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ABSTRACT
In recent years, there is a growing interest about assisted
living environments especially for the elderly who live alone,
due to the increasing number of aged people. In order for
them to live safe and healthy, we need to detect abnormal be-
havior that may cause severe and emergent situations for the
elderly. In this work, we suggest a method that detects ab-
normal behavior using wireless sensor networks. We model
an episode that is a series of events, which includes spatial
and temporal information about the subject being moni-
tored. We define a similarity scoring function that compares
two episodes taking into consideration temporal aspects. We
propose a way to determine a threshold to divide episodes
into two groups that reduces wrong classification. Weights
on individual functions that consist the similarity function
are determined experimentally so that they can produce the
good results in terms of area under curve in receiver oper-
ating characteristic (ROC) curve.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Assisted living environment, abnormal behavior detection,
similarity function, threshold value, classification

1. INTRODUCTION
Abnormal behavior detection can be used in many use-

ful fields such as surveillance systems, network intrusion
detection, and healthcare monitoring systems. Especially,
in healthcare monitoring systems, most of the research has
used images from video cameras and analyzed them with
image related techniques. However, the elderly or patients
usually do not want to be monitored by the means of video
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cameras, because of privacy violation issues. Therefore, we
propose a human behavior detection system that does not
depend on images from video camera, but uses noninvasive
wireless sensor techniques.

Most work that is related to an abnormal human behavior
detection has focused on recognizing the current situation.
That means, they try to figure out what happens currently
in terms of high level context. They also have used the Hid-
den Markov Model (HMM) technique or variations of it to
recognize the human behavior through hidden states such
as low level sensing data. In this work, we do not focus on
human behavior recognition that gives us high level context,
but we try to reach the step of determining abnormal be-
havior using low level similarity comparison. This is based
on our assumption that sensor data can be unreliable. We
adopt the concept of pattern classification that divides data
into multiple classes, each of which includes its own charac-
teristics. In our case, the number of classes that we need is
two, one class that includes normal behavior, and the other
class that includes abnormal behavior.

We define an event as an outcome of interest from a sensor.
We also define an episode as a series of events. An event is
a 3-tuple, which includes a sensor ID that can represent the
location of the sensor or a binary status of an object, a time
stamp when a sensor is activated, and a duration that is
time difference between two sensors activated consecutively.
Thus, an episode can represent the series of basic actions
performed by a person, where each action is modeled as an
event. To determine abnormal behavior, we consider not
only the sequence of events, but also temporal aspects when
the individual event happens and how long it lasts.

The purpose of this work is to determine whether an
episode taking place is normal or abnormal by low level pat-
tern classification and get a best weight of individual similar-
ity function. If it is abnormal, then the system has to make
a warning so that it can grab caregiver’s interest. First, we
create a similarity function that considers four aspects, se-
quence of events, the number of common events, time, and
duration. We adopt a well-known algorithm, longest com-
mon subsequence (LCS) for the similarity function. Second,
we determine a threshold value to decide normalcy by us-
ing a training set with a sample set of normal episodes and
a sample set of abnormal episodes. Third, we determine
weights of individual functions that consist the similarity
function so that they can produce the best results in terms
of area under curve in the receiver operating characteristic
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(ROC) curve. The contribution of this paper is to use a
similarity function in a series of events to determine abnor-
mal human behavior in the domain of sensor data that may
include faulty values.

The rest of this paper is organized as follows: Section 2
reviews the related work. Section 3 defines events, episodes,
and abnormal behavior. We propose our similarity function
and a threshold based classification scheme in section 4. Sec-
tion 5 shows our experimental results. Finally, we conclude
our work and discuss future work in section 6.

