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ABSTRACT
Analysis of polysomnographic (PSG) biosignals, collected
during sleep studies, is the current gold-standard for sleep
disorder assessment. Motion and imperfect contact of the
wired sensors attached to the human body, to acquire the
data, can introduce noise and artifacts that can diminish the
quality of the collected data. In this work we present a sub-
space denoising method that exploits the low-dimensionality
of the acquired data, and is able to reduce the noise and in-
crease the SNR ratio in real-time, resulting in improved data
quality.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Signal processing systems; I.5.4 [Pattern Recognition]:
Applications —Signal processing

General Terms
Theory, Measurement, Reliability.

Keywords
Denoising, polysomnography, signal, real-time, sleep study.

1. INTRODUCTION
Sleep studies are standardized tests that record body ac-

tivity during sleep, in order to assess the existence of a sleep
disorder, in patients with sleep problems. A sleep disor-
der, or somnipathy, is a medical disorder of the sleep pat-
terns that, if left untreated, can lead to sleep deprivation.
Sleep deprivation, in turn, can lead to traffic accidents, work
injuries, increased risk of heart disease, heart attack, high
blood pressure, stroke, diabetes, and death. Sleep disor-
ders, according to [10] can also cause mental disorders, like
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depression. The International Classification of Sleep Disor-
ders: Diagnosis and Coding Manual, second edition (ICSD-
2) lists more than 80 sleep disorders [8]. The vast major-
ity of these disorders are classified in the following six cat-
egories: a) Insomnias b) Sleep-related breathing disorders
c) Hypersonmias of central origin d) Circadian rhythm dis-
orders e) Parasomnias f) Sleep-related movement disorders.

Polysomnography (PSG) [4] and Actigraphy are the most
common tests used to identify sleep disorders, with PSG be-
ing the gold standard used by sleep experts, as the most
reliable sleep study method available. PSG is the measure-
ment of multiple physiologic parameters of the human body
during sleep, including brain activity (EEG), eye movements
(EOG), muscle activity or skeletal muscle activation (EMG)
and heart rhythm (ECG), breathing and oxygen levels, among
others. To measure those parameters, a polysomnogram will
typically record a set of signal channels requiring multiple
wire attachments to the patient. Imperfect contact, patient
movements during sleep, and other factors, can introduce
noise and artifacts to the recorded signals, thus diminishing
the quality of the data collected for sleep disorder assess-
ment.

In this work, we introduce a method for noise reduction
in data recorded through PSG studies, aiming to increase
the reliability of the sleep disorder assessment results. Our
method is able to track a low-dimensional subspace that
accurately models the acquired data vectors xt, and subse-
quently project the data onto this low-dimensional subspace
to remove noise. The low-dimensional signal subspace used
to model the PSG data is tracked by relying on the pro-
jection approximation subspace tracking scheme, originally
proposed in [11]. The PSG data are then projected on the
estimated signal subspace leading to a real-time noise power
reduction.

Previous efforts on PSG signal denoising, have attempted
to denoise individual signals in isolation. For example, E-
strada et.al. [2], introduce wavelet-based EEG denoising for
automatic sleep stage classification. Sanemi et.al. [9], use
nonlinear Bayesian filtering to denoise ECG signals, while
more recently, Mert et.al. [6], denoise EOG signals using em-
pirical mode decomposition and detrended fluctuation anal-
ysis. Looney et.al. [5], as in our approach rely on subspace
estimation to perform subspace denoising of EEG artifacts
via multivariate EMD. However, the proposed method in
[5] is an offline technique in the sense that does not treat
the data as a constant stream of information with time-
varying statistics. Our method takes advantage of the com-
plementary information obtained by multiple PSG channels,



Figure 1: A 30-second epoch visualization of the
signals recorded by Profusion PSG 3 software.

to achieve fast and reliable data denoising in real-time, while
tracking in real-time a low-dimensional model that can be
used to describe the PSG data.

The remaining of this paper is organized as follows. Sec-
tion 2 provides an overview of the PSG data used in our
experiments. In section 3, we develop the theoretical model
of our noise reduction method and denoising approach. Sec-
tion 4 illustrates our experimental findings, by applying de-
noising to PSG data recorded from real patients. Finally, in
section 5 we discuss our concluding remarks.

2. PSG DATA DESCRIPTION
The data used in our experiments were collected during

sleep study sessions, at the Texas State Sleep Center, us-
ing the Compumedics®Profusion PSG 3 software. Pro-
fusion PSG allows the recording of 28 different physiolog-
ical signals, at different sampling rates, as listed in Table 1.
Signals #1-8 are electroencephalogram (EEG) signals, sig-
nal #9 is the electrocardiogram (ECG) (combination of two
electrodes), signals #10 & 11 are electromyography (EMG)
signals from the chin, signal 12 is a mastoid region reference
signal, signals #13 & 16 monitor snoring, and signals #23
& 24 are EMG signals from the legs. All the above signals
are sampled at 128 Hz. For simplicity, in our experimental
evaluation, we only apply our denoising method to signals
sampled at this frequency.

