
IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017 1

IoT Middleware: A Survey on Issues
and Enabling Technologies

Anne H. Ngu, Mario Gutierrez, Vangelis Metsis, Surya Nepal,
and Quan Z. Sheng, Member, IEEE

Abstract—The Internet of Things (IoT) provides the ability
for humans and computers to learn and interact from billions
of things that include sensors, actuators, services, and other
Internet-connected objects. The realization of IoT systems will
enable seamless integration of the cyber world with our physi-
cal world and will fundamentally change and empower human
interaction with the world. A key technology in the realization
of IoT systems is middleware, which is usually described as a
software system designed to be the intermediary between IoT
devices and applications. In this paper, we first motivate the
need for an IoT middleware via an IoT application designed for
real-time prediction of blood alcohol content using smartwatch
sensor data. This is then followed by a survey on the capabilities
of the existing IoT middleware. We further conduct a thorough
analysis of the challenges and the enabling technologies in devel-
oping an IoT middleware that embraces the heterogeneity of IoT
devices and also supports the essential ingredients of composition,
adaptability, and security aspects of an IoT system.

Index Terms—Internet of Things (IoT), IoT middleware, IoT
service discovery, security and privacy.

I. INTRODUCTION

THE INTERNET of Things (IoT) is a domain that
represents the next most exciting technological revolution

since the Internet [1]–[4]. IoT will bring endless opportunities
and impact in every corner of our planet. With IoT, we can
build smart cities where parking spaces, urban noise, traffic
congestion, street lighting, irrigation, and waste can be moni-
tored in real time and managed more effectively. We can build
smart homes that are safe and energy-efficient. We can build
smart environments that automatically monitor air and water
pollution and enable early detection of earthquakes, forest
fires, and many other devastating disasters. IoT can transform
manufacturing, making it leaner and smarter. According to
CBS news, there have been nearly 600 bridge failures in the
USA since 1989. A large number of bridges in every state are
really a danger to the traveling public. IoT-enabled sensors can

Manuscript received June 27, 2016; accepted September 15, 2016. Date of
publication October 4, 2016; date of current version February 8, 2017. This
work was supported in part by the National Science Foundation under the
Research Experiences for Undergraduates Program (CNS-1358939) at Texas
State University and in part by NSF-CRI under Award 1305302.

A. H. Ngu, M. Gutierrez, and V. Metsis are with the Department of
Computer Science, Texas State University, San Marcos, TX 78666 USA
(e-mail: angu@txstate.edu; mag262@txstate.edu; vmetsis@txstate.edu).

S. Nepal is with the Data61, CSIRO, Sydney, NSW 2122, Australia (e-mail:
surya.nepal@data61.csiro.au).

Q. Z. Sheng is with the Department of Computing, Macquarie University,
Sydney, NSW 2109, Australia (e-mail: michael.sheng@mq.edu.au).

Digital Object Identifier 10.1109/JIOT.2016.2615180

monitor the vibrations and material conditions in bridges (as
well as buildings and historical monuments) and provide early
warning that would save numerous human lives. IoT is going
to create massive disruption and innovation in just about every
industry segment imaginable.

While the IoT offers numerous exciting potentials and
opportunities, it remains challenging to effectively manage
things to achieve seamless integration of the physical world
and the cyber one [1], [5], [6]. Many IoT middleware and
connectivity protocols are being developed and the num-
ber is increasing each day. For example, message queuing
telemetry transport (MQTT), constrained application proto-
col (CoAP), and Bluetooth low energy (BLE) are popular
connectivity protocols designed specifically for IoT devices.
However, the plethora of IoT connectivity protocols and
middleware are not facilitating the ease of connecting IoT
devices and interpreting collected data from them. This is
compounded by the fact that each IoT middleware advo-
cates different programming abstraction and architecture for
accessing and connecting to IoT devices. For example, in
the global sensor network (GSN) [7] project, the concept
of virtual sensor, which is specified in XML and imple-
mented with a corresponding wrapper, is provided as the
main abstraction for developing and connecting a new IoT
device. In the TerraSwarm project [8], an accessor design
pattern implemented in Javascript is proposed as the main
abstraction. In the Google Fit project [9], no particular high
level abstraction is provided for encapsulating a new device
type. The system is preprogrammed to support a fixed set
of IoT devices, which can be accessed by representational
state transfer (REST) APIs [10]. Adding an IoT device not
already supported requires expert Java programming experi-
ence in extending Google Fit’s FitnessSensorService
class. The current state-of-the-art support for IoT applica-
tion development is application specific which is equivalent
to the scenario where every IoT device requires a different
Web browser for connection to the Internet as echoed by
Zachariah et al. [11] in the paper entitled “The Internet of
Things Has a Gateway Problem.”

In this paper, we survey the state-of-the-art middleware
solutions in realizing IoT applications. Several surveys on IoT
middleware have been published such as [12]–[15]. To the
best of our knowledge, these surveys overview IoT middle-
ware only from specific perspectives and none of them address
the more recent trend of light-weight plug-and-play or cloud-
based IoT middleware. The aim of this paper is to provide a

2327-4662 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

2 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

better understanding of current research and challenges of IoT
middleware systems. The main contributions of this paper are
as follows.

1) A classification of the different types of architecture of
IoT middleware.

2) A comparative analysis of emerging IoT middleware
systems for each architecture type.

3) An assessment of the key research challenges, such as
composition, adaptability and security, in building the
next generation IoT middleware for rapid composition
of IoT applications.

The remainder of this paper is organized as follows. We first
motivate the need for an IoT middleware based on our expe-
riences in building a real-time blood alcohol content (BAC)
predictor using smartwatch sensor data (Section II). We then
discuss our observation of the three key software architectures
of IoT middleware and present a description of the similari-
ties and differences among the three architectures (Section III).
In Section IV, we provide a detailed analysis of the different
IoT middleware architectures by surveying eight existing IoT
middleware systems with respect to fulfilling the key function-
alities required by BAC-like IoT applications which are device
abstraction for data collection, composition for visualization
and analysis, service discovery for opportunistic integration,
security and privacy, and data persistency. We compare these
three types of IoT middleware by providing an example imple-
mentation of data collection of a Phidgets sensor in GSN,
Google Fit, and Ptolemy accessor host. We then outline the key
research challenges in developing an IoT middleware that will
enable a scientist or a health professional to configure/compose
a BAC-like IoT application which is adaptable, open, and
secure (Section V). Finally, we overview and discuss the rele-
vant work in Section VI and provide some concluding remarks
in Section VII.

II. USE CASE FOR IOT MIDDLEWARE

IoT applications fall into two general categories: 1) ambient
data collection and analytics and 2) real-time reactive appli-
cations. The first category of applications generally involves
collecting sensor data from a variety of sensors (e.g., wearable
devices), process them offline to gain actionable information
(e.g., a model) and then run the model as a predictor for new
data collected from the sensor in the future. The second cate-
gory of applications involves real-time reactive systems such
as autonomous vehicle or manufacturing processes where the
systems make real-time decisions based on observed sensor
values. The former category of applications is growing rapidly
especially in the healthcare domain where personalized health
tracking and monitoring has become vital to improved and
affordable healthcare.

In this section, we motivate the need for an open, light-
weight, secure, IoT middleware based on our experience in
implementing an ambient data collection and analytics IoT
application that can predict BAC using smartwatch sensor
data [16]. Below, we briefly outline the motivation for creating
this IoT application and show how this application, and in fact

Fig. 1. Infrastructure for data collection and analysis.

all IoT applications in this category, can benefit from an IoT
middleware.

Drunk driving is a dangerous, worldwide problem. This
problem is not only a hazard to the drunk drivers, but also
to pedestrians and other drivers. At dangerous levels of intox-
ication, it can be difficult to judge one’s own drunkenness.
Instead, it would be better to get a definitive measurement
of the BAC, or simply a binary response: “drunk” or “not
drunk”. Compact breathalyzers are probably the best option at
the moment, but these are not discreet and require deliberate
actions by the user. The other option is to use a smartphone
application to manually calculate BAC, but this demands a
greater deal of involvement from the user (remembering how
many drinks they have taken in a social setting). To be prac-
tical, it would be useful to have some sort of noninvasive and
accurate monitoring system that will warn its users if they
become too intoxicated. This system can also be used to warn
friends and family, or prevent the operation of the drinker’s
car by integrating with car’s ignition device.

We investigated the prediction of intoxication level from
smartwatch sensor data via building a secure IoT application
from the ground up. The collected data need to be stored
locally and transmitted to cloud storage for analysis. The avail-
ability of local storage is important to avoid the unpredictable
latencies from wireless transmission of data to the cloud. The
data needs to be secured not only at rest, both at local and
cloud storage, but also in transit. This demands the end to end
security from the edge/sensor to the cloud data center.

After data collection, data is processed in the cloud to deter-
mine whether there is any relationship between each type
of sensor values and the recorded BAC values. To achieve
that, the collected data must be preprocessed and visualized.
Then, various machine learning algorithms are applied to the
collected sensor data to obtain the most accurate predictor.
Fig. 1 shows the main infrastructure used for a generic data
collection and analysis system. The data collection applica-
tion running on the smartphone (which is also known as the
gateway) implements a set of Java classes to deal with the low-
level details of data collection process such as managing the
various threads for collecting the various sensor values from
the Microsoft Band smartwatch (known as the edge device)
or other devices such as Fitbit. The data collection application

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 3

also performs some aggregation on the collected data before
sending them for archival on the cloud. The data analytics is
performed entirely in the cloud which has the high performing
computation engine and various big data analytics and visual-
ization tools. Once a model is derived from the data analysis, it
is saved and integrated with the BAC application as a predictor.

The following are the key computation units we observed
from implementing the BAC application.

1) The Microsoft Band smartwatch must first be virtual-
ized as a software component to the BAC smartphone
application in order to connect and obtain data from
all available sensors on the Microsoft Band smartwatch.
A device abstraction component is thus needed to hide
users from the low level implementation details of the
networking protocols and communication capabilities of
different physical sensors.

2) The real-time interaction between the BAC application
and the physical device must be supported. Data is usu-
ally delivered as infinite streams in time-stamped order
from the devices. A stream, event processing or aggre-
gation service is thus an important component. Stream
processing provides complex event detection that turns
the collected data (usually in large quantity) into useful
actionable information. Aggregation can provide more
meaningful data for analysis. For example, in the case
of collecting accelerometer data, the three most recent
values were averaged with linear weighting rather than
just using the last value.

3) A monitoring or visualization service is needed to allow
users to monitor/control the state of the physical devices
as well as to manage when and how often the collected
data should be archived to the cloud for further analysis
or processing. This component should also provide noti-
fication and subscription services for the timely delivery
of IoT status to users, in this case an alert for being
intoxicated.

4) An IoT application can generate a large amount of data
that need to be processed and archived, so the ubiquitous
connection to a cloud infrastructure is needed for data
analytics and archiving.

5) The security and privacy component is needed to pro-
vide the integrity of the collected data (stream) and
to ensure that the user’s privacy is not violated. Users
should have the option to archive the collected data in a
storage medium of choice and only be able to connect
to authenticated/certified IoT devices.

6) A composition engine (also called a rule engine in some
systems) is necessary to enable users to combine analyt-
ics services from the cloud, from data services in other
gateways (PhidgetInterfaceKit and Arduino) or other
IoT devices (car’s ignition device) without low-level
programming.