2. RELATED WORKS
Lymberopoulos et el. treated the problem of extracting

the spatiotemporal human activity model from an assisted
living home environment using sensor networks in [14]. They
used their data model, < location, time, duration >, to ex-
tract human activity patterns and apriori algorithm, which
was proposed by Agrawal [2]. They used tracking cameras,
door sensors, and passive infrared sensors to detect human
behavior and used 30-day actual data set to extract the per-
son’s daily pattern. This is useful to find frequent patterns,
but it does not handle the issue of detection of outlier or
abnormal behavior. Lühr et al. proposed intertransaction
association rule (IAR) mining to detect deviations from nor-
mal behavior in smart home occupants in [13]. They used
Extended Frequent Pattern Tree (EEP-Tree), which is an
extension of the Frequent Pattern Tree (FP-Tree) proposed
by Han. They applied their algorithm to a real world data
set, which was provided by [16]. The data set was collected
by two people (30s and 80s) of daily behavior for 16 days.
They used state-change sensors that detect on/off status
installed at toilet flush, sink faucet, closet, door, drawer,
freezer, medicine cabinet, etc. They focus on finding emer-
gent behavior. Data model is < location, event, start time,
end time>.

There are several previous works that used classification
techniques in the application of recognition of human being’s
behavior or healthcare monitoring systems [16, 10]. Tapia
et al. built a system for experiment to recognize human
being’s activities using low-cost state-change sensors in [16].
They developed simple state-change sensors instead of using
multi-purpose sensor motes and cameras in order to mini-
mize intrusion of privacy. Initially, they get pre-knowledge
about what the residents are doing at particular moment by
the context-aware experience sampling tool (ESM) so that
the information can be used as a training set. Then the sys-
tem calculates the temporal features (exists and before) to
generate training examples. A Bayesian network classifier
is used to calculate the probability of the current activity.
Haghighi et el. proposed an architecture for context-aware
adaptive data stream mining in [10]. They used tempera-
ture, age, location, time, heart rate, and battery level for
context attributes to monitor heart patients. They used K-
nearest neighbor algorithm to classify unknown situations
based on the pre-defined situations.

In the area of human behavior recognition, variations of
HMM techniques have been used in a number of works. [3]
gives a model for human activities recognition. They use
Bayesian networks to merge heterogeneous data and HMM
to detect a particular activity. [5] can detect abnormal be-
havior. It also uses DHMM and HC-HMM, which consid-
ers duration (D-HMM) and hierarchical architecture (HC-
HMM). [11] uses HMM to classify daily activities, such as

lying, sitting, and standing, which can be classified into sta-
ble states. These works are similar to our work in that they
treat human behaviors. But they are different from our work
in that they try to recognize human behavior through ob-
servations.

”Abnormality” has been researched in many areas such as
network intrusion, visual surveillance, and human behavior
or activity. First, [1, 4, 8] are all about Intrusion Detection
System (IDS), where a system tries to detect abnormal traf-
fic or predict the traffic in advance. Second, an application
is about visual surveillance, where abnormal behavior can
be detected by analyzing images that were taken by video
surveillance cameras. These include [9, 17]. Third, one is
about abnormal human behavior detection, which recognizes
human Activities of Daily Living (ADL) [7, 12].

3. DEFINITIONS
We define an event in section 3.1, an episode in section

3.2, and abnormal behavior that will be used throughout
this paper in section 3.3.

3.1 Events
An event is a 3-tuple, which includes a sensor ID, a time

stamp, and a duration. We let ei be an event, where i indi-
cates the order of activated sensors.

ei = (S, T, D) (1)

where S is a sensor ID that can represent the location of
the sensor or an individual action, T is a time stamp when
the sensor is activated, and D is a duration, which is time
difference after one sensor is activated until the next sensor
is activated.

Sensors can be attached on an object or placed on a partic-
ular location to detect appropriate actions done by a person.
For example, a sensor located on a hallway can detect the
change of intensity of light, when a person passes by it (S).
In this case, the sensor ID indicates both the location of the
sensor and the action (someone is passing by it.) When the
sensor detects the change, it can also record the time stamp.
This indicates the time, when the sensor is activated (T ).
The format of time stamp is hh:mm:ss, whose granularity is
the second. Time stamp also includes date, whose format
is mm/dd/yyyy. If another sensor detects the other action,
it also records the activation time. Hence, we can simply
calculate a duration between two activation times by sub-
tracting the former one from the latter one (D). Since the
granularity of time stamp is the second, we use the same one
for duration.

