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ABSTRACT
Object recognition serves obvious purposes in assisted living
environments, where robotic devices can be used as compan-
ions to assist humans in need. The recent introduction of
vision based sensors, which are able to extract depth sens-
ing information about the environment, in addition to the
traditional RGB video, presents new opportunities and chal-
lenges for more accurate object recognition.

The current work, presents an object recognition approach
that uses RGB-D point cloud data and a novel feature ex-
traction methodology, in combination with well-known su-
pervised learning algorithms, to achieve accurate, real-time
recognition of a large number of objects. In our experiments,
we use a dataset of household objects organized into 51 cat-
egories, and evaluate the recognition accuracy and time ef-
ficiency of a set of different supervised learning methods.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Learning—parameter
learning ; I.4.8 [Computing Methodologies]: Scene Anal-
ysis—object recognition, shape, color ; I.4.8 [Computing
Methodologies]: Design Methodology—classifier design
and evaluation, feature evaluation and selection

General Terms
Algorithms, Experimentation, Performance

Keywords
Object recognition, supervised learning, adaboost, artifi-
cial neural network, support vector machine, classification,
RGB-D, point cloud.
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1. INTRODUCTION
The task of machine-based object recognition is of ma-

jor importance in assisted living environments, because it
constitutes a necessary input module of bigger systems, in-
tended to provide intelligent services to people in need. For
example, to assist severely disabled users, recently McMur-
rough et al. developed a point-of-gaze detection device ca-
pable of detecting the intersection of the gaze vector of the
user, with an object in the environment [11, 12, 13]. The
next step of such a system is to recognize the type of object
of interest, in order to understand the intention of the user
and the way the object should be handled, e.g. by a robotic
arm.

Throughout the most recent decade, scene-sensing tech-
nologies have undergone major improvements. By measur-
ing red, green, and blue (RGB) color, modern vision sen-
sors can provide color information from objects in a scene.
By adding depth-sensing information, these sensors can also
provide a three dimensional layout of objects in a scene.
Sensors that collect both color and spatial information are
known as RGB-D sensors. When an RGB-D sensor perceives
a scene, it collects thousands of data points, each containing
a unique set of RGB and depth-sesing values, storing them
in a point cloud data (PCD) file for future access. Given the
wealth of data in a PCD file, it is possible to compute many
useful features that can be used to analyze the content of
a scene and distinguish the objects within the scene. The
type of PCD-based scene analysis that this research focuses
on is categorical object classification.

RGB-D point cloud-based object data can be retrieved
from a previously published dataset or created using a 3D
sensor such as the Kinect. In this work we experiment with
the publicly available dataset provided by [8]. Once ob-
ject data has been collected, feature information can be ex-
tracted from the data and then used by a learning algorithm
to build a classification model. Such a model can be used
to predict the label of an unobserved object, given the prior
knowledge of other objects, some of which may be associated
with the same label.

Extracting informative features from the objects, is of
paramount importance to the learning process. Previous
works have proposed feature extraction methods for RGB
images [19, 18]. In this work, we adopt a combination of
color-based and 3D geometric and volumetric features ex-
tracted from the captured RGB and point cloud data im-
ages. This set of features, has been chosen because it forms
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a good trade-off between recognition accuracy and speed.
Since object recognition methods are often used in real-time
applications, sub-second response times are necessary in or-
der for any such method to be of practical use.

The utility of geometric features is shown in [15], where
Rusu et al. classify household objects such as cabinets and
other common kitchen appliances. These objects are rep-
resented by planes and cuboids. Their specific labels are
determined by computing the number of knobs and han-
dles associated with the inspected plane or cuboid and using
these two feature attachments to characterize the associated
geometric structure.

After extracting the set of features, we employ well-known
supervised learning methods to test the recognition accu-
racy and running time of our recognition approach on a
dataset of 51 common household objects. Specifically we
experiment with Support Vector Machines, Adaboost and
Artificial Neural Networks using the same set of features.
Accuracy levels and running times for each method are re-
ported.

The remaining of the paper is organized as follows. Sec-
tion 2 provides an overview of the related work in object
recognition and the methods used in our experiments. Sec-
tion 3 introduces our object recognition approach, describing
the classification model construction at a high level and the
feature extraction and machine learning processes at a low
level. Section 4 provides details of how the performance of
our recognition approach is assessed and reports the perfor-
mance results, identifying trends in classification. Finally,
section 5 concludes our paper.