A data collection and analytics system for tracking envi-
ronment pollution in a building would involve a similar set of
computation units as illustrated in the BAC prediction appli-
cation; albeit the type of sensors at the edge will be Mica
motes with desktop or laptop serving as the gateway. The
data collected will also be pushed to the cloud storage or a

Fig. 2. Service-based IoT middleware.

backend database. A similar set of analysis and visualization
tools are needed for the analytics. In summary, the logical
requirement for environment monitoring and BAC monitoring
are the same. Having to develop two separate applications for
each of the above applications with dedicated set of resources
not only increases the cost and the time for development but
also leads developers with the additional challenges of security
and privacy surrounding data and ToT devices access. There is
thus a need to develop an open, lightweight, adaptable, secure
IoT middleware that serves as a bridge across a variety of
IoT devices and applications. Such a middleware will enable
a scientist or a health professional to configure/compose a
new secure IoT application for performing the data collection
and analysis relevant to his/her context without any low-level
programming.

III. ARCHITECTURE OF IOT MIDDLEWARE

Existing architectures for IoT middleware form three class
types, from our observation. The first type, which we refer to
it as a service-based solution, generally adopts the service-
oriented architecture (SOA) [17] and allows developers or
users to add or deploy a diverse range of IoT devices as
services. The second type, which is known as cloud-based
solution, limits the users on the type and the number of IoT
devices that they can deploy, but enables users to connect,
collect, and interpret the collected data with ease since pos-
sible use cases can be determined and programmed a priori.
The third type is the actor-based framework that emphasizes
on the open, plug and play IoT architecture. A variety of IoT
devices can be exposed as reusable actors and distributed in
the network.

Fig. 2 depicts a service-based IoT middleware. It is a
three-layered architecture adopted by the OpenIoT [18],
an European Union project to standardize IoT platforms.
This architecture consists of a physical plane (sensors and
actuators), a virtualized plane (server or cloud infrastructure),
and an application plane (utility). The main computational
units are available in the middle layer or the virtualized plane.
The generic services available in the middle layer range from
access control, storage management to an event processing
engine. These services support the data collection part of
the BAC-like IoT applications, but not the analytic part.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

4 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 3. Cloud-based IoT middleware.

The service-based architecture is a high-performing
heavyweight middleware generally deployed on multiple
nodes running in the cloud or on powerful gateways between
IoT devices and the applications. It is not designed to be
deployed in resource-constrained IoT devices (e.g., smart
phones) and does not support device-to-device communication.

A cloud-based IoT middleware architecture is shown in
Fig. 3. The functional components (white box in the dia-
gram) of the middleware are limited to what is available on
the cloud and it varies widely among cloud-based platforms.
Typically, those functionalities are exposed as a set of APIs.
The provided functionalities could be as simple as a very
high performance storage system or a very powerful compu-
tation engine with predefined monitoring and analysis tools.
The services of IoT devices available in the cloud can only be
accessed or controlled via either vendor’s provided application
or cloud supported RESTful APIs.

An actor-based IoT middleware architecture is first
presented in TerraSwam [19], a joint research project between
universities, government and private companies in USA. A
three-concentric circles visual is used to depict the architec-
ture of the actor-based IoT middleware. The outermost circle is
the sensory swarm (sensors and actuators), the middle circle is
the mobile access (gateways such as smartphone, Raspberry
Pi, Swarmbox, and laptop) and the inner most circle is the
cloud. To facilitate the comparison with other types, we map
the three circles into a three layered architectural view. Fig. 4
depicts this architecture. As shown in the figure, the middle-
ware (also named as actor host) is designed to be light-weight
that can be embedded in all the layers (sensory layer, mobile
access layer, and the cloud). The basic middleware computa-
tion units are thus distributed in the network (the white box).
For example, an actor-based middleware deployed on a smart-
watch might not include a storage service. However, an actor
that provides a storage service can be downloaded from the
cloud repository when needed.

The key differences in the three architectures are the open-
ness of the architecture in supporting a new IoT device type,
the type of middleware services, or computational units they
support, and where the IoT middleware can be embedded
or deployed. The service-based IoT middleware is deployed
in servers or in cloud. This middleware provides users with
simple tools such as Web applications to view the raw data
that the IoT devices are collecting, but usually provides lim-
ited functionalities to users when it comes to composition or

Fig. 4. Actor-based IoT middleware.

integration with other applications or in interpreting the data.
The service-based IoT middleware can be set up for restricted
access to protect private and sensitive data. The computational
units in the service-based architecture are not designed to be
extendable or configurable by users.

The actor-based style of architecture provides the best
latency and scalability for large-scale connected IoT devices
because the middleware can be deployed in all layers and IoT
devices can perform computation where it is most beneficial.
Users can extend the computational units of the actor-based
IoT middleware by developing a pluggable actor or download
that from a central repository. Both service and actor-based
IoT middleware architectures do not dictate a particular stan-
dard such as RESTful API or BLE for interoperability among
IoT devices. They both embrace the heterogeneity of IoT
devices by supporting a particular programming model or
device abstraction. In contrast, in the cloud-based architecture,
interoperability is achieved by adopting specific standards.
Cloud-based style of middleware can stop working completely
when the cloud provider ends the service. Google Nest [20]
is a prime example of that.

While all three architectures support security and privacy
to some extent, cloud-based architecture requires users to
trust the cloud provider to uphold the privacy and integrity
of their data. Users are not given alternatives other than
those prescribed by the cloud. In service and actor-based
architectures, users have a choice of how and where data
can be stored. In both service and cloud-based architec-
tures, there is a weak security link between physical devices
and the middleware; because the middleware cannot be
embedded within the physical device, the data transmit-
ted between physical devices, and the middleware can be
compromised.

IoT applications typically operate in a dynamic and uncer-
tain environment. For example, IoT devices can run out of
battery power and stop working, and the connectivity between
the devices and gateways might be lost at any time. The
middleware must provide a service discovery component so
that new services can be made available opportunistically and
failed services can be replaced dynamically to guarantee a
certain quality of service. For example, the physical devices
can connect to a different gateway of similar quality if the

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 5

Fig. 5. Overview of various IoT middleware.

current gateway is about to lose connection. Only service-
based middleware currently supports a limited form of service
discovery.

IV. EXISTING IOT MIDDLEWARE SYSTEMS

Here, we provide a more in depth analysis of the capabil-
ities of all the three types of IoT middleware in terms of: 1)
the abstraction they provide for connecting and accessing the
physical devices; 2) the services that they provide for flexible
composition of IoT devices and services; 3) the support for
service discovery; 4) the handling of privacy and security of
the collected data; and 5) the support they provide for creat-
ing and provisioning BAC-like IoT applications. Fig. 5 gives
an overview of the various IoT middleware that we studied.
Many IoT systems, frameworks, or middleware are constantly
being developed. Exhaustive coverage of all of them is impos-
sible. We aim to survey at least two IoT middleware systems
in each architecture style, and restrict this paper to IoT mid-
dleware systems that can support data collection and analysis
as in BAC-like IoT application. We target systems that are not
just a framework or a standardization effort. We also avoid
closed and subscription-based IoT middleware products. A
comprehensive list of IoT related systems can be found in [21].

A. Service-Based IoT Middleware

1) Hydra: The Hydra system [22], [23] is a four-year
project funded by the European Union to develop a service-
oriented middleware for networked embedded systems. The
project has been renamed to LinkSmart since 2014. Web
service is provided as the main abstraction for incorporat-
ing heterogeneous physical devices into applications and for
controlling any type of physical devices irrespective of their
network technologies such as Bluetooth, RF, ZigBee, RFID,
WiFi, etc. Hydra-enabled devices and services are secure and
trustworthy through distributed security and a social trust
computation unit provided by the middleware.

A major novelty in Hydra is that it provides support for
using devices as services by embedding services in devices.
Furthermore, the capabilities of IoT devices can be semanti-
cally described using ontologies in OWL and semantic annota-
tion for Web service description language (SAWSDL) so that
they can be discovered. The framework is intended for three

specific application domains: 1) home automation; 2) health-
care; and 3) agriculture. Hydra supports service discovery and
self-configuration of services/devices via context (i.e., location
and time). It recruits new devices or resources dynamically via
peer-to-peer network technologies. Hydra provides an SDK
augmented with semantic model driven architecture to create
applications in supported domains.

The SDK tool is too low level for use as a composition
engine for end users. Hydra advocates the use of a homoge-
neous standard (Web services) for addressing the heterogeneity
of IoT devices. While it is possible to create a smartwatch Web
service using the supplied SDK tool kit with training, wrap-
ping IoT devices as Web services might limit the types of
IoT devices that can be deployed and managed in this plat-
form since a Web service is a heavy weight protocol to run on
energy and capability constrained IoT devices. All collected
data are transmitted to the Hydra middleware for processing
and archiving. No local processing or aggregation of collected
data is possible on IoT devices. This is impractical for some
BAC-like applications where detection of critical events (e.g.,
a fall of an elderly person) from the collected data must be
analyzed in real-time). A Hydra IoT application must be hand-
crafted by a programmer and it is not a platform that can
empower the consumer to quickly search, create, and deploy
a BAC-like data collection and analysis application. Hydra is
thus more suitable for enterprise-level IoT applications that
form long-term and tight coupling with a static set of IoT
devices that are already supported by the platform.

2) Global Sensor Networks: GSN [7], [24] is a service-
based IoT middleware (see Fig. 2) that aims to provide a
uniform platform for flexible integration, sharing, and deploy-
ment of heterogeneous IoT devices. The central concept is
the virtual sensor abstraction, which enables users/developers
to declaratively specify XML-based deployment descriptors
to deploy a sensor. This is similar to the concept of deploy-
ment descriptors used in the deployment of enterprise beans
in J2EE server [25]. The architecture of GSN follows the
same container architecture as in J2EE where each container
can host multiple virtual sensors and the container provides
functionalities for lifecycle management of the sensors which
includes persistency, security, notification, resource pooling,
and event processing. The input to the virtual sensor is one
or more data streams which are processed according to the
XML specification. These include the sampling rate of the
data, the type, and location of the data stream, the persis-
tency of the data, the output structure of the data, and the
SQL processing logic for the data stream. Each input stream is
associated with a wrapper. The wrapper program specifies the
following:

1) which network protocol to be used to connect, interact,
and communicate with the physical sensor when first
initialized;

2) what to do in order to read data from the sensor;
3) what to do with the data when it is received from the

sensor.
GSN provides an SQL-based database that stores all the

raw sensor data if the permanent storage attribute of the vir-
tual sensor is specified as “true” in the XML specification.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

6 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 6. Phidgets sensor XML deployment file in GSN.

In addition, each virtual sensor contains a key-value pair which
can be registered and discovered in GSN.

The ability to add a platform specific wrapper enables the
system to integrate with sensors of heterogeneous types. To
add a new type of sensor to the platform, the user has to
know how to write an XML descriptor for the physical sensor
and provide an implementation of the wrapper in Java if it
is not already available. In the following paragraph, we illus-
trate the creation of Phidgets sensors in GSN to demonstrate
the capability provided by its device abstraction. We choose to
show Phidgets sensor implementations for the rest of this paper
because we have prototype implementations of Phidgets sen-
sors in all the three types of middleware that we observed. The
light and sound sensor data we collected in Phidgets are com-
parable in characteristics to sensor data that can be collected
from a smartwatch.

