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Abstract The monitoring of sleep patterns is of major

importance for various reasons such as the detection and

treatment of sleep disorders, the assessment of the effect of

different medical conditions or medications on the sleep

quality, and the assessment of mortality risks associated

with sleeping patterns in adults and children. Sleep moni-

toring by itself is a difficult problem due to both privacy

and technical considerations. The proposed system uses a

combination of non-invasive sensors to assess and report

sleep patterns: a contact-based pressure mattress and a non-

contact 3D image acquisition device, which can comple-

ment each other. To evaluate our system, we used real data

collected in Heracleia Lab’s assistive living apartment. Our

system uses Machine Learning techniques to automatically

analyze the collected data and recognize sleep patterns. It is

non-invasive, as it does not disrupt the user’s usual sleep-

ing behavior and it can be used both at the clinic and at

home with minimal cost.

Keywords Sleep disorders � Sleep patterns �
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1 Introduction

According to the American Academy of Sleep Medicine,

there are 81 official sleep disorders, presented in [1].

Seventy million people in the USA have a sleep disorder,

the vast majority of which remain undiagnosed and

untreated. It is estimated that sleep-related problems incur

$15.9 billion to national healthcare budget. There is then

great need for automatic non-intrusive methods for sleep

disorder recognition that patients can use in their homes.

This would not only help decrease healthcare costs but also

increase the number of diagnosed patients.

Another reason why sleep disorder detection is impor-

tant is the fact that it is related to other potentially more

serious medical conditions. According to [8], results of

their study involving 1,506 participants (out of which 83 %

reported some medical condition) show that sleep disorders

are related to comorbidities rather than age. This is most

likely because major comorbidities such as stroke, heart

disease, osteoporosis, or arthritis impact the patients’

quality of sleep. Detection of sleep disorders could there-

fore be an indication of another important disorder.

Vandeputte and de Weerd [19] studied 917 patients from

a wide range of ages and suggest that patients with chronic

sleep disorders are more likely to have depression and in

fact about 1 in 4 patients who went to a sleep disorder

clinic admitted to be experiencing depression, although

only 3.5 % were found with moderate to severe depression.

In [18], it is mentioned that especially in older adults,

there are three sleep disorders frequently seen: sleep dis-

ordered breathing (SDB), restless legs syndrome (RLS)/

periodic limb movements in sleep (PLMS), and REM sleep

behavior disorder (RBD). Adults with SDB may experi-

ence insomnia, nocturnal confusion, and daytime cogni-

tive impairment including difficulty with concentration,
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attention, and short-term memory loss. Patients with SDB

are also at greater risk for cardiovascular consequences

such as hypertension, cardiac arrhythmias, congestive heart

failure, stroke, and myocardial infarction. The RLS is

characterized by dysesthesia in the legs which is usually

described as pins and needles or a creepy and crawly

sensation in the legs that is only relieved with movement.

Chronic RBD has been associated with narcolepsy and

other idiopathic neurodegenerative disorders such as Lewy

body dementia, multiple system atrophy, and Parkinson’s

disease.

In the past, some methods using Electroencephalograms

(EEG) or Electromyograms (EMG) have been proposed for

sleep disorder monitoring (e.g., [7, 9]). However, these

methods are very inconvenient for the patients due to the

cumbersome wiring that is required for the biosignal

acquisition. On the contrary to those methods, here, we

propose a non-invasive system that is able to analyze and

recognize sleep patterns which can be further utilized to

detect various types of sleep disorders. The first sensor that

we employ is a bed pressure mat (product of Vista Medical

Ltd.1) where the patient sleeps. The second sensor is the

Kinect 3D image acquisition device by Microsoft [11]. Our

approach is strongly motivated by the fact that by com-

bining the information acquired by the two sensors, it is

possible to attain better results than from a single one, due

to the complementarity of the acquired information.

Indeed, the pressure mattress is very reliable in capturing

the information about the users’ body parts that are in

contact with it, but cannot provide any information about

the rest of the body. On the other hand, the Kinect cannot

see the body parts touching the mattress, but can provide

rich data about the rest of the body parts that are visible. To

the best of our knowledge, this is the first such multimodal

approach for non-invasive recognition of sleep patterns.

We analyzed the acquired data using Supervised

Machine Learning techniques, and the system classified the

sleep patterns of the user in one or more predefined cate-

gories regarding both posture and motion. In this work, we

experimented with data collected from seven individuals.