3.2 Episodes
An episode is a series of events. We let Ei be an episode,

where i indicates the index and define it as a sequence.

Ei = (e1, e2, ..., en) (2)

The order of events in an episode is determined by the times-
tamp T of ei. For example, when a person walks from a
bedroom to a kitchen through a hallway, three sensors may
react by detecting change of light intensity. In this case, we
have three events, e1, e2, and e3, which are corresponding to



a sensor at a bedroom, a sensor on a hallway, and a sensor
at a kitchen, respectively. Generally, an episode can rep-
resent a meaningful activity, such as ”a person comes to a
kitchen to drink a cup of water, through a hallway, from a
bedroom”, or ”after watching a TV, a person enters into a
bedroom to sleep.” But in our work, since we did not define
the episode as such, it is nothing but a series of n events.

3.3 Abnormal Behavior
We define ”abnormal behavior” as ”an episode which was

not done before at all, an episode which was rarely done
before, or an episode which was not close enough to the
one previously done.” But this is not enough to define ab-
normal behavior since we do not consider temporal aspects
in episodes. First, we need to consider time and add it to
the definition that ”an episode whose sequence of events are
similar to the previous one, but the time that the episode
happened is far different from the previous one.” Second,
we need to consider the duration of each event. Same se-
quences of events that happened at similar times can have
different duration. An example includes that a person goes
to a bathroom at 1:00 am, and usually stays less than 10
minutes, but if the same person stays at the bathroom for
longer time, which should be regarded as an abnormal be-
havior. Therefore, we need to add it to the definition that
”an episode whose sequence of events are similar and whose
time it happened is close to the previous one, but whose
duration for each event is not close enough to the previous
one.”

4. ABNORMAL BEHAVIOR DETECTION
In this section, we describe the overview of our system that

detects abnormal human behavior, the function for measur-
ing similarity, and the method to determine the threshold
to divide human behaviors into two groups.

4.1 Overview
Data can be collected by SunSpot sensors as a type of

events. Events can include information such as ”a person is
passing by hallway”or ”a person is leaving out of a bed.”The
actual implementation is described in [15]. Once the system
gathers events from SunSpots whenever they are activated,
it can have a series of events, which forms an episode. This
kind of events will be stored on the system, so that they can
be used as a training set for the future. After that, the two
groups of sample episodes are compared to every episode in
the training set using a sliding window method. The two
groups are: i) a normal group that is supposed to have most
of normal episodes in it, and ii) an abnormal group that is
supposed to have most of abnormal episodes in it.

In order to determine the similarity between two compar-
ing episodes (the current episode and the one in the train-
ing set), we create a similarity measuring function, which
considers the similarity of the sequence, the number of com-
mon events, the time in a day, and a duration of time gap
between two consecutive activated sensors. The measuring
function returns one decimal value, which will be compared
to a threshold value so that we can divide the episodes into
two groups, normal and abnormal behavior.

Two groups of sample episodes may have common values,
which make overlapping groups. Here, we need to determine
a threshold value that can divide these overlapping classes
into two smaller groups. The way how to determine the

threshold value is described in section 4.2.2.

4.2 Similarity Search
The assumption for data gathering from wireless sensor

networks is that we can have noisy and unreliable data from
the sensors. That means when we get an episode, which is
a series of events, some of events in the series might con-
tain faulty data. If we assume that the faulty values cannot
be fixed or removed completely by any methods, we just
compare episodes that include faulty data. For example,
figure 1 shows what happens in faulty data. Suppose that
the original episode is a sequence of events, ’a’, ’b’, ’c’, ’d’,
and ’e’. And the events from measured sensor data are ’a’,
’f’, ’c’, ’d’, and ’b’. Then ’f’ is an unexpected event due
to unreliable sensor reading or transmission, ’b’ is one of
the original events but reported delayed, and ’e’ is supposed
to appear in the sequence but is missing. In this case, ex-
act pattern matching or sequential pattern mining technique
fails to find original episode since they try to find exact se-
quence. But since we consider that the sequence may contain
faulty data, we compare two episodes so that their similarity
should be based on the fact ’how much they resemble.’ Two
episodes in figure 1 have ’a’, ’c’, and ’d’ as their longest com-
mon subsequence and we reflect this for our main measuring
function. Event ’b’ is not included in the longest common
subsequence, but this could be considered when we deter-
mine similarity. Therefore, we create a minor function to
handle an event that is not included in the longest common
subsequence but that is common in two sequences.