Profusion PSG, besides facilitating signal recording and
exporting into textual format for analysis, provides visual-
ization of the raw signals, for visual assessment by the clini-
cal expert. Signal denoising can benefit both the human ex-
pert, in their visual assessment, and possible machine-based
analysis methods for the detection of events of interest. In
fact, Profusion PSG provides some basic functionality for
automatically detecting events like sleep stage, limb move-
ment, respiratory events, etc. Figure 1 shows a snapshot of
a 30-second epoch, of a patient in NREM 3 sleep stage, as
recorded in a sleep study.

3. REAL-TIME SUBSPACE DENOISING
Next, we exploit the low-dimensionality of the acquired

sleeping data contained in the N × 1 vector xt at time in-

Table 1: Signals recorded by Profusion PSG.
Signal # Signal type Sampling freq.

1 E1-M2 128 Hz
2 E2-M1 128 Hz
3 F3-M2 128 Hz
4 F4-M1 128 Hz
5 C3-M2 128 Hz
6 C4-M1 128 Hz
7 O1-M2 128 Hz
8 O2-M1 128 Hz
9 ECG1-ECG2 128 Hz
10 Chin1-Chin3 128 Hz
11 Chin2-Chin1 128 Hz
12 M1 128 Hz
13 Snore 128 Hz
14 Pulse 16 Hz
15 CPAP Flow 16 Hz
16 Alt Snore 128 Hz
17 Alt Nasal Press 16 Hz
18 Thermister 32 Hz
19 Alt Thor 32 Hz
20 Alt Abdo 32 Hz
21 Sum 32 Hz
22 SpO2 16 Hz
23 Leg/R 128 Hz
24 Leg/L 128 Hz
25 Tidal Vol 16 Hz
26 Leak 16 Hz
27 CPAP Press 64 Hz
28 Position 16 Hz

stant t for t = 0, 1, 2, . . .. Here N = 16 and contains all
the measurements acquired at time instant t from all data
streams sampled at 128Hz. Specifically, the goal is to track
a low-dimensional subspace that accurately models the ac-
quired data vectors xt, and subsequently project the data
onto this low-dimensional subspace to remove noise in real-
time and improve the sensing signal-to-noise (SNR) ratio.
It should be emphasized that denoising is a necessary pre-
processing step to improve overall quality of the acquired
data and improve the performance of any subsequent data
mining tasks.

3.1 Noisy Low-Dimensional Signal Model
We consider the noisy data xnt := [xn1 [t], . . . , xnN [t]]T which

model the presence of noise in the acquired sleeping data via
the following additive noise model

xnt = xt + wt, (1)

where wt := [w1[t], . . . , wN [t]]T contains the sensing noise,
while xt corresponds to the informative part that we are
interested in recovering and it is assumed to be uncorrelated
with the noise vector wt. Next, a linear low-dimensional
model is used to represent the informative part xt in (1). In
detail, the informative part xt of the sensor data is modeled
as

xt = Htst, (2)

where Ht is a N × r matrix which denotes the time-varying
linear subspace on which the information part is assumed to
lie, whereas the r × 1 vectors st corresponds to correspond-
ing projection coefficients (or principal components, see e.g.,



[1]).
The time-varying matrix Ht can be interpreted as a lin-

ear subspace approximation of the informative signal ac-
quired in xt and observed via the noisy vectors xnt . Define
Ht := [h1,t . . .hr,t] ∈ RN×r and let Σs,t be the diagonal
covariance matrix of the uncorrelated principal components
in st. Then, then the covariance matrix Σxn of the noisy
data xnt can be written as

Σn
x,t = E[xnt (xnt )T ] = HtΣs,tH

T
t + σ2

wIN×N , (3)

where E[·] denotes the expectation operator and σ2
w denotes

the noise variance at each data stream. Further, the covari-
ance Σx,t := HtΣs,tH

T
t has rank r which implies that it has

r nonzero eigenvalues, while the corresponding r principal
eigenvectors form the r-dimensional signal subspace Ht.

3.2 Low-Rank Projection-Based Denoising
The low-dimensionality of xt is employed to reduce the

noise power in xnt by projecting the latter vectors onto the
signal subspace spanned by the columns of Ht. Specifi-
cally, let the singular value decomposition of Ht be Ht =
Uh,tSh,tV

T
h,t, where Sh,t ∈ Rr×r is diagonal and Uh,t ∈

RN×r and Vh,t ∈ Rr×r orthonormal matrices. Then, ma-
trix Uh,t contains the r principal eigenvectors of Σx,t, thus
projecting the data xnt onto Uh,t results

xpt := Uh,tU
T
h,tx

n
t = Htst + Uh,tU

T
h,twt. (4)

Note that the low-dimensional signal part Htst in xpt re-
mains intact and the same as in xnt after projection. How-
ever, the total noise variance of the projected noise Uh,tU

T
h,twt

can be found readily to be rσ2
w, which is smaller than the

total noise variance before data projection, namely Nσ2
w.

Thus, the overall effect of the noise is reduced on the pro-
jected data in (4). Thus, the projected data vectors xpt are
characterized by a larger signal-to-noise ratio (SNR) com-
pared to the original noisy data vectors xnt .