The different patterns included periods of normal sleep and

periods of abnormal sleep such as restlessness and frequent

changes of body position. Preliminary results show that our

system is able to successfully recognize sleep patterns and

classify them among a predefined set of categories.

The remainder of this article is organized as follows.

Section 2 presents related previous work in sleep pattern

and sleep disorder detection. Section 3 elaborates on our

methodology and experimental results in sleep pattern

detection. Finally, Sect. 4 gives the conclusions of our

findings.

2 Related work

Related research has focused on detecting various param-

eters of sleep for humans and animals as well as sleep

quality and body posture recognition. More specifically,

studies on rodents focus mainly on detecting if the animal

is asleep or awake using piezoelectric films, used as a fil-

tering stage for traditional classifiers using EEG and EMG

[7]. The authors use EEG signals, preprocessed using Fast

Fourier Transform (FFT), Principal Components Analysis

(PCA) for feature selection, and classified using the

k-Nearest Neighbor (k-NN) algorithm. Jansen and Cheng

[9] also uses EEG and other signals and Markov modeling

techniques to classify normal and abnormal human sleep-

ing patterns. These types of signals require traditional

Digital Signal Processing techniques such as Discrete

Fourier Transform (DFT) and PCA for extracting mean-

ingful features and k-NN or Artificial Neural Networks for

the recognition step. Nevertheless, these methods require

sensors or cables attached to the skin of the subject which

is not acceptable for assistive pervasive applications. Other

researchers use additional types of data, such as oximetry

information to detect respiratory abnormalities [14]. The

authors evaluate classification results using spectral and

nonlinear analysis for feature extraction and Quadratic

Discriminant Analysis (QDA), Linear Discriminant Anal-

ysis (LDA), k-NN and Linear Regression (LR) for classi-

fication. In [13], the authors try to assess sleep quality

using near-infrared video only. The authors apply a

homomorphic filtering technique to tackle the problem of

over exposure in the center, common in near-infrared

cameras. The authors also learn a threshold to differentiate

noise from actual motion, since this type of cameras have

very low signal-to-noise ratio (SNR). They then use the

Motion History Image (MHI) technique that provides

direction of movement to identify motion.

As human bodies and motions are in essence three-

dimensional, the information loss in the depth channel

could cause significant degradation of the representation

and discriminating capability for camera-based feature

representations. The recent emergence of cheap depth

sensors (e.g., Microsoft Kinect) has made it feasible and

economically sound to capture in real-time depth maps

with appropriate resolution (e.g., 640 9 480 in pixel) and

accuracy (e.g., =1 cm). A work using RGB ? Depth sen-

sor for human activity recognition is [12], where a bag of

3D points are sampled from the depth map and Gaussian

mixture models are used to model the human postures. In

[17], skeleton motion data are extracted from Kinect SDK

for activity representation, while methods to extract skel-

etal data are presented in [3]. The very detailed human

models used in the aforementioned works show the high

utility of the depth data; however, in our application, the1 http://www.pressuremapping.com/.
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human limbs are not easily recognizable due to self

occlusions or due to the use of blankets.

Pressure has also been used to infer if the subject is

asleep or awake by detecting movements and respiration of

rodents. There exists one previous approach to our

knowledge that recognizes sleeping posture of humans

using pressure sensors. More specifically, 32 pressure

sensors were used to record the pressure pattern of the

subject at a particular pose and Naive Bayes as well as

Random Forests were used for classification and compared

to each other [15]. In [2], the authors use a pressure mat to

identify sleeping postures of babies possibly assisting

prevention of Sudden Infant Death Syndrome. The authors

collected the data from a 1-year-old baby freely moving on

the pressure mat, and after a feature selection stage, they

classified each posture using majority vote of k-NN, SVM,

linear and quadratic classifiers and then applied a sliding

window algorithm to eliminate possible misclassifications.

In our literature survey, we did not find any other non-

invasive method that would be able to combine the benefits

of a contact-based sensor such as a pressure mattress with

the merits of non-contact sensors such as 2D or 3D cam-

eras. Furthermore, the related work is rather limited to

posture identification and does not cover motion patterns,

which may be of importance. In this work, we aim to cover

this gap.