a edcb

a bdcf

ep1: original episode

ep2: actual episode with faulty events

Figure 1: An episode with faulty events

4.2.1 Similarity Function
In this section, we describe how we build the similarity

function that is used to compare episodes as a series of
events. We define a main similarity function S which in-
corporates a number of individual similarity sub-functions
si each of which is given a different weight.

S(E1, E2) =

n∑
i

wisi (3)

where, E1 and E2 are arbitrary episodes, whose lengths are
the same, wi is the weight, and si is an individual similarity
measuring function. Every si is normalized so that it can
have a value between 0 and 1.

The individual similarity sub-functions that we use are
explained bellow. First, we define s1 as the individual simi-
larity measuring function comparing longest common subse-
quences from two episodes. We adopt the existing algorithm
of finding longest common subsequences (LCS) [6].

s1 =
lLCS

k
(4)



where, lLCS stands for the length of the longest common
subsequences, and k means the total length of an episode,
which is the number of events in an episode.

Second, we have s2 function to consider the situation that
was mentioned in section 4.2. That means s2 considers
events which are not in longest common subsequences but
just in both sequences. If we define two sequences QA, QB ,
and longest common subsequences as QLCS ,

QA = (ea
1 , ea

2 , ..., ea
n)

QB = (eb
1, e

b
2, ..., e

b
n)

QLCS = (eLCS
1 , eLCS

2 , ..., eLCS
n1 ), n1 ≤ n

then, we can define multisets that allow to have duplicated
elements, A, B, and LCS, whose elements are correspondent
to ones in QA, QB , and QLCS , respectively.

A = {ea
1 , ea

2 , ..., ea
n}

B = {eb
1, e

b
2, ..., e

b
n}

LCS = {eLCS
1 , eLCS

2 , ..., eLCS
n1 }

Now we can define s2 as follows.

s2 =
|{ei|ei 6∈ LCS, ei ∈ A, ei ∈ B}|

n
(5)

Note that we have multisets instead of general sets that do
not allow to have duplicated elements. This is because we
need to consider multiple times of same sensor activation in
one episode.

Third, in order to consider time factor, we define s3. This
measures how close two episodes in terms of time. It com-
pares timestamps of two events when they are activated.

s3 = 1− st

tC
(6)

st =

∑lLCS
j |tj − t′j |

n1

where, tC stands for time constant, which is 43200 seconds
(12 hours), tj is a timestamp for one of the events in an
episode, t′j is a timestamp for one of the events in the other
episode to be compared, and n1 is the length of LCS. There-
fore, the time similarity can be determined only for the
events that are in the LCS. But, this is dependent on the
sequence of common events, which is determined by s1. In
order to have an independent function to s1, we prepare vari-
ation of s3, which has k (the length of an episode) instead
of n1 (the length of longest common subsequences).

Fourth, we consider a duration, which is time difference
between two consecutive events. As mentioned in section
3.3, among two similar episodes that have same sequences of
events and same timestamps, one of them can be determined

as abnormal behavior if duration for some of events are much
different from the other. To consider this, we define s4 as
follows:

s4 =

∑lLCS
j

Min(dj ,d′j)

Max(dj ,d′j)

n1
(7)

where, dj is a duration between two consecutive events in
one episode and d′j is a duration between two consecutive
events in the other episode, and n1 is the length of LCS.
Once again, we prepare the variation of s4, which is not
dependent on the s1 by replacing n1 with k. The function
s4 tries to figure out how similar the duration for matching
events in two comparing episodes.