Adding a Phidgets sensor (IoT device) as a new virtual
sensor in GSN requires the creation of a deployment file
as shown in Fig. 6 and creating a wrapper class that can
run as a thread for consuming the stream data according
to the properties specified in the XML deployment file.
The virtual-sensor-name tag in the deployment file
specifies the storage medium for the collected data. The
processing-class tag specifies the Java class of this

virtual sensor, in this case, the BridgeVirtualSensor.
The output-structure tag specifies the structure of the
data to be collected. In this case, it is the sound and the light
and they are both of double type. The stream tag specifies
how the real-time interaction between the physical device and
the application must be supported. For example, the sampling
rate, the processing logic on the collected data are specified
via attribute sampling-rate and the query tag. Fig. 7 is
the partial implementation of the wrapper class which extends
the AbstractWrapper class provided by GSN and gets input as
specified by this XML descriptor.

While GSN provides scalable servers for collection and stor-
age of sensor data, it does not provide tools to compose or
interpret the data other than display it on a supplied Web
application. It also does not support composition of multiven-
dor devices via the XML descriptor. However, the extended
GSN [26], which is part of the OpenIoT project, does provide
a limited composition capability. In GSN, a domain spe-
cific application must be created by a programmer when data
need to be collected and integrated from various IoT devices.
External applications can access virtual sensors hosted on GSN
via RESTful or Web service APIs. A limited form of service
discovery, based on dictionary look up, is supported. User data
is protected by a login account. Similar to Hydra, all collected

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 7

Fig. 7. Phidgets sensor wrapper class in GSN.

data are transmitted to the middleware for processing and
archiving. GSN is not designed for embedding in power and
computation constrained IoT gateways such as smartphones or
Rasperry Pi, thus no local processing or aggregation of data is
performed. The declarative specification of sensor capabilities
via XML descriptor file is a step in the right direction to rapid
creation of BAC-like applications by automatic generation of
the wrapper class from the descriptor file.

B. Cloud-Based IoT Middleware

1) Google Fit: Google Fit [9] is an open IoT ecosystem. It
is a cloud-based IoT middleware that lets users control their
fitness data and build fitness apps from one central location.
It has a similar goal to Apple’s HealthKit. The system con-
tains a fitness store, which is a cloud storage service (similar
to Firebase, a JSON-based document server) that stores data
from a variety of devices and apps. A sensor framework con-
sists of a set APIs for connecting third-party IoT devices to
its store. For example, it provides APIs for subscribing to a
particular fitness data type or a particular fitness source (e.g.,
Fitbit or Smartwatch), APIs for querying of historical data or
persistent recording of the sensor data from a particular source
(e.g., a smartwatch). In addition, there is a permission and
user control module that handles the privacy and security of
data by prompting for user consent before Google Fit’s apps
can read or store collected data. Google Fit is an IoT mid-
dleware designed for ease of composing a preconceived type
of application, in this case, self-tracking data from wearable
fitness devices.

Google Fit provides native support for IoT devices that com-
municate in BLE. Adding a new fitness sensor type that does
not communicate in BLE requires a developer to provide an
implementation of FitnessSensorService class as well
as the supported data type if it is not available. In Fig. 8,
we provide a sample implementation of a Google Fit software
sensor for a Phidgets sensor to demonstrate the complexity of
creating a BAC-like application for IoT devices that are not
yet supported by Google Fit.

To collect and store sensor data from a Phidgets sensor
which communicates via a WiFi network, there is a need to
implement a sensing service as an Android app to communi-
cate with Google Fit’s cloud storage server. Fig. 8 shows the
implementation of the PhidgetsSensorService which

extends FitnessSensorService. The programming for
that service involves understanding Java’s Event program-
ming as well as mastering the various callback methods
in FitnessSensorService class which are non trivial.
However, for IoT devices (e.g., Fitbit and Garmin) that are
already supported by Google Fit, it is just a matter of down-
loading and installing a Google Fit app on Android compatible
gateways such as smartphone or tablet, creating an account,
setting up personal details, and permission. Note that by choos-
ing to use Google Fit, the user is tied to storing his/her sensor
data in Google Fit’s cloud storage, in the format provided by
Google Fit and in the size limit dictated by Google Fit. It
is not possible to preprocess the collected data before storing
them such as normalizing the data as in the BAC prediction
application.

Google Fit thus has a narrow application scope and does not
provide a framework for general IoT application’s data collec-
tion, composition, and analysis. Service discovery is limited to
a scan for nearby BLE devices. There are significant problems
with privacy, security, and unpredictable latency when using
cloud-based architecture. Moreover, users must entrust Google
Fit to manage their private data.

2) Xively: Xively [27], along with LogMeIn, is a public
cloud-based IoT middleware’s platform as a service. Xively’s
overall mission is to help developers and companies to turn
physical sensors into software sensors and connect them to
Xively’s IoT cloud platform quickly and simply. The IoT
middleware provides a Web-based application for quickly con-
necting IoT devices to its cloud and collecting data from the
devices. Once data is in the cloud, Xively allows users to
pull data from them easily anytime and anywhere using their
tools. The main use for Xively is for connecting IoT devices
of the users’ choice and store the collected data on their cloud
in a scalable way. Xively also provides a persistency service
that includes a time-series database for fast data storage and
retrieval.

The company has many tools and resources that develop-
ers can use to connect their sensors and collect data from
those sensors. For example, it provides adaptors for integra-
tion of collected data with commercial enterprise softwares
such as customer relationship management, enterprise resource
planning, and business intelligence. A directory service is pro-
vided for finding appropriate services also known as service
discovery.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

8 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 8. Google Fit sensor service.

Even though adding sensors or IoT devices is advertised
to be simple in Xively, the provided APIs require nontriv-
ial programming skill especially for IoT devices that are not
already supported. It is impossible to compose an IoT applica-
tion in Xively that correlates data from multiple IoT sources.
For example, no composition engine is provided such that it
is possible to correlate data from a sensor hosted in GSN
with a sensor hosted in Google Fit without extensive program-
ming. Fundamentally, Xively is providing similar capabilities

as Google Fit albeit it covers a more diverse set of devices and
includes integration with enterprise-level services. The system
is targeted for business users. As a cloud-based architecture,
Xively has the same security, privacy, and latency issues as
experienced by Google Fit.

3) Paraimpu: Paraimpu is a social aware IoT middle-
ware [28], [29] that allows consumers to add, use, share,
and interconnect their RESTful IoT services whether physical
or virtual. Things are mapped to either the abstract concept

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 9

of sensors or actuators in Paraimpu. The former character-
izes anything capable of producing data of a related type
(text, numeric, JSON, XML, etc.) and the latter characterizes
any thing that is able to perform actions by consuming data
produced by the sensors. Paraimpu also provides the connec-
tion abstraction between things. This allows users to compose
simple IoT applications via Javascript. All sensors and actu-
ators in Paraimpu are represented as RESTful resources and
JSON is used for internal interchange of data between devices.
Paraimpu is implemented using a scalable architecture leverag-
ing a nonblocking Tornado Web sever [30], an NGINX [31]
load balancer, and a MongoDB [32] which provides persis-
tency, replication, and fail-over data management support.
In other words, Paraimpu aims to provide a scalable cloud
infrastructure.

The key advantage of Paraimpu over other IoT middleware
is the ability for consumers to reuse and share IoT services
with others in their social networks. Paraimpu provides a lim-
ited set of configurable sensors, actuators, and connections
that can be reused across applications via filtering and map-
ping between inputs and outputs among sensors and actuators.
A simple JavaScript-based rule engine is provided for speci-
fying composition logic between one sensor and one actuator.
If the developer wants to connect two sensors to the same
actuator, he/she will have to make two separate connections
and make a replica of the actuator. Paraimpu does not sup-
port service discovery. Security is handled via supporting https
protocol and authentication via an access token. Privacy is
handled by giving users the control of how they want to share
their data (private versus public). As in Google Fit and Xively,
users have no control over the total ownership of their data.
Paraimpu does not provide device to device communication
and thus entails the usual latency problem of a cloud-based
architecture. Tutorial materials available on Paraimpu seem to
indicate that Paraimpu is good for IoT applications that only
involve one sensor and one actuator.

C. Actor-Based IoT Middleware

1) Calvin: Calvin [33] is an open-source IoT middleware
from Ericsson that aims to provide a unified programming
model which is light-weight and portable for capability and
energy constrained IoT devices. It is a hybrid framework com-
bining concepts from the actor-oriented model and flow-based
computing for composing and managing IoT applications. The
main abstraction for building IoT applications in Calvin is
an actor which is a reusable software component that can
represent a device, a computation, or a service. An actor’s
interface is defined by its input and output ports. An actor
reacts to inputs by producing outputs, rather than reacting to
method calls by returning values as in the traditional object-
oriented model. This paradigm of actor model follows an
asynchronous atomic callbacks pattern where short atomic
actions are interleaved with atomic invocation of response han-
dlers for high performing real-time interaction. Calvin’s actor
model also hides the low-level communication protocols of
things since actors connect and communicate through ports no
matter how the physical connectivity is done. Calvin provides

its own version of scripting language for ease of programming
of an actor. It advocates a prescriptive application develop-
ment process called describe, connect, deploy, and manage
to improve the process of developing an IoT application.
Calvin is a light-weight IoT middleware that can run on
devices on the edge to minimize the latency and also utilize
the full computing power available on the cloud when the
need arises.

One key advantage of Calvin’s actor is its ability to migrate
from one runtime environment to another to provide a robust
distributed IoT computation platform. The platform also comes
with a predefined set of actors that perform common unique
tasks. This includes actors for popular communication pro-
tocols and parallel processing. Calvin’s developer may extend
the capability of this middleware by creating a new actor using
CalvinScript and add the new actor to the library. Actors in
Calvin can be composed using CalvinScript.

Calvin does not yet support a graphical user interface
(GUI)-based composition of IoT applications. In the context
of BAC-like IoT applications, a smartwatch actor, a analy-
sis and visualization actors must be developed to compose
such an application. The real-time interaction between physi-
cal sensors and the application is managed by Calvin’s runtime
system which is light-weight and can be deployed in any layer
of the IoT middleware. Calvin advocates a simple program-
ming model for actors and unless this programming model is
adopted by the IoT developers’ community and IoT vendors,
creating BAC-like IoT application will not be trivial. Both
security and service discovery are not addressed in Calvin.

2) Node-RED: Node-RED [34] is an open-source IoT mid-
dleware platform from IBM. It is based on node.js, a
server-side Javascript platform that uses an event-driven, non-
blocking I/O module in a distributed computing environment.
Similar to Calvin, it is an IoT middleware that can be run at
the edge of the network because of its light footprint. The main
abstraction is Node which is a visual representation of a block
of Javascript codes designed to perform a specific function on
an IoT device (e.g., reading a particular value). In other words,
each node can be viewed as an actor.

Node-RED’s key advantage is a visual tool that simplifies
the job of composing IoT devices especially if the node for
the IoT device is already developed and published by others.
The visual tool in Node-RED allows users to drag-and-drop
blocks that represent components of a larger system and wire
them up to form an IoT application. Node-RED thus supports
composition of IoT applications. The composition engine acts
as a glue to IoT devices that can be abstracted as nodes.

For a device or service to work with Node-RED, the
APIs for communicating with the device must be available
as node.js library or a module accessible by Node-RED.
A limited form of security is provided via password authen-
tication. The Node-RED team envisions that modules or
node.js libraries for heterogeneous IoT devices can be
crowdsourced via creating a social network of Node-RED
developers. Node-RED does not provide service discovery. It
is built on node.js, which is a new platform with limited
libraries or modules. Node-RED is good for rapid prototyp-
ing of IoT applications whose functionalities can be encoded

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

10 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

Fig. 9. Phidgets sensor module in Ptolemy accessor host.

in simple Javascript and executed with Node-RED’s in-built
event-driven computation model for real-time interaction with
physical devices.