3 Multimodal sleep pattern analysis

3.1 Description of datasets

For the needs of our experiments, we collected data from 7

different individuals simulating their sleep habits. Each

individual lied on the bed for a period of time and per-

formed the actions that they would normally perform if

they went to bed. That involved getting in bed, staying still

for periods of time in different postures, changing body

postures, moving parts of the body like the arms or the legs,

and getting out of the bed. The different actions performed

during that period of time were recorded using 2 different

sensors. The first one was a bed pressure mat (see Sect.

3.1.1) that we put under the sheets, and the second one was

a Microsoft Kinect sensor (see Sect. 3.1.2) that we mounted

on the ceiling. The recorded data were then manually

annotated according to the various classes of interest, such

body posture, motion occurrence, etc.

3.1.1 Data collected from FSA bed pressure mat

The FSA bed mat system produced by Vista Medical Ltd.

provides a 1,920 mm 9 762 mm sensing area which con-

tains an array of 32 9 32 pressure sensors. Each of the

sensors can capture a measurement in the range

0–100 mmHg (1.93 PSI) with a scan frequency of up to

5 Hz. The measurements can be recorded over a period of

time and can be exported as a set of time stamped vectors

containing the values of each of the 1,024 pressure sensors

for each time stamp. To make visualization easier, we can

consider each of these vectors as a frame of a video. Each

of the sensors can be considered as pixel of a gray-scale

image with an intensity ranging from 1 to 100. Thus, each

frame can be considered as a 32 9 32 pixel image. Figure 1

illustrates a visualization example of the pressure values

captured in one frame. The color coding is just a conven-

tion to facilitate visualization.

3.1.2 Data collected from Kinect

Kinect is a motion sensing input device designed by

Microsoft for the Xbox 360 video game console [11]. Ki-

nect outputs 3 different data streams, RGB video stream,

depth sensing video stream and audio. The video output

frame rate is 30 Hz. The RGB video stream uses 8-bit

VGA resolution (640 9 480 pixels), while the mono-

chrome depth sensing video stream is in VGA resolution

(640 9 480 pixels) with 11-bit depth, which provides

2,048 levels of sensitivity. In our experiments, we used

only the depth sensing video stream. The depth sensor

consists of an infrared laser projector combined with a

monochrome CMOS sensor, which captures video data in

3D under any ambient light conditions. That feature makes

the Kinect usable even in very low lighting conditions,

Fig. 1 An example of a subject lying on his side on the pressure mat

(top) and the measurement values obtained (bottom)
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which is usually the case during the night sleep. Further-

more, the 3D input that we get regarding the subject’s body

posture is more informative compared to the 2D informa-

tion that we could get from the RGB video. The value of

each pixel in a depth video stream frame is the distance, in

millimeters, of the corresponding surface part of the object

from the sensor (Fig. 2).

3.2 Data analysis and classification

The detection/recognition of sleep disorders usually boils

down to the recognition of a set of symptoms that are

related to a specific sleep problem. Such symptoms are as

follows: how long it takes for the person to fall asleep, how

many times (if any) they wake up during the night, how

often do they move during their sleep time, how many

hours on average do they sleep, etc. These indicators are

difficult to monitor at home. Our immediate goal is to

create a system that can recognize these indicators and

make them easily accessible to the physicians. The long-

term goal is to create a system that will be able to auto-

matically detect specific sleep disorders based on training

data from previous known cases.

To achieve our goal, we break our problem into a set of

classes and we employ a combination of rule-based and

supervised learning methods to classify the various

instances into one of those classes. To evaluate the clas-

sification accuracy, we perform leave-one-out cross-vali-

dation experiments where every time we test the

classification accuracy on the data collected from one user,

by training it on data collected from the other users.

In more detail, we are attempting to recognize the fol-

lowing situations: (1) if the person is in bed or not, (2)

when does motion occur while in bed, (3) what type of

motion is that, and (4) while the person does not move

what is their body posture in bed. Being able to detect and

recognize the above situations and then combining them

together can be a very rich information source with regard

to the symptoms that we want to identify. In the following

sub-sections, we will describe how we approach each of the

above situations and how efficient our system is in terms of

recognition accuracy.

3.2.1 Detecting if the person is in bed or not

The first case of interest in our experiments would be to detect

whether the person is in bed or not. This is useful in cases, for

example, where we want to know how many hours in total

does the person spend in bed and how often do they get up

during their sleep time. It turns our that this is a very easy

problem to solve by just using the bed pressure mat. All we

had to do is just define a threshold of the total amount of

pressure that we get in the pressure mat. If the total pressure

exceeds that threshold, it means that the person is in bed.