4.2.2 Comparing new episodes with database.
The goal of this section is to explain how we can compare

newly arriving episodes with the ones stored in our database
in order to determine weather a new episode should be con-
sidered as normal or abnormal.

As we defined in equations (1) and (2), an event is a 3-
tuple that has sensor ID, time, and duration, and an episode
is series of events. Based on these, we can define history se-
quence, which contains events by increasing order of times-
tamp in the individual event. Generally, the number of
events in history sequence is much bigger than one in an
episode.

H = (e1, e2, ..., em), m À n (8)

Now, a current episode can be compared to all the episodes
in history sequence by using a sliding window method and
similarity function. If we define a current episode as Ec =
(ec

1, e
c
2, ..., e

c
n), Ec will be compared to all the subsequences

of H, such as H1 = (eh
1 , eh

2 , ..., eh
n), H2 = (eh

2 , eh
3 , ..., eh

n+1),
and up to Hm−n+1 = (eh

m−n+1, e
h
m−n+2, ..., e

h
m). Using the

similarity function S, we can get the score of all the com-
paring pairs, (Ec, H1), (Ec, H2), and up to (Ec, Hm−n+1).
After that, we can define Hmax, which has the highest score
among others.

imax = argmax
1≤i≤m−n+1

[S(Ec, Hi)] (9)

Hmax = Himax (10)

Hence, we define the score of the most similar episode to the
current episode Ec as follows.

Sc
max = S(Ec, Hmax) (11)

Whenever a new event happens, a new episode is cre-
ated. If we have an initial episode that has been used as
a current episode, Ec = (e1, e2, ..., en), and now we have
a new event en+1, then the current episode is replaced by
E′

c = (e2, e3, ..., en+1). This new episode is now compared
to all the subsequences in the history sequence. And we can
get S′cmax as the same way as we did to get Sc

max. This is
repeated whenever a new event happens. Hence, we can get
the set of Si

max for all the episodes newly created.

4.3 Classification using Threshold
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Figure 2: FPR and TPR for training set and current set with a calculated threshold value. 10(20)/M1(M2)
stands for length 10(20) episodes and threshold method M1(M2).

It is always possible for sensors to measure wrong value,
to respond to an incorrect input (false positive), or not to
respond to a correct input (false negative). If these sen-
sor data are transmitted wirelessly, it is more likely to have
wrong or unexpected result. Due to these faulty data that
can be included in an episode, we may have a normal (or
abnormal) episode, which is classified into an abnormal (or
normal) one incorrectly. Even though we adopt data clean-
ing techniques to remove these faulty data in our previous
work [15], it is not guaranteed to get rid of all the unneces-
sary data perfectly. That means it is necessary to consider
an episode that contains faulty data. Hence, a training set
that is supposed to have all the normal episodes is likely to
have several abnormal episodes in it depending on a thresh-
old value that separates episodes into two groups. Also, if
we have a set of episodes that is created intentionally to have
abnormal data, it is also likely to have normal episodes in
it. These result in a fact that we have overlapping classes to
be separated.

Since we already applied a similarity function for the clas-
sification of episodes, the similarity scores are recorded on
the one-dimensional line. From now on, we adopt a simple
idea to have a threshold value to classify episodes efficiently.
Since the values are one-dimensional, we do not need to
use multi-dimensional classifying techniques, such as sup-
port vector machine (SVM). The main purpose of threshold
value is to classify two one-dimensional overlapping classes
so that we have as smallest number of episodes as possible
that are classified into the opposite class.

