, and the range of motion can be identified from
those tracking estimates.

D. Motion Tracking Using Kinect

Using the DSTW algorithm frees us from the need to design
a highly accurate tracking module (which would be unrealistic
given the current state of the art). At the same time, a tracking
module that works as well as possible, is of great advantage.
Microsoft’s Kinect SDK implements its own tracking system
and provides skeletal information by specifying the location
of each of the main joints of the human body in the 3D
space. Figure 3 shows an example of the tracking information
extracted by Kinect SDK.

However, the accuracy achieved by the tracking module
provided by the Kinect sensor is far from perfect and in
addition to that, the underlying software is proprietary and
closed source. That does not allow us to adapt it to our needs
and possibly extend or improve its abilities. To overcome these
problems, we have created our own tracking module. Figure



Fig. 3. Example of full body tracking provided by Kinect SDK. The left
image shows the RGB color frame of a subject performing a RA exercise.
The middle image shows the depth sensing information of the same frame
where the pixels corresponding to the tracked subject have been marked in
red. The right image shows the skeletal information extracted by Microsoft
Kinect SDK.

Fig. 4. The images show the qualitative result of body parts detection of our
tracking module using the depth sensing information obtained by the Kinect
sensor. The tracked body parts (head, shoulders and hands) are surrounded
by bounding boxes.

4 shows a qualitative result of the tracking achieved by our
tracking module using the depth sensing data coming from
Kinect. At its current status it can detect and track the head, the
shoulders and the hands of the tracked subject. The detected
parts are surrounded by bounding boxes.

Our method starts by detecting the head using template
search to find the face of a person. Taking the postion of the
head into consideration, it detects the position of the body and
then it uses that information to improve the originally detected
position of the head and subsequently detect the position of the
shoulders and the position of the hands. Algorithm 1 describes
the high level procedure we followed to detect the head,
shoulders and hands. Figure 5 demonstrates our experimental
quantitative evaluation of the accuracy of our method in
detecting the position of the body parts of interest with respect
to their actual location in a dataset of 800 manually annotated
images randomly selected from ChaLearn gesture challenge
dataset [32]. The graph shows the accuracy of detecting the
head, the left shoulder and the left hand (accuracy for right
shoulder and hand is similar), in terms of the percentage of
images on which the distance of the predicted position is
smaller than a number of pixels (value of Y axis) from the
actual position as annotated by humans.

IV. CONCLUSION

In this paper, we presented a cyberphysical system (named
RPLAY) we are developing to enhance the rehabilitation of
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patients with RA by, first, making the physical therapy routines
more interesting and engaging for the patients and providing
them with real-time feedback of their progress, and second, by
providing information to the therapists regarding the patient’s
adherence to the rehabilitation program. We demonstrated how
video games can be used as part of the rehabilitation process
and how our motion tracking method can track the human
body parts and recognize different types of motion which
correspond to prescribed exercises.
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