Using this approach, we got 100 % accuracy in detecting

whether the person is in bed or not in our experiments. Note

that we did not consider cases where somebody puts some-

thing heavy on the bed that might confuse our system, since

we assume that participants are willing to be examined and

they are not willing to mislead the system.

3.2.2 Motion detection

Another case of interest is to detect when motion occurs

while the person lies on bed. The detection of motion can

be related to various sleep disorder symptoms. For exam-

ple, it can be an indication of how long does the person

take to fall asleep after they go to bed or how often do they

wake up during the night.

To detect motion, we used the standard computer vision

technique of frame differencing. That means that we

compared consecutive frames by subtracting the frame

n from the frame n ?i, where i C 1 depending on the

frame rate, and summing up the absolute differences. The

value of that sum S is a very good indicator of the existence

of motion in the time slot between the two frames.

For example, by using the only bed pressure mat, this

can be achieved by calculating the sum of absolute dif-

ferences of the values of each of the 1,024 pressure sensors

between consecutive frames represented as vectors.

Assuming a frame vector Xk = {x1, x2, …, xn}, where

n = 1,…,1,024 , at each time point k, this sum S can be

can be calculated as follows:

S ¼
Xn

i¼1

jxkþ1;i � xk;ij ð1Þ

It turns out that motion can be easily detected by specifying

a threshold T on the value of S. If S becomes greater than T,

0

20

40

60

80

100

120

0

50

100

150

200

250

600
800

1000

1200

Fig. 2 A 3D representation of the input obtained by the Kinect depth

sensor
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the subject is moving. The optimal value of T can be cal-

culated from the training dataset, and it is almost constant

among subjects of similar weights. Figure 3 shows a graph

of the values of S over a period of about 1,500 frames

obtained from one of the subjects. The green horizontal

line defines the threshold.

Exactly the same approach can be used on the data

collected from the Kinect sensor. The only differences

compared to the pressure mat frames are the frame rate, the

frame resolution, and the pixel value range. However, the

formulas to calculate the sums S and the optimal threshold

are exactly the same.

Using this approach, we classified each frame in the

stream as containing motion or not. We tested our system’s

accuracy against the manually annotated data where human

had specified the time points where motion occurred. We

experimented using the pressure mat only and the combi-

nation of pressure mat and Kinect. To combine the two

different data sources, we re-sampled the Kinect data to

meet the pressure mat frame rate (3 Hz), and then, we

aligned the frames using their timestamps. Each frame was

classified as containing motion, if the value of S in either of

the two data sources exceeded the predefined threshold.

Using the pressure data only, we achieved an average

motion detection accuracy of 96.83 %, whereas adding the

Kinect data, the accuracy increased to 97.57 %. The

increase in accuracy can be attributed to cases where a

motion (e.g., hand movement) is not strong enough to be

detected by the pressure mat but it can still be detected by

Kinect. The majority of the misclassified frames were

spotted either at the beginning or at the end of movement

of the subject where the levels of motion are very low.

Hence, some of those might have actually been misanno-

tated during the manual annotation process. In any case, the

results of motion detection accuracy can be considered

satisfactory.

3.2.3 Recognition of motion types and body postures

After detecting motion, our next step was to recognize the

motion type, when motion occurred, and the subject’s body

posture, when there was not motion. To do that, we first

used our motion detection method to segment the data

steams into sequences of frames which are part of a motion

and sequences of frames where there is no motion. Then,

we classified each of those sequences into one of the

motion classes or body posture classes.

The basic motion classes that we defined were the

following:

1. Changing body posture.

2. Moving arms or legs.

3. Getting in bed or out of bed.

4. Making bed.

The first class refers to the case where the subject is

changing sides, for example, they are sleeping on their

back, and then, they turn their left. The second class refers

to more subtle motion types where the subject moves a part

of their body, usually a limb, but they do not completely

change their body position. The third class occurs when the

person gets in or out of the bed. This motion type differs

from the previous two considerably. The last class refers to

the case where the person is not actually in bed but there is

still some type of motion detected by the pressure mat or

the Kinect. This is usually the case when someone makes

their bed.

Regarding the body postures we defined the following

classes:

1. Back

2. Left side

3. Right side

4. Stomach

5. Sitting on bed

The first four classes cover the basic usual sleeping

postures, whereas the fifth class occurs when the subject is

on the bed but they are not actually lying on it. Such cases

usually occur when the subject is about to get in or out of

the bed, but there could also be cases where they do not

feel good and the temporarily get up for a few seconds.