Suppose we have two classes, C1 and C2. C1 has two sub-
sets, CN

1 , which has elements that are classified into CN , and
CA

1 , which has elements that are classified into CA, where
CN is normal class and CA is abnormal class. C2 also has
two subsets, CN

2 and CA
2 . Sets of real numbers, C1 and C2

are defined as,

C1 = {a1, a2, ..., an}

C2 = {b1, b2, ..., bm}
and CA

1 , CN
1 , CA

2 , and CN
2 are:

CA
1 = {x|x ∈ C1, x ≤ vi}

CN
1 = {x|x ∈ C1, x > vi}

CA
2 = {x|x ∈ C2, x ≤ vi}

CN
2 = {x|x ∈ C2, x > vi}

where x is a real number and vi is a threshold value, which
can be represented as 0.005 × i, 1 ≤ i ≤ 200. We suggest
two methods to determine threshold value. First, we try
to get a threshold value that minimizes the ratio of wrong
classification. We suggest a threshold that considers true
positive rate (TPR) and false positive rate (FPR) and choose
a threshold that minimizes sum of 1 - TPR and FPR.

Table 1: Comparison between normal/abnormal set
and disease classification

Test | Actual C1 (present) C2 (absent)

Normal (positive) CN
1 (TP) CN

2 (FP)
Abnormal (negative) CA

1 (FN) CA
2 (TN)

i1 = argmin
1≤i≤200

[
|CA

1 |
|C1| +

|CN
2 |

|C2| ] (12)

where,
|CA

1 |
|C1| is same as 1 - TPR and

|CN
2 |

|C2| is same as FPR.

Now, a threshold value for the first method, vth1 is when i
is i1.

vth1 = vi1

Second, we consider receiver operating characteristics (ROC)
that is represented as FPR and TPR. Here, we try to find
a threshold value whose point in the ROC is the closest one
to a point, where FPR=0 and TPR=1.

i2 = argmin
1≤i≤200

[

√
(0− |CN

2 |
|C2| )2 + (1− |CN

1 |
|C1| )2] (13)

Similarly, a threshold for the second method, vth2 is when i
is i2.

vth2 = vi2
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Figure 3: Top 3 Area Under Curve

5. EXPERIMENTAL RESULTS
In this section, we show our experimental results. We used

a data set (subject1) which is provided by [16]. We name
this data set as T1 data set from now on. The first experi-
ment is about a calculated threshold value by equation (12)
and (13) that compares the results when only sequences are
considered and when temporal aspects are also considered.
The second experiment is to find a best combination of pa-
rameters that produces maximum area under curve (AUC)
at ROC.

In our experiment, we have several parameters that deter-
mine similarity functions and all the experiment conditions.
As described in section 4.2.1, we have two modes to calculate
s3 (equation (6)) and s4 (equation (7)) in similarity function.
We use symbols sI and sD to represent independent func-
tions to s1 and dependent functions to s1, respectively. We
test two different lengths of episodes, 10 and 20. Weights on
similarity function, w1, w2, w3, and w4, are also considered
to have various combinations such that sum of them is equal
to 1 and their individual precision is tenth.

For the T1 data set, we used 70% of it for training and
the rest 30% for testing purposes. The T1 data set contains
only cases of normal behavior. We create synthetic cases of
abnormal behavior using different methods. The first one
is created by random generation. The second is synthesized
from normal data set by shifting activation time by 4 hours,
which follows Gaussian distribution N(0, 1). The third and
fourth synthesized abnormal sets are 8 hours shifted one and
12 hours shifted one, respectively.

5.1 Fixed Threshold
In this section, we basically compare the results from sim-

ilarity functions that consider only sequence (s1) and that
consider temporal aspects (s1 ∼ s4). We first calculate best
threshold values using both method 1 (M1, equation (12))
and method 2 (M2, equation (13)). 50% of T1 data set is
used for as a gold standard of normal cases. Another 20%
of it is used to determine the optimal threshold value by
comparing episodes that appear in this part, mixed with
synthetic abnormal episodes, with episodes of the previous
part. Once a threshold value has been calculated, we apply
it to classify episodes of two testing sets, one with the re-
maining 30% of T1 data set and the remaining part of the
randomly generated data set, and the other with same part
of data that is used with the randomly generated data set
and a part of data set, which is 4hr shifted synthetic data

set. The result shows that we have improved values of both
FPR and TPR for the current data sets regardless of the
different combinations of a length of episodes (10/20) and
threshold methods (M1/M2) (see figure 2).