3) Ptolemy Accessor Host: Ptolemy [35] is an actor-
oriented framework for the modeling, simulating, and
designing of concurrent, real-time, embedded devices. It is
an open-source system developed by Prof. E. Lee at the
University of California, Berkeley, since 1996. The well-
known Kepler scientific workflow system [36] is built on
top of the Ptolemy system. The central modeling concept in
Ptolemy is actors which are software components that exe-
cute concurrently and communicate through messages sent via
interconnected ports. A novel feature of Ptolemy is that the
overall execution and actor interaction semantics is not defined
by the actors, but is factored out into a separate component
called director. Director plays the same role as the orches-
tration engine in a workflow. Ptolemy accessor host extends
the actor-oriented framework with an accessor abstraction. An
accessor encapsulates an IoT device and can expose an actor
interface [8]. Each accessor has an interface and an imple-
mentation. The interface serves as the local proxy for the
remote IoT device and is specified in Javascript which is light
weight and portable. The implementation (similar to a wrap-
per) encapsulates the APIs of the physical devices which can
be implemented in any language. Accessor leverages the dis-
ciplined model of computation in Ptolemy and embraces the
heterogeneity in IoT devices rather than proposing a single
standard to homogenize them. Ptolemy accessor host also pro-
vides a GUI for the ease of composing IoT applications. The
GUI contains drag-and-drop features (an easy way to connect
actors and accessors to each other) as well as a comprehen-
sive framework for managing the composed IoT applications.
This includes various kinds of displays for the execution status
and the ability to pause and resume the execution at anytime.
Accessor is designed to run on the edge devices, the gateways,
as well as on the cloud. This ensures that the IoT applica-
tion is executed where it is most beneficial. Accessors can be
downloaded and shared over the Web as in Paraimpu.

To demonstrate the light-weight programming model used
in actor-based architecture, we illustrate an implementation
of an accessor to collect data from a Phidgets sensor in

Ptolemy accessor host. Note that the communication mod-
ule for Phidgets sensor’s hardware must be available on the
Ptolemy accessor host. The communication module can be
implemented in any programming language, however, to make
the module executable on other accessor hosts beyond Ptolemy
(a host that has a JavaScript engine), the module needs to
conform to the CommonJSModule standard. Fig. 9 is a par-
tial implementation of the phidgetsSensor.js module,
which encapsulates the phidgets’ communication APIs. Fig. 10
shows the implementation of a Phidgets accessor that makes
use of the functionalities provided by the module to collect
sound and light sensor data. When compared with the wrap-
per codes for Phidgets in GSN or the phidgets sensor codes
in Google Fit, Ptolemy’s accessor script and its module are
simpler because they do not require knowledge of threads or
concurrent programming. An accessor script is designed to be
easily written with the description automatically generated for
other applications to consume. One of the built-in computa-
tion models of the Ptolemy, i.e., the discrete event director
handles the real-time semantics of accessors execution and
coordination with the physical devices and other actors.

The key advantage of Ptolemy accessor host is the ability to
compose multivendor IoT devices grounded on rigorous mul-
tiple computation models with time semantics. For example,
it guarantees correct execution of a real-time distributed IoT
application. Other actor-oriented platforms (Node-RED and
Calvin) only support a single model of computation typically
based on data/event flow without rigorous time semantics.
In addition, in Ptolemy accessor host, developers can lever-
age extensive existing actor libraries (computation, storage, or
visualization actors) for composing IoT applications. Ptolemy
accessor host is good for both the dynamic reactive IoT appli-
cations (e.g., control of autonomous vehicles) as well as the
ambient data collection and analytics BAC-like IoT applica-
tions because of the multiple computation models inherited
from Ptolemy.

Ptolemy accessor host does not yet support service discov-
ery. As the number of actors and accessors grow, the ability
to discover compatible actors or accessors will be valuable
for composing adaptive distributed IoT applications. Various
access controls can be made available via specialized actors

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 11

Fig. 10. Ptolemy phidgets accessor.

in Ptolemy accessor host. However, when an IoT application
involves multivendor devices, being able to guarantee privacy
of data from each device and yet to share the data effectively
for actionable knowledge is a significant challenge.

D. Summary of IoT Middleware Systems

Existing IoT middleware systems, which focus on support-
ing the efficient and secure processing of streaming data from
a large number of homogeneous sensors, tend to be service-
based while those that focus on consumer usability tend to
be cloud-based. We summarize and discuss the main charac-
teristics of existing IoT middleware systems in this section
and identify the key challenges and research gaps related to
providing a light-weight, open, and secure IoT middleware in
next section.

The horizontal column heading in Table I lists the key func-
tionalities for IoT middleware that will empower consumers
to create BAC-like IoT applications. Each row of the table
enumerates the functionalities provided by the IoT middleware
system we surveyed for composing BAC-like IoT applications.
The device abstraction column refers to the construct used to
encapsulate the heterogeneity of physical devices. The network
connectivity column refers to the types of communication pro-
tocols supported (e.g., HTTP, UDP, and BLE). Composition
column refers to the ability to connect and mashup cross
vendors IoT devices regardless of its connectivity protocol
or message format. The monitoring and visualization column
refers to the ability to check the state of the devices and visu-
alize the collected data at any time and anywhere without
having to write a complex third-party application. The ser-
vice discovery column refers to the ability to dynamically
recruit the best device or service with certain quality level
for composition. The security and privacy column refers to
how personal data are stored and managed. Consumers must

be confident that sensitive data from their devices do not prop-
agate beyond authorized entities or tempered with before they
use the application. The persistency column refers to how the
IoT middleware provides and handles the storage of the varied
types and amount of data.

Table I shows that device abstraction is provided by all sur-
veyed systems. However, the type and granularity varies quite
a bit. In cloud-based middleware, vendor supplied low level
APIs are used for adding IoT devices not natively supported.
In service and actor-based middleware, high-level program-
ming models such as accessors, node, or virtual sensors are
provided. The ease of deploying a new IoT device on the
middleware is directly related to how device abstraction is sup-
ported. We have demonstrated in Fig. 8 that adding a Phidgets
sensor by subclassing the FitnessSensorService class
in Google Fit is non trivial. The network connectivity is
well supported across all three type of architectures. The
actor-based middleware supports the most varied and biggest
selection of network protocols. All systems provide persis-
tency service, the difference is in the types of data that can be
stored and the scalability of the service. Google Fit currently
only supports data related to fitness. Multimedia data are not
supported.

As cloud-based middleware is targeted to a large number
of IoT devices and users, a high performance persistency ser-
vice is a necessity. Xively and Google Fit do not review the
technical details of their persistency service and thus we list
them as “cloud storage” in the table. This can be interpreted
as having a combination of high performing Web servers and
storage systems. For actor-based middleware such as Ptolemy
accessor host, persistency service defaults to the local file sys-
tem which might not be scalable. The composition and service
discovery are the least supported among the surveyed systems.
Paraimpu provides limited composition capability between a
sensor and an actuator. Only Ptolemy accessor host currently

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

12 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

TABLE I
IOT MIDDLEWARE VERSUS FUNCTIONALITIES

provides a comprehensive composition engine. The stream
processing engine in the middleware provides an abstraction
for the real-time interaction between the application and the
physical devices. Composition of IoT applications is made
much simpler when the middleware provides a scalable stream
processing engine. Among the systems, Ptolemy accessor host
provides the most advanced stream processing engine via var-
ious directors. None of the systems currently provides security
solutions targeted to the unique characteristics of IoT devices.

V. KEY CHALLENGES AND ISSUES

While IoT middleware holds promise for developing inno-
vative IoT applications and services that we might not even be
able to imagine right now, it also poses a number of daunting
challenges [1], [5], [37]. The first challenge is in develop-
ing an IoT middleware that must be available in the cloud
as well as on the edge (IoT devices and gateways) for sup-
porting all types of IoT applications, for better privacy control
and latency. This requires the system to be portable and light-
weight. Among the IoT middleware we studied, only Calvin,
Node-RED, and Ptolemy accessor host are designed to be
portable and light-weight. There is a tradeoff between having
powerful services such as semantic-based discovery, fraud-
resilient security enforcement, and stream processing versus
the ability to deploy an instance of the IoT middleware in
constrained devices.

The second challenge is to empower consumers to create
IoT applications targeted to their context. In the cloud-based
IoT middleware, no composition engine is provided for con-
sumers. This limits consumers to the preprogrammed IoT
applications and prevents consumers from creating their own
innovative applications. For the service-based architecture, an
SDK tool is provided for crafting an IoT application. This
requires low level programming knowledge and does not
empower consumers to create their IoT applications targeted
to their needs. Currently, only the actor-based IoT middleware
and the OpenIoT project provide visual composition tools.
The visual tools provided by Node-RED and Ptolemy accessor
host are early composition tools in this research direction. For
example in Ptolemy accessor host, the accessors, which are
the fundamental elements of the composition tool, must be
designed and implemented according to a specific program-
ming model. This requires end users to master JavaScript or
other scripting languages in order to create an IoT applica-
tion if the desired accessors have not already been provided.
Moreover, an accessor in an IoT application is “designed to fit”
a particular usage. Each new usage requires the development
of a new accessor. A higher-order accessor or a context-aware
accessor needs to be developed for flexible composition of
IoT applications. For example, by gathering some contextual
information from consumers (location, time, URL, and com-
munication protocol), the desired accessor can be configured
automatically as a subclass of an existing accessor for the

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 13

desired IoT application. In addition, currently, no composition
tool supports transactional properties. It assumes IoT appli-
cations will run from the beginning to the end successfully.
There is no provision of rollback or restart from a certain point
in a composed IoT application when there is a failure.

The third challenge is to provide semantic service discov-
ery that goes beyond discovery of IP addresses of the nearby
IoT devices. Given that the environment that the IoT appli-
cation interacts with evolves continuously, new services or
devices could come on-line anytime and existing devices might
become unavailable. It is essential to be able to discover or
query for compatible services at the right time and at the right
place both at design time as well as at runtime. For example,
in some critical health monitoring IoT applications, failed IoT
services must be replaced without causing any disruption.

The fourth challenge is to guarantee the security of IoT
applications and also protect the privacy of users. Many
applications from a variety of domains, ranging from smart
healthcare [38] to digital agriculture [39], are utilizing the
IoT infrastructure. Critical decisions are going to be made in
these applications by analyzing data collected from the IoT
devices. This has raised the issues of security, privacy, and
trustworthiness of IoT generated data [40]. These issues are
not limited to data alone, but also the underlying networks
and devices. Hence, supporting security, privacy, and trust
mechanisms within IoT middleware has been recognized as a
critical and important issue for the successful deployment of
IoT applications, and is deemed as one of the major challenges
in both industry and academic communities. Security is gener-
ally supported via some kind of authentication and encryption
protocols and privacy is addressed by giving the end user the
ability to specify different level of access controls without the
guarantee of data ownership.

In the rest of this section, we will focus our discussions on
the challenges and solutions to provide IoT service discovery
and security, which are the two most prominent gaps in the
eight systems we surveyed.

A. IoT Service Discovery

We first review the existing service discovery mecha-
nisms and then outline a few strategies for providing service
discovery in IoT middleware.