The idea of projection-based denoising is not new and it
has been effectively applied in image denoising, see e.g., [7]
and [3]. However, to the best of our knowledge it has not
been utilized in denoising PSG data streams which are ex-
tremely heterogeneous. Effective application of the projection-
based denoising in (4) requires knowledge of the time-varying
signal eigenspace Uh,t. To this end, a real-time process
known as projection approximation subspace tracking (PAST),
see e.g., [11], will be employed to estimate the low-rank sig-
nal eigenspace using the data xnt .

3.3 Online Subspace Tracking
The PAST scheme, originally proposed in [11], is an iter-

ative approach to minimize in an online fashion the expo-
nentially weighted mean-square error

Ĉt := arg min
C

t∑
τ=0

βt−τ‖xτ −CCTxτ‖2F (5)

where β ∈ (0, 1] is a forgetting coefficient giving more em-
phasis to the recent data, while gradually forgetting the old
data while C is a r × N matrix. As demonstrated in [11]

the matrix Ĉt can be used as an estimate for the signal
eigenspace Uh,t.

The PAST algorithm involves the following updating for-

mulas at time instant t:

yt = Ĉt−1x
n
t (6)

mt = Pt−1yt (7)

gt = (β + yTt mt)
−1mt (8)

et = xnt − Ĉt−1yt (9)

Ĉt = Ĉt−1 + etg
T
t (10)

which are carried out at every time instant t and after a new
data vector xnt has been acquired. The ‘covariance’ matrix
Pt is initialized such that P0 = Ir×r, while the eigenspace
estimate is initialized such that Ĉt

4. NUMERICAL TESTS
The denoising technique is tested in 16 × 1 data vectors

that contain noisy PSG signals. Here we group 16 among
the 28 PSG signals whose common characteristic is their
sampling rate at 128Hz (see Table 1 for a complete list of
all data streams).

The performance metric considered here will be the ra-
tio of the noise power in the projected data over the noise
power in the original data. Specifically, at time instant t the
following noise-reduction ratio is calculated (in dB)

NRt(dB) := 10 · log10

‖xnt − xt‖22
‖xpt − xt‖22

. (11)

IfNRt is positive this implies that the noise power is reduced
in the projected data, whereas if it is negative it means that
the noise power is amplified. We apply next the denoising
procedure in 4000 data vectors acquired within a time inter-
val of 31.25 seconds. Figures 2 and 3 display the histogram
of NRt values for all 4000 data vectors for a sensing SNR of
2dB and 8dB, respectively. In other words, it is displayed
how many data vectors are associated with a given NRt
range of values. When the sensing SNR is 2dB (original
data) the average of NRt is 5.84dB which is a significant re-
duction is noise power, while the percentage of data vectors
with a negative NRt can be found to be only 3.5%. This
is done by setting the signal subspace dimension to r = 2.
Similarly, when the sensing SNR in the original data vec-
tors is 8dB as can be found by the histogram in Fig. 3 the
average of NRt is 3.73dB, while the percentage of data vec-
tors with a negative NRt can be found to be only 1%. This
is done by setting the signal subspace dimension to r = 4.
Thus, the denoising of the PSG data is evident. One thing
to notice is that as the sensing SNR in the original data goes
up the average NRt decreases. This happens due to the fact
that as the sensing SNR goes up there is less noise to remove
leading to a decrease in the NRt values observed.

Table 2 depicts for different sensing SNR values (and cor-
responding low-dimension r) the mean NR achieved by the
denoising method, as well the probability of having a nega-
tive NRt, namely the outage probability Pr[NRt < 0dB],
across the tested 4000 data vectors. These quantities are
calculated running the denoising method for 40 independent
Monte Carlo trials. The average NR in all different cases is
positive and as the sensing SNR decreases the mean NR is
increasing. As the sensing noise power decreases the NR
achieved by denoising is decreasing since the noise present
in the data is already decreasing. Also, it is worth mention-
ing that the outage probability is pretty small and does not
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Figure 2: Histogram of NRt values for a setting
where the sensing SNR of the noisy data is 2dB.

Table 2: Mean noise-reduction and outage probabil-
ity.

Sensing SNR (dB) r Mean NR (dB) Pr[NRt < 0dB]
0 2 6.40 0.02
2 2 5.84 0.03
4 2 5.10 0.04
6 4 4.09 0.02
8 4 3.73 0.01
12 4 2.45 0.05

exceed 5% in all different testing cases, which further im-
plies that 95% of the time the real-time denoising method
in fact reduces the noise power and improves the quality of
the projected data vectors xpt that can be used for further
processing such as classification and feature extraction.

5. CONCLUDING REMARKS
This work focused on carrying out denoising of polysomno-

graphic data in real-time. A time-varying low-dimensional
subspace model is utilized to model the informative part of
the data which can be further used to reduce noise power.
Projection of the data onto the low-dimensional signal sub-
space is utilized here to increase the SNR and improve the
quality of the acquired PSG data. The low-dimensional sub-
space is tracked in real-time, while numerical tests demon-
strate the capability of the proposed framework to reduce
noise power.
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