Now, for considering temporal aspects, we have 84 differ-
ent weight combinations of similarity function. Similarly,
we calculate threshold values from M1 and M2, and apply
them to current sets (normal set with randomly generated
data and normal set with 4hr shifted data). But, unlike the
previous experiment, we choose the best weight combina-
tion from individual case that produces the best argument
in equations (12) and (13). The result is summarized in the
tables 2 and 3.

Sum of FPR and 1-TPR in M1 and distance in M2 of the
random set have improved compared to ones for the training
set in all the cases (see tables 2 and 3, where I/D stands for
independent/dependent on the sequence of common events,
EL for episode length, and cid for ID of 84 combinations of
weights.) This is because larger amount of data in current
set can reflect correctly the characteristics in the training
set. But for the 4hr shifted data set, threshold values that
are calculated for the best partition in training set do not
properly separate normal and abnormal set in current data
set, since all the values (sum and distance) get worse. This
is because episodes that are slightly time-shifted can have
high similarity score, which causes a proper separation to be
difficult.

5.2 Study of AUC
Now, we give all the different threshold values1 and try

to measure area under curve (AUC) from the ROC graph
to better know what combination of parameters can have
the best results. We tested a combination of episode lengths
of 10 and 20, and dependent/independent temporal func-
tions (s3 and s4) to s1. ’0’ indicates that the temporal func-
tions are not dependent on the number of matching events
in episodes and ’1’ indicates that the temporal functions are
dependent on the number of matching events in episodes.
Again, we have 84 different combinations of weights for sim-
ilarity function.

In figure 3, we show the top 3 cases in terms of AUC.
The average weights (w1, w2, w3, and w4) for the top 3 are
0.4, 0.12, 0.17, and 0.31 respectively for length 10 case, and
0.33, 0.16, 0.18, and 0.33 respectively for length 20 case.

1Finite number of threshold values, from 0.005 to 0.995 in-
creased by 0.005
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 

 

T
P

R


FPR

 Random
 4hr shift
 8hr shift
 12hr shift

(b) dependent(1) length 10
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(c) independent(0) length 20
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Figure 4: ROC graphs for 4 cases

In both cases, the weights for the sequence matching and
temporal aspect (duration) play important role to produce
better results. If we average them, we get the combination
of weights as 0.36, 0.14, 0.18, and 0.32. Independent tem-
poral functions have slightly better results than dependent
temporal functions in both length 10 and 20 cases. For the
time shifted three different sets (4hr, 8hr, and 12hr), the
maximum time shifted set (12hr) has the best result and
4hr shifted set has the worst result. This is because the
bigger time shifted value can be separated more clearly into
normal and abnormal sets due to the function s3 than the
smaller ones.

In figure 4, we show the best combination of weights in
ROC graphs for the different 4 cases, which are combined
with dependent/independent temporal functions (0/1) and
length of episodes (10/20). The common fact for the 4 cases
is that the result of ROC for the random set is the best,
and 12hr shifted set is the next, followed by 8hr shifted set
and 4hr shifted set. Since the random set has episodes that
are not much similar to the existing ones, the result of ROC
outperforms the sets that have time shifted episodes. When
we have independent temporal functions regardless of length
of episodes, the individual ROC graph is clearly separated
and the order for the 4 sets are distinct.

6. CONCLUSIONS AND FUTURE WORK
In this work, we proposed a method to classify normal

and abnormal behavior in an assisted living environments

by applying a similarity function that considers various pa-
rameters. We also tested our proposed similarity function
on the existing data set and synthetic data set. We sug-
gested two methods to determine threshold values. These
methods worked well for the random set, but they did not
work for the 4hr shifted due to unclear separation point for
the normal and abnormal episodes. The more time shifted
(no more than 12 hours), the better result we have in terms
of AUC and ROC. Since our similarity function considers
temporal aspects as well as the sequence of events, abnor-
mal behavior that has similar sequence of events but has
different time stamps or duration of events can be classified
into normal and abnormal classes.
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