1) Existing Service Discovery Approaches in IoT: A
common approach to support adaptability in IoT middleware
is to adopt a uniform service description and a mechanism to
reason over that description for service discovery in different
contexts. For example, at design time, a user should be able to
query a registry of service descriptions and with the click of a
few buttons start to interact with a device that can guarantee
the desired capability and quality. Within the OpenIoT
project [18], the W3C Incubator Activity XG group has pro-
posed an semantic sensor network (SSN) ontology for sensor
discovery and dynamic integration of sensors. SSN ontology
captures both the properties or attributes of the sensors and
the observations derived from the sensors. The key concepts
in SSN are Sensor, Observation, Property, FeatureOfInterest,
SensorOutput, MeasurementCapability, ObservationValue,

and Condition. Using this ontology, a wind sensor for Mount
Washington hosted in the Paraimpu IoT middleware, which
is capable of measuring wind speed every ten minutes, will
have FeatureOfInterest having a value of “wind” and the
Property with a value of “speed.” SSN enables IoT devices
and the observed data to be annotated in a way that can be
searched and understood by others.

In XGSN [26], the extended GSN project, both the IoT
devices and the observed data are semantically annotated using
SSN. The semantic annotation of the sensors consists of the
metadata associated with the physical sensor such as its loca-
tion, the type of observation it produces, the responsible person
or organization for the sensor, and the source type. The other
semantic annotations are associated with the observed data,
which include the time and context when the observation hap-
pen, the observed property, the measurement unit and the
values. The annotated data is converted to resource description
framework (RDF) streams and sent to a cloud-enabled linked
sensor middleware (LSM) [41] which is a Linked Data RDF
store. LSM can either store the RDF stream data in a triple
store or perform continuous queries over the stream data using
SPARQL queries to derive aggregated observation in real-time.
Using this setup, each GSN virtual sensor has a corresponding
sensor instance in the LSM’s RDF store. XGSN provides an
RESTful service for registration of the annotated virtual sen-
sors. However, the annotated semantic of the virtual sensors
must be provided in an associated RDF file, which has to be
created first by an expert who knows RDF.

SensorML [42] is an approved open geospatial consortium
standard (OGC). SensorML supports semantic description of
IoT devices by providing a way to describe a sensor using
standardized XML tags such as PhysicalComponent for
describing metadata associated with the sensor, Output and
DataStream which describe the observed properties of the
sensor and Position which describes the location of the sen-
sor. The main objective is to provide a semantic annotation of
sensors, actuators and processors so that they are interoperable
and can be understood by machine and utilized automatically
in complex workflows. SensorML is a part of the OGC sensor
Web enablement suite of standards.

The Hydra [23] project adopts OWL and SAWSDL to
semantically annotate their IoT devices for discovery. OWL
is an ontology language for semantic Web. OWL ontologies
are usually stored as RDF documents. The SAWSDL allows a
Web service description language (WSDL) file to be enriched
with semantic description. This assumes that IoT devices can
be automatically exposed as WSDL files.

Other considerable efforts made in IoT service discovery
include Snoogle [43], Microsearch [44], and MAX [45]. These
systems assume that sensor nodes attached to physical IoT
devices carry textual descriptions of the devices in terms
of keywords. Users then have the opportunity to find those
devices by matching a query consisting of a list of keywords.
The results from these systems are still experimental and
preliminary. Ostermaier et al. [46], reported a system, named
Dyser, for real-time discovery of things on the Web. Dyser
uses statistical models to predict the state of its registered
resources when a user submits a query. The predictions are

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

14 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

used to establish a ranking that determines the order in which
resources are contacted to find out whether their current state
matches the query. However, contacting registered resources
for every query implies serious performance overhead, partic-
ularly given that the number of queries and things could be
enormous. It is not trivial to build an efficient index for such
a big data set.

2) Open Problems and Suggested Solutions for IoT Service
Discovery: The semantic annotation of sensors and sensor data
enables sensor data from different sources to be shared and
queried in a uniform way. While emerging standards like SSN
and linked data are gaining adoption, competing standards like
SensorML and SAWSDL cannot be ignored. Although there
are open source ontology tools such as Protege1 that can be
used to provide semantic annotation of IoT devices, it is still
nontrivial to annotate IoT devices with such descriptions with-
out expert knowledge of RDF. To realize a uniform IoT service
description system, a translator or an annotation tool should
be provided for setting up a registry of IoT devices and access
mechanisms. In the OpenIoT project [47], a visual semantic
annotation tool is integrated with XGSN to hide the details
of creating RDF file from users. This annotation tool is very
specific for XGSN middleware. Further research is needed to
develop a generic annotation tool that can be used by any IoT
middleware. With an ontological approach, unless the commu-
nity as a whole agrees on a single standard, it is impossible to
develop a generic annotation tool. Given the rapid technolog-
ical advances in this field, it might be impossible to maintain
a single global ontology for describing IoT devices.

There is also the scalability issue when using ontological
approach for service discovery in IoT. When there are large
number of sensors streaming large quantities of data over a
long period of time, RDF can be too verbose for capturing the
semantics of the data especially for energy and computation
constrained IoT devices. Furthermore, SPARQL query engine
used for querying the RDF store might not scale with the large
number of data streams from IoT devices.

We propose two nonontological approaches for service dis-
covery. The first approach is to create a similarity-based
search engine for heterogeneous IoT devices or services. This
approach has been used successfully to create similarity-
based Web service search engine such as Woogle [48],
WSExpress [49], and Titan systems [50]. Web services
are self-describing interfaces that can be programmati-
cally accessed and manipulated through the Web. We
have created a Web service similarity search engine called
ServiceXplorer [51]. A user can upload an existing Web ser-
vice description file, the system will parse the description and
create records of the key functionalities of the Web services
that can be searched using the earth movement distance-based
similarity search algorithm. This approach assumes that the
interface for an IoT device is available in the form of a doc-
ument and there is some regularity in the structure of the
document. For example, documentation created by JSDoc for
an accessor in Ptolemy has a regular structure that highlights
the functionalities of the encapsulated physical device.

1[Online]. Available: protege.stanford.edu

An example of the documentation of an accessor for Philips
Hue lightbulb in Ptolemy can be found online.2 A query can be
expressed as a combination of keywords or key phrases. This
approach is restricted for discovery of meta data of sensors, not
the observed data from sensors. For example, a query to dis-
cover all temperature sensor services that have readings above
90◦ in the last 2 h cannot be answered using this approach.

The second nonontological approach toward service discov-
ery is based on performing data analytics on the usage log of
the devices or services. Instead of having to label the IoT
devices or services using ontology, this approach aims to col-
lect the usage history of the devices and services and use that
to infer the capabilities and relationships between devices. By
analyzing when, where, who is using the device (e.g., a device
used frequently around lunch time, located in the kitchen, and
used by someone who has the overlapping scheduled lunch
time has a high probability to be a kitchen appliance), it is
possible to derive relationships between devices and services.
This allows recommendation of devices or services for com-
position as well as optimizing the time and cost of using an
IoT device in a particular situation. For example, when mul-
tiple people want to use a particular IoT device which is in
use, it makes sense to recommend other similar devices by
looking at devices that are the nearest neighbor of this device
without having to manually set up the ontological description
of all devices in the system. Recommending relevant things
by discovering implicit relationships between things via usage
logs has been described in a recent research work [52], [53]. A
key advantage of this approach is that the discovery of devices
and services takes place behind the scene. As devices come on
line and get used, the usage log is created and data analytics
can be used to classify this device. The key research problem
that needs to be addressed in this approach is ensuring that
privacy of users can be preserved when mining the usage log
of the devices or services.

B. Security and Privacy

In the previous sections, we have discussed the security
and privacy issues in the selected IoT middleware systems.
In this section, we first define the security, privacy, and trust
in the context of the IoT environment. We then review exist-
ing mechanisms on supporting security, privacy, and trust, with
a specific focus on the existing IoT middleware, and finally
discuss some open problems and suggested solutions.

1) Security, Privacy, and Trust Properties: Building
resilient, trusted IoT systems requires that key essential prop-
erties for security, privacy, and trust are met. What are these
properties? There are neither consensus definitions, nor exact
boundaries on which properties fall into security or privacy
or trust. However, it is clear from the published literature that
there has often been a focus on specific properties rather than
taking the issue of security, privacy, and trust in IoT systems
holistically. For the purpose of this discussion, we capture
some key properties discussed in the literature in Fig. 11. It is
important to note that they do not represent the comprehensive
list of all relevant properties.

2[Online]. Available: https://www.terraswarm.org/accessors/doc/jsdoc/
accessor-devices_Hue.html

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 15

Fig. 11. Key security, privacy, and trust properties in IoT system.

Security is often defined using three properties: confidential-
ity, integrity, and availability [54]. Confidentiality means that
a given message must not be understood by anyone other than
the desired recipients. The integrity property ensures that the
data produced and consumed in the IoT system are not mali-
ciously altered. The availability property means the system is
robust enough to be able to operate in adverse situations. In
addition to these three key properties, there are more secu-
rity properties defined in the literature, such as forward and
backward secrecy [55], that are equally important in certain
context within IoT systems.

The treatment of privacy in the literature is varied, rang-
ing from being defined as one of the security properties [55]
to referring to particular privacy enhancing technologies [56].
For our discussion, we define privacy with regard to entities in
an IoT system that can have control over how information is
shared and distributed. The entities here could be the end users
of the IoT system or IoT devices [57]. We capture the privacy
needs through three key popular and emerging techniques:
1) anonymity; 2) differential privacy; and 3) privacy-by-design.
We refer readers to [58]–[60] for further information.

Trust is often defined through three properties: 1) authenti-
cation; 2) authorization; and 3) accountability. The authenti-
cation property ensures that the data is sent by the claimed
sender [61], whereas the authorization property guarantees
that only authorized entities are able to perform certain oper-
ations [62]. The accountability refers to the property that
enables auditing of IoT systems for significant events and
analyze log to associate the behaviors of entities to such
events [63]. Audit trails and logs are important for detecting
security violations and recreating security incidents. In addi-
tion to the above three properties, there are other properties
in the literature that are related to trust management such as
freshness, reputation, access control, and nonrepudiation. We
refer readers to [55] for further details.

In the following, we review how existing IoT middleware
systems are designed to support different security, privacy, and
trust properties.

2) Existing Approaches for Supporting Security, Privacy,
and Trust: The problem of security and privacy in the
IoT systems has started to receive greater attention from
researchers recently, resulting in a number of publications in
this area [64]–[66]. However, the focus of the majority of
these publications is on the sensors, networking, and applica-
tion layers in the IoT architecture, rather than the middleware.

Bandyopadhyay et al. [67] have surveyed ten popular IoT mid-
dleware including Hydra [68], GSN [69], SOCRADES [70],
and SMEPP [71], and reported that only six of them support
security and privacy features. Fremantle and Scott [72] are
the first who surveyed twenty two IoT middleware systems
with the focus on security and privacy. They also found that
only ten of the surveyed systems have a security model, but
many of those models are not well defined and developed.
This clearly demonstrates the lack of security support in the
existing IoT middleware systems. When we consider the secu-
rity, privacy, and trust properties described earlier, only eight
of the twenty two support a form of confidentiality, integrity,
authentication, federated identity, access control, and attesta-
tion mechanism. However, none support privacy-by-design and
trust management. In the following, we review the support
of security, privacy, and trust in the middleware architecture
discussed earlier.

a) Service-based IoT middleware: Hydra [68] (also
known as LinkSmart [73]) is a service-based IoT middleware
implemented using Web services and utilizes the XML secu-
rity model [74]. One of the drawbacks of the standard XML
security model is that it is costly in both time and memory due
to the XML canonicalization needed for digital signature. The
data encryption in Hydra/LinkSmart is supported through the
use of symmetric keys, as they are more efficient than the pub-
lic key infrastructure (PKI). However, it suffers from a unique
challenge in key management, i.e., in creating and distributing
keys. To alleviate this problem, the Hydra/LinkSmart system
offers a service, called TrustManager, to support PKI with
a central certificate authority (CA). The CA issues a signed
certificate to each identifiable device in Hydra/LinkSmart that
is used to identify the communicating parties in the system.
Hydra middleware offers limited support to the security, pri-
vacy, and trust properties described earlier. It does not offer
any policy-based access control for IoT data, and does not
address the secure storage of data for users. It also fails to
offer any user-controlled models of access control to user’s
data [72]. Hence, the underlying security, privacy, and trust
support in Hydra is limited to the cryptographic support
through TrustManager.