Figure 4 gives an overview of these 5 postures.

To recognize the body postures, we experimented with

two different techniques. The first one is a Computer

Vision-based technique, called Template Matching (TM),

which has been used in face detection [10] and other

similar applications. The idea behind this technique is that

for each posture, we pick a representative frame to use it as

Fig. 3 Detection of motion using the sum of absolute frame

differences (S) and a threshold T = 130
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a template, after possibly cropping it appropriately, and

then for every other frame to be classified, we compare it

with all the templates and see which one matches better

according to some distance criterion. In our case, we used

the simple frame difference as a distance criterion. That

means we calculated the sum of absolute differences of

each pixel of the template subtracted from the corre-

sponding pixel in the frame to be classified. To accom-

modate for cases where the subject lied in a different

position of the bed compared to the template or they were

taller/shorter compared to the subject used in the template,

we tried different scales and different centering positions of

the template.

The second technique that we used was based on

supervised learning. In order to perform supervised learn-

ing, we converted each frame to a feature vector where

each pixel represented a feature. To remove redundant

features and reduce noise before classification, we per-

formed a PCA [6] transformation on the data. The PCA

eigenvectors were calculated on the training dataset matrix

every time, and then, the testing dataset was projected to

them. The optimal number of principal components to keep

at each experiment was determined using an incremental

search on the training dataset. The number of components

that gave the highest classification accuracy on the training

dataset was used for the final experiment with each clas-

sification method, and it usually varied from 7 to 40

components depending on the method. In addition, we

calculated the Central Image Moments of the original

frames, and we added those as features to the feature vector

the resulted from PCA. An image moment is a certain

particular weighted average (moment) of the image pixels’

intensities. The advantage of central moments is that they

are translation invariant which could be useful in cases

where the subject is lying in an unusual position of the bed.

For a digital gray-scale image with pixel intensities

I(x, y), the raw image moments Mij are calculated by

Mij ¼
X

x

X

y

xiyjIðx; yÞ ð2Þ

The central moments can be calculated using the

following equation:

lpq ¼
X

x

X

y

ðx� �xÞpðy� �yÞqf ðx; yÞ ð3Þ

where �x ¼ M10

M00
and �y ¼ M01

M00
are the components of the cen-

troid. We used central moments of order up to 2, which

yields 8 different moments. For the data coming from the

Kinect, we assumed a near-constant background and we

defined the region of interest to be the area that covers the

dimensions of the bed.

In our experiments, we evaluated our methods using

each of the data sources separately and in combination. To

combine features from the two different data sources, we

aligned the pressure and the depth sensing frames using

their timestamps and we created a composite feature vector

which included the top Principal Components and the

Central Moments of each pair of frames. To deal with the

difference in the frame rate, we re-sampled the depth

sensing stream to reduce its frame rate. The classification

methods that we used to classify each single frame were

based on the well-known KNN [4] and Linear Kernel SVM

[5] algorithms. For KNN, we used K = 10 nearest neigh-

bors. To determine the optimal number of neighbors to use,

we did an incremental search and used the number that

gave the highest accuracy across the training datasets of all

users.

In order to recognize the body posture in the sequence of

frames, in both the cases of template matching and

supervised learning, we first classified each of the frames in

the sequence to one of the predefined classes, and then, we

used majority voting to decide the final posture class. The

voting approach was chosen in order to improve robustness

in case the segmentation process into static and motion

frames did not perfectly determine the boundary between

the two states. For example, if a user was lying on their

back and then turned to their left, the accuracy in detecting

the motion would be virtually perfect; however, some of

the frames at the beginning and the end of the motion could

be misclassified as static (since motion levels at these

boundaries are relatively low). To prevent these boundary

frames from having an effect to the final recognition of the

posture, we decide the final class to be the class of the

majority of the frames since the overall number of frames

(a) (b) (c) (d) (e)

Fig. 4 The 5 different body

postures

Pers Ubiquit Comput

123



in a segment is much bigger than the boundary frames.

Another approach would be to ignore the boundary frames,

but then, we would have to determine how many frames to

ignore.

At each round, we trained our system using data coming

from 6 out of the 7 users and classified the motion

sequences of the 7th user. This ensures that if the system is

to be used in real life, it can be trained off-line in advance

and it does not require any re-training for the specific user.