GSN [69], another service-based middleware, explicitly
includes a security model through its integrity service and
access control. The security model sits on top of the data and
query layers and supports authorization property by control-
ling access to data and query. Only authorized users can have
access to them. The integrity service is designed to support
the integrity and confidentiality properties through encryption
and electronic signature. In addition, GSN is designed to sup-
port access control and integrity supports at different levels
of granularity; from whole GSN containers to individual vir-
tual sensors. Though the architecture is designed with security
considerations, the details on the underlying implementation
models are difficult to access through two key papers on
GSN [69], [75] and XGSN [76]. Hence, we conclude that
the support for security, privacy, and trust is limited in GSN
as well as its extended version, XGSN.

The OpenIoT middleware is also a service-based middle-
ware as it is built with GSN as the core. The OpenIoT

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

16 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

security and privacy framework describes a number of essen-
tial features that an IoT middleware is required to provide
support in security, privacy, and trust [77]. For example, the
support of data integrity through message digest, confidential-
ity through private key cryptography, key exchange through
public key cryptography, authentication through digital sig-
nature, identity management through digital certificates, and
key management through keytool and keystore. In addition,
it has outlined a number of security protocols that are essen-
tial for IoT such as IEEE802.15.4, IPSec, TSL, and HTTPS.
Furthermore, access control mechanisms such as mandatory
access control, rule-based access control, lattice-based access
control, and information flow-based access control, are also
discussed as fundamental requirements for the IoT middle-
ware. However, the implementation details of these security
mechanisms in OpenIoT platform are not available. There are
two specific issues with the OpenIoT security and privacy
framework: 1) most underlying techniques described in the
model are generic and not specific to the resource-constrained
IoT environment and 2) no public implementations of the
security framework are available.

In Virtus [78], a service-based middleware system, secu-
rity is integrated with the system by design. Virtus uses
the XMPP protocol to provide secure event driven commu-
nication. Authentication is supported by the transport layer
security (TLS) protocol and encryption by the simple authen-
tication and security layer (SASL) protocol. TLS also ensures
the confidentiality and data integrity, whereas SASL guaran-
tees server validation through an XMPP-specific profile, by
means of authentication. In addition, the Virtus architecture
is designed to allow the isolation of one or more instances
from the Internet so that highly sensitive data can be kept
private.

b) Cloud-based IoT middleware: The details on the sup-
port of security, privacy, and trust in the cloud-based systems
like Google Fit, Paraimpu, and Xively are not available to
make a fair assessment. As these systems rely on cloud-based
architecture, a number of security and privacy issues related
to cloud systems are applicable to them [79]. One of the
major concerns is the control of sensitive information in the
cloud-based system, as the data is controlled by the service
provider. In addition, the limited security support provided by
these systems are not designed for the resource-constrained
IoT environment.

In Webinos [80], another cloud-based IoT middleware
developed under the European FP7 project, the security and
privacy is treated as a first class citizen and included while
designing the system rather than an after-thought solution as
in OpenIoT. The system uses the concept of Personal Zone,
a secure virtual overlay network that groups a user’s personal
devices and services. Each user in the system has a trusted per-
sonal zone hub (PZH) instance running in the cloud. The PZH
acts as a centralized authority to enforce policies. The poli-
cies are defined using XACML [81], a general-purpose access
control language. The privacy is enforced within Webinos by
disclosing the minimum amount of data via disabling the col-
lection of contextualized data, and automatic filtering of data
related to personal information.

c) Actor-based IoT middleware: The security support
for the actor-based IoT middleware, e.g., Ptolemy accessor
host [82], is still in the very early stage of development.
Terraswam has identified the importance of security, privacy,
and trust issues in their whitepaper in 2012 [83]. However, the
solutions have not been yet built into the systems. Calvin [33]
also identified security as a major issue, but it is still work-
ing toward it. Another actor-based middleware, Node-RED, is
by default not secured; anyone who can access the IP address
and port can access the editor and deploy the changes. IBM is
developing a more secure solution by building the Watson IoT
Platform in Bluemix which allows devices to connect securely
using a unique combination of client ID and authentication
token over TLS V1.2.

In summary, we concur with the observations made by
Fremantle and Scott [72] that the existing middleware plat-
forms can be categorized into three groups as follows:

1) middleware platforms that do not address security, pri-
vacy, and trust such as Calvin and Node-RED;

2) middleware platforms that address the security issues to
some extent such as Hydra, Virtus and Webinos;

3) middleware platforms that offer theoretical models or
white paper, but have not demonstrated any real-world
implementation or concrete approaches such as OpenIoT
and Ptolemy accessor host.

Furthermore, the security mechanisms supported by the
middleware heavily rely on the underlying protocols. For
example, LinkSmart uses SOAP/Web services model of secu-
rity, VIRTUS uses XMPP standards and Webinos utilizes
policy-based access control (XACML) and Federated Identity
tokens (OpenID). It is important to note that these proto-
cols are not designed for a resource-constrained environment
(like IoT) and hence could be too costly both in memory
and time.

3) Open Problems and Suggested Solutions:
Fremantle and Scott [72] have identified the following gaps
in the existing middleware platforms: 1) lack of privacy-by-
design in the middleware systems; 2) context-based security;
3) user-centric model of access control; and 4) support for
federated identity at the device level. In addition to these, there
are a number of other issues related to security, privacy, and
trust that need to be addressed. In the following, we discuss
some open issues and possible solutions.

a) Lightweight device authentication: IoT typically oper-
ates in a resource-constrained environment such as low-
bandwidth communication between nodes, low energy, small
memory, and slow CPU cycles. These characteristics directly
impact the security, privacy, and trust solutions designed for
such an environment. For example, the use of small pack-
ets in IEEE 802.15.4 may result in fragmentation of security
protocol and may open new attack vectors. Similarly, limi-
tations of CPU and memory put severe restrictions on the
utility of the resource-demanding public-key cryptography as
used in the Internet security. There are a number of light-
weight public key cryptographic techniques that have been
developed to overcome this problem. NTRU [84], ECC [85],
and AE [86] are examples of such cryptographic techniques.
Further research is needed in this area. The question from

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 17

the middleware perspective is how these light-weight security
mechanisms can be incorporated into the IoT middleware.

b) Denial-of-service attacks: The memory and process-
ing constraints also lead to new form of denial-of-service
attacks through resource exhaustion. The attacks may go unno-
ticed until the services become unavailable. A number of
defense mechanisms have been developed for such attacks
such as DTLS [87], HIP [88], and their variants. Despite these
solutions proposed to address the problem, the issue remains
open for further research. None of the middleware solutions
reported in the literature considers this problem and potential
solutions in their design.

c) End-to-end security: The gap between the Internet
protocols (IPV6) and the light-weight IoT protocols
(6LoWPAN) makes it difficult to achieve end-to-end secu-
rity in the IoT environment. Though 6LoWPAN [89] and
CoAP [90] progress toward reducing the gap by compress-
ing IPV6 packets, there still remains the subtle difference.
The protocol translations at gateways might not work with
the existing security solutions. First, the relevant information
for translation is encrypted and might not be available to
gateways. Second, the changes made at the gateways might
invalidate the end-to-end data integrity protection. A number
of solutions have been proposed toward addressing this such as
sharing keys with gateways, selective protection, transforma-
tion independent message authentication, etc. However, it still
remains as a challenging problem, and needs further work.
The middleware can play a significant role to alleviate this
problem. Furthermore, achieving security at the IoT edges is
challenging for two reasons. First, the traditional perimeter
defense does not work when the edges are distributed in the
unprotected environment. Second, the cloud data center can-
not expose itself to the end devices. Some of the techniques
that could potentially solve these problems include software
defined perimeter, zero trust, and deperimeterization: though
they are at the early stage of the development.

In summary, IoT middleware needs to be designed with
security, privacy, and trust as first class citizens rather than
after-thought. It should satisfy key security properties in all
layers in the IoT architecture, for all entities including end
users and devices. Furthermore, the underlying techniques also
need to satisfy the constrains imposed by the IoT environment
including big data, low powered devices, smaller processors,
etc. To date, existing approaches tend to adapt available solu-
tions for existing middleware as an after-thought. Such a
patchwork approach is not going to satisfy the needs of ever-
growing IoT applications. Hence, building trustworthy IoT
middleware is still an open research and development problem.
We believe emerging techniques such as privacy-by-design,
differential privacy, and light-weight public-key cryptogra-
phy will form the building blocks of such IoT middleware
solutions.

VI. RELATED WORK

The IoT has become a vibrant and rapidly expanding area of
research and development over the last few years. A number
of surveys have been conducted on IoT middleware. The types

of middleware covered in these surveys vary considerably, and
rapid technological advancements and new products bring new
challenges and opportunities. The majority of existing survey
papers cover only the wireless sensor network domain, while
others concentrate on semantic and service-based frameworks,
and a small minority covers only the hardware or protocol
level middleware solutions. In this section, we briefly overview
these surveys.

Bandyopadhyay et al. [13] proposed key functional
blocks for service-based IoT middleware, including
interoperation, context detection, device discovery and
management, security and privacy, and persistency manage-
ment. Bandyopadhyay et al. [13] provided a classification of
ten existing IoT middleware systems based on the proposed
functional blocks and concentrate on how those middleware
systems provide adaptations. The main conclusion drawn
from the survey is that context-awareness, security and
privacy, and interoperation are the least supported func-
tional blocks among the surveyed middleware systems.
Chaqfeh and Mohamed [14] investigated the major challenges
and solutions in IoT middleware. The identified list of chal-
lenges include interoperability, scalability, device abstraction,
spontaneous interaction, unfixed infrastructure, multiplicity,
and security and privacy. Chaqfeh and Mohamed [14] classi-
fied the existing solutions into three domains: 1) semantics
Web and Web services; 2) RFID and sensors networks;
and 3) robotics-based systems. Chaqfeh and Mohamed [14]
argued that Semantic Web and Web service IoT middleware
could address all the listed challenges except the scalability
of persistence service. We concur that semantic Web is a
viable solution for addressing service discovery and com-
position in IoT. However, it is a heavy-weight solution for
resource-constrained IoT devices.

Teixeria et al. [15] focused on the challenges associated
with service-oriented IoT middleware and propose a solution
for service discovery and data composition using a probabilis-
tic approach to deal with the problems of scale, unknown
service availability and data inaccuracies. The work is part
of the EC-funded project large scale choreographies for the
future Internet (CHOReOS). Finally, a very recent survey by
Razzaque et al. [12] provided a comprehensive overview of
IoT middleware, focusing on the requirements of a variety
of middleware types, and exploring some of the challenges
related to these requirements. The requirements are grouped
into two general categories: 1) middleware service require-
ments (functional and nonfunctional) and 2) architectural
requirements. Each of the challenges is discussed at a high-
level without delving on how they have been addressed by
some of the most popular middleware used in practice today.

To the best of our knowledge, none of these existing surveys
addresses the more recent trend of light-weight plug-and-play
or cloud-based IoT middleware. This paper is the first IoT mid-
dleware survey that emphasizes on the architectural patterns
with emphasis on empowering users to create innovative IoT
applications targeted for ambient data collection and analysis.
We attempt to explore in depth those architectural characteris-
tics that can make each middleware type suitable or unsuitable
for a variety of applications, and the features that might enable

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

18 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

or hinder wide user adoption, especially, in the case of users
with low programming experience.

VII. CONCLUSION

The World Wide Web has gone through many transfor-
mations, from traditional linking and sharing of computers
and documents, to a platform for conducting businesses and
connecting people via social media, and now the emerging
paradigm of connecting billions of physical objects (IoT)
to empower human interaction with both the physical and
virtual worlds in an unprecedented way. In this survey
paper, we have analyzed three key IoT middleware archi-
tectures ranging from consumer-centric cloud-based architec-
tures, light-weight actor-based architectures, and heavy-weight
service-based architectures. We outlined four key challenges
in developing an IoT middleware which are as follows.

1) A light-weight middleware platform that can provide
similar services when deployed on power constrained
IoT devices as well as in desktop computers and cloud
infrastructure.

2) A composition engine that is intuitive and not applica-
tion specific.

3) A security mechanism that can operate in a resource
constrained environment and yet can achieve similar
guarantee as Internet security.

4) A semantic-based IoT device/service discovery that goes
beyond discovery of domain names and IP addresses.

We elaborate on two nonontological solutions for addressing
key challenges in IoT service discovery. The first approach is
adapted from existing works in Web service search engines and
the second approach is based on machine learning and recom-
mendation techniques. Finally, in the IoT security domain, we
believe emerging techniques such as privacy-by-design, differ-
ential privacy, and light-weight public-key cryptography will
form the building blocks for security in IoT middleware.

ACKNOWLEDGMENT

The majority of this paper was performed while the first
author was visiting CSIRO, Sydney, Australia. The work on
accessors was performed while the first author was visiting
Prof. E. Lee and C. Brooks at the University of California,
Berkeley.

REFERENCES

[1] D. Raggett, “The Web of Things: Challenges and opportunities,” IEEE
Comput., vol. 48, no. 5, pp. 26–32, May 2015.

[2] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”
IEEE Comput., vol. 48, no. 1, pp. 28–35, Jan. 2015.

[3] L. Baresi, L. Mottola, and S. Dustdar, “Building software for the
Internet of Things,” IEEE Internet Comput., vol. 19, no. 2, pp. 6–8,
Mar./Apr. 2015.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Netw., vol. 54, no. 15, pp. 2787–2805, 2010.

[5] L. Yao, Q. Z. Sheng, and S. Dustdar, “Web-based management of the
Internet of Things,” IEEE Internet Comput., vol. 19, no. 4, pp. 60–67,
Jul./Aug. 2015.

[6] Y. Qin et al., “When things matter: A survey on data-centric Internet of
Things,” J. Netw. Comput. Appl., vol. 64, pp. 137–153, Feb. 2016.

[7] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and
flexible sensor network deployment,” in Proc. 32nd Int. Conf. Very
Large Data Bases, Seoul, South Korea, 2006, pp. 1199–1202. [Online].
Available: http://dl.acm.org/citation.cfm?id=1182635.1164243

[8] E. Latronico et al., “A vision of swarmlets,” IEEE Internet Comput.,
vol. 19, no. 2, pp. 20–28, Mar./Apr. 2015.

[9] Google Fit. (2015.) [Online]. Available: https://developers.
google.com/fit/

[10] Architectural Styles and Design of Network-Based Software
Architectures. (2000.) [Online]. Available: www.ics.uci.edu/∼fielding/
pubs/dissertation/top.htm

[11] T. Zachariah et al., “The Internet of Things has a gateway problem,” in
Proc. HotMobile, Santa Fe, NM, USA, 2015, pp. 27–32.

[12] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for Internet of Things: A survey,” IEEE Internet Things
J., vol. 3, no. 1, pp. 70–95, Feb. 2016.

[13] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “Recent
trends in wireless and mobile networks,” in Proc. 3rd Int. Conf. WiMo
CoNeCo, Ankara, Turkey, 2011, pp. 288–296, doi: http://dx.doi.org/
10.1007/978-3-642-21937-5_27

[14] M. A. Chaqfeh and N. Mohamed, “Challenges in middleware solutions
for the Internet of Things,” in Proc. Int. Conf. Collaboration Technol.
Syst. (CTS), Denver, CO, USA, 2012, pp. 21–26.

[15] T. Teixeira, S. Hachem, V. Issarny, and N. Georgantas, “Service oriented
middleware for the Internet of Things: A perspective,” in Proceedings
of the 4th European Conference on Towards a Service-Based Internet,
ServiceWave, Poznan, Poland: Springer-Verlag, 2011, pp. 220–229.

[16] M. A. Gutierrez, M. L. Fast, A. H. Ngu, and B. J. Gao, “Real-time
prediction of blood alcohol content using smartwatch sensor data,”
in Proc. IEEE Int. Conf. Smart Health, Phoenix, AZ, USA, 2015,
pp. 175–186.

[17] M. P. Papazoglou and D. Georgakopoulos, “Introduction:
Service-oriented computing,” Commun. ACM, vol. 46, no. 10,
pp. 24–28, Oct. 2003. [Online]. Available: http://doi.acm.org/
10.1145/944217.944233

[18] J. Soldatos et al., “OpenIoT: Open source Internet-of-Things in
the cloud,” in Interoperability and Open-Source Solutions for the
Internet of Things (LNCS 9001). I. P. Žarko, K. Pripužić, and
M. Serrano, Eds. Cham, Switzerland: Springer, 2015, pp. 13–25, doi:
http://dx.doi.org/10.1007/978-3-319-16546-2_3

[19] The TerraSwarm Research Center. (2013.) [Online]. Available:
https://terraswarm.org

[20] Nest. (2014.) [Online]. Available: https://developer.nest.com
[21] IoT Related Projects. (2015.) [Online]. Available: https://www.

terraswarm.org/terraswarm/wiki/Main/RelatedProjects
[22] M. Eisenhauer, P. Rosengren, and P. Antolin, “A development plat-

form for integrating wireless devices and sensors into ambient intel-
ligence systems,” in Proc. Sensor Mesh Ah Hoc Commun. Netw.
Workshops (SECON), Rome, Italy, 2009, pp. 1–3.

[23] HYDRA. (2010.) [Online]. Available: http://hydramiddleware.eu
[24] Global Sensor Networks. (2004.) [Online]. Available:

http://lsir.epfl.ch/research/current/gsn/
[25] B. Burke and R. Monson-Haefel, Enterprise Java Beans 3.0. Sebastopol,

CA, USA: O’Reilly, 2006.
[26] J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “XGSN: An open-

source semantic sensing middleware for the Web of Things,” in Proc. 7th
Int. Workshop Semantic Sensor Netw., Trentino, Italy, 2014, pp. 51–66.

[27] Xively. (2014.) [Online]. Available: http://xively.com
[28] A. Pintus, D. Carboni, and A. Piras, “Paraimpu: A platform for

a social Web of Things,” in Proc. 21st Int. Conf. World Wide
Web, Perth, WA, Australia, 2012, pp. 401–404. [Online]. Available:
http://doi.acm.org/10.1145/2187980.2188059

[29] Paraimpu. (2014.) [Online]. Available: https://www.paraimpu.com
[30] Tornado Web Server. (2015.) [Online]. Available:

www.tornadoweb.org/en/stable
[31] Open Source Web Server Load Balancer. (2015.) [Online]. Available:

https://www.nginx.com/products/
[32] MongoDB Documentation. (2015.) [Online]. Available:

https://docs.mongodb.com/manual/reference/database-references/
[33] P. Persson and O. Angelsmark, “Calvin—Merging cloud and IoT,” Proc.

Comput. Sci., vol. 52, pp. 210–217, Dec. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915008595

[34] Node-RED, A Visual Tool for Wiring the Internet of Things. (2015.)
[Online]. Available: http://nodered.org

[35] Ptolemy II. (1996.) [Online]. Available: http://ptolemy.eecs.berkeley.edu
[36] Kepler Scientific Workflow Engine. (2011.) [Online]. Available:

https://kepler-project.org

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

NGU et al.: IoT MIDDLEWARE: SURVEY ON ISSUES AND ENABLING TECHNOLOGIES 19

[37] P. Barnaghi, A. Sheth, and C. Henson, “From data to actionable knowl-
edge: Big data challenges in the Web of Things,” IEEE Intell. Syst.,
vol. 28, no. 6, pp. 6–11, Nov./Dec. 2013.

[38] D. Niewolny, “How the Internet of Things is revolutionizing healthcare,”
White Paper, 2013.

[39] P. P. Jayaraman, D. Palmer, A. Zaslavsky, and D. Georgakopoulos,
“Do-it-yourself digital agriculture applications with semantically
enhanced IoT platform,” in Proc. IEEE 10th Int. Conf. Intell. Sensors
Sensor Netw. Inf. Process. (ISSNIP), Singapore, 2015, pp. 1–6.

[40] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015.

[41] Linked Sensor Middleware (LSM). (2014.) [Online]. Available:
http://open-platforms.eu/library/deri-lsm/

[42] Sensor Model Language (SensorML). (2012.) [Online]. Available:
http://www.opengeospatial.org/standards/sensorml

[43] H. Wang, C. C. Tan, and Q. Li, “Snoogle: A search engine for perva-
sive environments,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 8,
pp. 1188–1202, Aug. 2010.

[44] C. C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch: A search
engine for embedded devices used in pervasive computing,” ACM Trans.
Embedded Comput. Syst., vol. 9, no. 4, 2010, Art. no. 43.

[45] K.-K. Yap, V. Srinivasan, and M. Motani, “MAX: Wide area human-
centric search of the physical world,” ACM Trans. Sensor Netw., vol. 4,
no. 4, 2008, Art. no. 26.

[46] B. Ostermaier, K. Römer, F. Mattern, M. Fahrmair, and W. Kellerer,
“A real-time search engine for the Web of Things,” in Proc. Int. Conf.
Internet Things (IOT), Tokyo, Japan, 2010, pp. 1–8.

[47] P. P. Jayaraman, J.-P. Calbimonte, and H. N. M. Quoc, “The schema edi-
tor of OpenIoT for semantic sensor network,” in Proc. Semantic Sensor
Netw. Terra Cognita (SSN-TC), Bethlehem, PA, USA, 2015, pp. 25–30.

[48] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang, “Similarity
search for Web services,” in Proc. VLDB, Toronto, ON, Canada, 2004,
pp. 372–383.

[49] Y. Zhang, Z. Zheng, and M. Lyu, “WSExpress: A QoS-aware search
engine for Web services,” in Proc. ICWS, Miami, FL, USA, 2010,
pp. 91–98.

[50] J. Wu, L. Chen, Y. Xie, and Z. Zheng, “Titan: A system for effective Web
service discovery,” in Proc. WWW, Lyon, France, 2012, pp. 441–444.

[51] A. H. H. Ngu, J. Ma, Q. Z. Sheng, L. Yao, and S. Julian, “A
similarity-based Web service search engine,” in Proc. ACM Conf. Inf.
Retrieval (SIGIR), Gold Coast, QLD, Australia, 2014, pp. 1251–1252.