For the classification of the sequences of motion frames

into one of the 4 classes, we used Hidden Markov Model

(HMM). A HMM is a statistical model of a system having

hidden states and operating under the Markovian assump-

tion. HMMs have been proven to model effectively tem-

poral sequences as well as other forms of sequential data.

The models are trained using the Baum–Welch algorithm

that calculates their parameters. As for the recognition step,

it is done using the Forward–Backward algorithm [16].

For the KNN classifier, we found that the combination

of the top 40 principal components from each data source

plus the central moments for each frame gave us the best

classification accuracy. Similarly, for SVM, we used the

top 30 principal components plus the central image

moments. For the classification of motion using HMM, we

used the top 7 principal components plus the central

moments from the pressure sensing datasets and the top 14

principal components plus the central moments from the

depth sensing datasets.

Table 1 presents the classification accuracy results for

each user and the weighted average accuracy, where the

weight represents the number of instances per dataset. In

the different columns of the table, we present the result for

body posture recognition and motion type recognition,

separated by the classification algorithm that was used and

also by the type of data source that was used to perform the

training and testing. At each experiment, we evaluated our

system using the pressure sensing (P) data only, the depth

sensing (D) data only, and their combination (C).

As one can notice, combining the two different data

sources by fusing their features gives the best classification

accuracy in most cases. Also, with the exception of Tem-

plate Matching (TM), using the pressure sensing data alone

to recognize body postures and motion types gives better

accuracy compared to using the depth sensing data alone.

The supervised learning methods (KNN and SVM) out-

perform the template matching classification in the

majority of the cases. In our experiments, we constructed

the templates from one user (User 1) and we applied those

same templates to all the other users. That is the reason

why template matching works particularly well on ‘‘User

1’’. Since the template construction only requires the cap-

turing of one frame for each posture and some cropping to

match the body dimension, it would not be unreasonable to

construct new templates for each new user in real life.

4 Conclusion and future work

In this paper, we presented our work on analysis of sleep

patterns using non-invasive sensors and applying a com-

bination a rule-based and Machine Learning methods. Our

experimental results on real user datasets show that the task

of analyzing sleep patterns with the intent to detect

symptoms related to sleep disorders can be successfully

achieved. Although the available dataset was relatively

small, the classification accuracy results are promising and

show that the proposed tools and methods could be used in

the future for the detection of sleep disorders and other

Table 1 Classification accuracy results for body posture and motion type recognition

Posture recognition Motion recognition

TM KNN SVM HMM

P D C P D C P D C P D C

User 1 87.75 91.83 89.79 83.67 57.14 83.67 89.79 87.75 91.83 80.39 74.51 92.15

User 2 47.72 56.81 77.27 90.90 77.27 88.63 81.81 77.27 84.09 95.74 76.59 97.87

User 3 31.91 57.44 65.95 95.74 97.87 95.74 91.48 89.36 93.61 94.23 78.84 96.15

User 4 52.17 63.04 84.78 89.13 67.39 86.95 89.13 91.30 93.47 75.51 63.26 79.59

User 5 30.43 08.69 47.82 69.56 73.91 69.56 78.26 56.52 86.95 90.90 27.27 95.45

User 6 30.76 33.33 66.66 56.41 41.02 53.84 51.28 64.10 56.41 76.08 65.21 78.26

User 7 57.14 52.38 73.81 73.81 92.85 76.19 90.47 76.19 92.85 95.45 54.54 86.36

Average 53.10 64.82 83.79 81.38 72.76 80.69 82.76 79.66 86.21 86.50 66.24 89.07

‘‘P’’ as a column title denotes that only pressure sensing date were used, ‘‘D’’ denotes that only depth sensing data were used, and ‘‘C’’ denotes

that a combination of pressure and depth sensing data was used. For the posture recognition, the best accuracy per data source is in boldface and

the best accuracy across the different classification methods is underlined. For the motion recognition, the best accuracy per data source is in

boldface
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related diseases affecting sleep quality. To this end, further

experimentation with bigger datasets and improved fusion

methodology would be of high interest.

In the future, we plan to apply the system to large-scale

clinical tests and we believe that it will be possible to

associate our findings with pathological cases such as SDB,

RBD RLS/PLMS, as well as depression. The big challenge

is the diagnosis of diseases by recognizing the sleep pat-

terns, which may lead to more focused medical treatments.

The more focused treatments are expected to enhance the

quality of life for millions of patients suffering from sleep

disorders.
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