[52] L. Yao, Q. Z. Sheng, A. H. Ngu, and X. Li, “Things of interest rec-
ommendation by leveraging heterogeneous relations in the Internet of
Things,” ACM Trans. Internet Technol., vol. 16, no. 2, 2016, Art. no. 9.

[53] L. Yao, Q. Zheng, N. J. Falkner, and A. H. Ngu, “ThingsNavi: Finding
most-related things via multi-diminesional modeling of human-thing
interactions,” in Proc. 12th Int. Conf. Mobile Ubiquitous Syst. Comput.
Netw. Serv. (MobiQuitous), London, U.K., 2014, pp. 20–29.

[54] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyber-
security,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973–993, 2014.

[55] J. Lopez, R. Roman, and C. Alcaraz, “Analysis of security threats,
requirements, technologies and standards in wireless sensor networks,”
in Foundations of Security Analysis and Design V. Heidelberg, Germany:
Springer, 2009, pp. 289–338.

[56] R. H. Weber, “Internet of Things—New security and privacy challenges,”
Comput. Law Security Rev., vol. 26, no. 1, pp. 23–30, 2010.

[57] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle, “Privacy in the Internet
of Things: Threats and challenges,” Security Commun. Netw., vol. 7,
no. 12, pp. 2728–2742, 2014.

[58] C. Dwork, “Differential privacy: A survey of results,” in Theory and
Applications of Models of Computation, 5th International Conference,
TAMC 2008, Xi’an, China: Springer, 2008, pp. 1–19.

[59] M. Langheinrich, “Privacy by design—Principles of privacy-aware
ubiquitous systems,” in Ubicomp 2001: Ubiquitous Computing,
Third International Conference, Atlanta, GA, USA: Springer, 2001,
pp. 273–291.

[60] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data
publishing: A survey of recent developments,” ACM Comput. Surveys,
vol. 42, no. 4, 2010, Art. no. 14.

[61] M. Burrows, M. Abadi, and R. M. Needham, “A logic of authentication,”
Proc. Roy. Soc. Math. Phys. Eng. Sci., vol. 426, no. 1871, pp. 233–271,
1989.

[62] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, and G. Ferrari, “IoT-OAS: An
OAuth-based authorization service architecture for secure services in IoT
scenarios,” IEEE Sensors J., vol. 15, no. 2, pp. 1224–1234, Feb. 2015.

[63] D. J. Weitzner et al., “Information accountability,” Commun. ACM,
vol. 51, no. 6, pp. 82–87, 2008.

[64] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed Internet of Things,” Comput. Netw.,
vol. 57, no. 10, pp. 2266–2279, 2013.

[65] D. Kozlov, J. Veijalainen, and Y. Ali, “Security and privacy threats in IoT
architectures,” in Proc. 7th Int. Conf. Body Area Netw., Oslo, Norway,
2012, pp. 256–262.

[66] M. Abomhara and G. M. Køien, “Security and privacy in the Internet
of Things: Current status and open issues,” in Proc. Int. Conf. Privacy
Security Mobile Syst. (PRISMS), Aalborg, Denmark, 2014, pp. 1–8.

[67] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta, “A survey of
middleware for Internet of Things,” in Recent Trends in Wireless and
Mobile Networks. Heidelberg, Germany: Springer, 2011, pp. 288–296.

[68] M. Eisenhauer, P. Rosengren, and P. Antolin, “HYDRA: A development
platform for integrating wireless devices and sensors into ambient intel-
ligence systems,” in The Internet of Things: 20th Tyrrhenian Workshop
on Digital Communications., New York, NY, USA: Springer, 2010,
pp. 367–373.

[69] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and
flexible sensor network deployment,” in Proc. 32nd Int. Conf. Very Large
Data Bases, Seoul, South Korea, 2006, pp. 1199–1202.

[70] L. M. S. de Souza et al., “SOCRADES: A Web service based shop floor
integration infrastructure,” in The Internet of Things: First International
Conference, IOT 2008, Zürich, Switzerland: Springer, 2008, pp. 50–67.

[71] R. J. C. Benito et al., “SMEPP: A secure middleware for embedded P2P,”
in Proc. ICT-MobileSummit, vol. 9. Santander, Spain, 2009, Art. no. 135.

[72] P. Fremantle and P. Scott, “A security survey of middleware for the
Internet of Things,” PeerJ PrePrints, vol. 3, Jul. 2015, Art. no. e1521.

[73] P. Kostelnik, M. Sarnovsk, and K. Furdik, “The semantic middleware
for networked embedded systems applied in the Internet of Things and
services domain,” Scalable Comput. Pract. Experience, vol. 12, no. 3,
pp. 307–316, 2011.

[74] A. Ekelhart, S. Fenz, G. Goluch, M. Steinkellner, and E. Weippl, “XML
security—A comparative literature review,” J. Syst. Softw., vol. 81,
no. 10, pp. 1715–1724, 2008.

[75] O. Corcho, J.-P. Calbimonte, H. Y. Jeung, and K. Aberer, “Enabling
query technologies for the semantic sensor Web,” Int. J. Semantic Web
Inf. Syst., vol. 8, no. 1, pp. 43–63, 2012.

[76] J.-P. Calbimonte, S. Sarni, J. Eberle, and K. Aberer, “XGSN: An
open-source semantic sensing middleware for the Web of Things,”
in Proc. Terra Cognita Semantic Sensor Netw., Trento, Italy, 2014,
pp. 51–66.

[77] J.-P. Calbimonte, M. Riahi, and A. Zaslavsky, “Privacy and security
framework. OpenIoT deliverable D522,” Distrib. Inf. Syst. Lab., École
Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, Tech.
Rep. 210925, 2014.

[78] D. Conzon et al., “The virtus middleware: An XMPP based architec-
ture for secure IoT communications,” in Proc. 21st Int. Conf. Comput.
Commun. Netw. (ICCCN), Munich, Germany, 2012, pp. 1–6.

[79] S. Nepal and M. Pathan, Security, Privacy and Trust in Cloud Systems.
Heidelberg, Germany: Springer, 2014.

[80] H. Desruelle, J. Lyle, S. Isenberg, and F. Gielen, “On the challenges of
building a Web-based ubiquitous application platform,” in Proc. ACM
Conf. Ubiquit. Comput., Pittsburgh, PA, USA, 2012, pp. 733–736.

[81] T. Moses et al., Extensible Access Control Markup Language (XACML)
Version 2.0, Oasis Standard 200502, 2005.

[82] E. Latronico et al., “A vision of swarmlets,” IEEE Internet Comput.,
vol. 19, no. 2, pp. 20–28, Mar./Apr. 2015.

[83] D. Blaauw et al., “The terraswarm research center (TSRC),” White
Paper, 2012.

[84] J. Hoffstein, J. Pipher, and J. H. Silverman, “NSS: An NTRU lattice-
based signature scheme,” in Advances in Cryptology—EUROCRYPT
2001, International Conference on the Theory and Application
of Cryptographic Techniques, Innsbruck, Austria: Springer, 2001,
pp. 211–228.

[85] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab,
“NanoECC: Testing the limits of elliptic curve cryptography in sen-
sor networks,” in Wireless Sensor Networks: 5th European Conference,
EWSN 2008, Bologna, Italy: Springer, 2008, pp. 305–320.

[86] I. Anshel, M. Anshel, D. Goldfeld, and S. Lemieux, “Key agreement,
the algebraic eraser and lightweight cryptography,” Contemp. Math.,
vol. 418, pp. 1–34, 2006.

[87] D. McGrew and E. Rescorla, Datagram Transport Layer Security
(DTLS) Extension to Establish Keys for the Secure Real-Time Transport
Protocol (SRTP), Internet Eng. Task Force, Fremont, CA, USA, 2010.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

20 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 1, FEBRUARY 2017

[88] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure Mobile
Internet, vol. 21. Chichester, U.K.: Wiley, 2008.

[89] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet.
vol. 43. Somerset, U.K.: Wiley, 2011.

[90] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (COAP), Internet Eng. Task Force, Fremont, CA, USA, 2014.

Anne H. Ngu is currently a Full Professor with
the Department of Computer Science, Texas State
University, San Marcos, TX, USA. From 1992 to
2000, she was a Senior Lecturer with the School
of Computer Science and Engineering, University
of New South Wales, NSW, Australia. She had
held research scientist positions with Telcordia
Technologies, Piscataway, NJ, USA, Microelectonics
and Computer Technology, Austin, TX, USA,
the University of California, Berkeley, CA, USA,
CSIRO, Sydney, NSW, Australia, and Tilburg

University, Tilburg, The Netherlands. She was a Summer Faculty Scholar with
Lawrence Livermore National Laboratory, Livermore, CA, USA, from 2003
to 2006. She has published over 100 technical papers in journals and refereed
conferences in computer science. Her current research interests include large-
scale service and information discovery and integration, service platforms for
Internet of Things, business and scientific workflows, and databases.

Prof. Ngu was a recipient of the professional service features key leader-
ship roles in three international conferences. She was bestowed with a special
Outstanding Contribution Award for one of them. She was also a recipient of
the 2013 NCWIT Undergraduate Research Mentoring Award.

Mario Gutierrez received the B.Sc. degree in
computer science from Texas State University,
San Marcos, TX, USA, in 2015.

He is currently an independent video game devel-
oper. He has authored two papers on the applications
of machine learning. His current research interests
include artificial intelligence, game mechanics, and
computer graphics.

Vangelis Metsis received the B.S. degree in com-
puter science from the Department of Informatics,
Athens University of Economics and Business,
Athens, Greece, in 2005, and the Ph.D. degree
from the Department of Computer Science and
Engineering, University of Texas at Arlington,
Arlington, TX, USA, in 2011.

He is an Assistant Professor with the Department
of Computer Science, Texas State University,
San Marcos, TX, USA. He has federal support and
has a strong publication record in related research

areas, such as human activity and behavior analysis, human–computer interac-
tion and motion tracking using sensors, sleep monitoring, and human biosignal
analysis. His current research interests include machine learning, data mining,
and computer vision with special focus on applications of smart health and
wellbeing, and pervasive computing.

Surya Nepal received the B.E. degree from the
National Institute of Technology at Surat, Surat,
India, the M.E. degree from the Asian Institute
of Technology, Bangkok, Thailand, and the Ph.D.
degree from RMIT University, Melbourne, VIC,
Australia.

He is a Principal Research Scientist with Data61,
CSIRO, Sydney, NSW, Australia, where he cur-
rently leads the Distributed Systems Security Group.
He has over 150 peer-reviewed publications to his
credit; his papers are published in international jour-

nals, such as the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE TRANSACTIONS ON SERVICE COMPUTING, ACM
Transactions on Internet Technologies, and the IEEE TRANSACTIONS ON

COMPUTERS. He has coedited three books including security, privacy, and
trust in cloud systems by Springer. His current research interests include
development and implementation of technologies in the area of distributed
systems and social networks, with a specific focus on security, privacy, and
trust.

Quan Z. Sheng (M’05) received the Ph.D.
degree in computer science from the University of
New South Wales, Sydney, NSW, Australia, in 2006.

He is a Full Professor and the Head of the
Department of Computing, Macquarie University,
Sydney. He has authored and coauthored over 270
publications His current research interests include
Web of Things, Internet of Things, big data analyt-
ics, service computing, distributed computing, and
Internet technologies.

Prof. Sheng is a member of the ACM. He was a
recipient of the ARC Future Fellowship in 2014, the Chris Wallace Award
for Outstanding Research Contribution in Computer Science in 2012, and the
Microsoft Research Fellowship in 2003.

Authorized licensed use limited to: Texas State University. Downloaded on July 03,2025 at 19:05:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