2. RELATED WORK
The problem of object recognition has been studied in the

past, in which cases, the authors used different approaches
to achieve high recognition accuracy, usually based on 2-
dimensional (2D) features. For example, in [10], the authors
try to extract local, scale-invariant features that share simi-
lar properties with neurons in inferior temporal cortex that
are used for object recognition in primate vision. In [1],
the shape of the object is used as the main characteristic to
achieve recognition by matching it with an existing object
of similar shape, whose label is known.

Supervised learning has also been used used in the past for
the task of object recognition/classification. There are mul-
tiple approaches that differ by the learning methods they
employ. A common learning algorithm to employ for the
task of object recognition is Support Vector Machines (SVM),
where the maximal margin of divided data in a high di-
mensional feature space is found in order to distinguish and
classify examples [14].

In [17], the SVM learning algorithm is trained on four
shape features: the volume of the point cloud’s convex hull,
the standard deviation of the distances between the Kinect
sensor and the points, the standard deviation of the dis-
tances between the centroid of the point cloud and the points,
and a nine-parameter descriptor for the best fit ellipsoid.

In 2011, Lai and colleagues published a benchmark PCD
dataset known as the RGB-D Object Dataset [8]. A year
later, Lai and colleagues tested the performance of the SVM
learning algorithm on the RGB-D Object Dataset [9]. Since
then, variations of the SVM classifier such as linear SVM
and Gaussian kernel SVM, as well as Random Forest (RF)
have had their performances tested using the RGB-D Ob-

ject dataset by Lai and colleagues [8]. Lai et al. hypoth-
esized that their SVM-based classifier would perform more
accurately than other classifiers because their classifier com-
bined color and depth information provided by the RGB-D
camera, while other classifiers did not. Lai and colleagues
used the standard sliding window approach where the clas-
sification system evaluates a score function for all positions
and scales in an image, and thresholds the scores to obtain
object-bounding boxes.

To evaluate the performance of their classification system,
Lai and colleagues trained their classifier on the point cloud
data from their dataset, and then tested both category and
instance level recognition. At the category level, the clas-
sifier’s task was to classify previously unseen objects as a
member of one of the 51 categories containing objects that
had previously been seen. At the instance level, the classi-
fier’s task was to identify whether an object was physically
the same object that had previously been seen. According
to Lai and colleagues, both the category and instance levels
were important tests to be performed because object recog-
nition systems such as those embedded in robots may need
to identify a generic object or a specific object, depending
on the context of the task.

Lai and colleagues also evaluate the performance of their
classification system by testing the runtimes of the differ-
ent computational parts involved in their object recognition
process. They find that their feature extraction and sliding
window classification computations each take approximately
1.8 seconds per object [9]. The high cost of these two com-
putations in their object recognition process lead them to
conclude that their process does not currently run in real-
time. Bo et al. [3] experiment with the same dataset and
adopt an unsupervised feature learning approach, to object
recognition.

In our work, we use the same RGB-D object dataset, but
we propose a different feature extraction methodology that
allows us to achieve recognition times suitable for real-time
applications, while at the same time achieving the same or
higher levels of accuracy compared to previous work from
other researchers on the same dataset.

3. OBJECT RECOGNITION APPROACH

3.1 Description of the Dataset
The RGB-D Object Dataset that we used in our exper-

iments, contains 300 objects organized into 51 categories,
and for each object there are multiple pictures taken from
different viewpoints, forming a total of 250, 000 sample pic-
tures. Each sample consists of a pair of a portable net-
work graphics (PNG) file and the corresponding point cloud
data (PCD) file. The objects in this dataset were collected
using an RGB-D (Kinect-style) camera [7]. This device is
unique from other vision sensory devices in that it collects
and merges color (RGB) and 3D depth-sensing information
from the environment that it senses.

The RGB-D Object Dataset objects are common house-
hold objects. Although these objects come from a common
domain, they are physically distinct and have been recorded
from multiple viewpoints, providing information that makes
it possible to distinguish one object from another, as well
as one class of objects from another. The objects provided
in the dataset have been previously segmented from their
background. Figure 1 shows a 5-by-9 matrix of a subset of



Figure 1: A visualization of 45 objects from the
dataset. Image courtesy of Lai et al. [8].

Figure 2: Banana Category Instance, RGB and
PCD Representations

the objects used. For more information about the dataset,
please refer to [8].

3.2 Extracted Features
Features are extracted from the PCD file representations

of objects spanning over 51 categories from the RGB-D Ob-
ject Dataset. Figure 2 below shows how a PCD instance
from the “banana” category in the dataset would appear us-
ing either its color information, obtained from a PNG file
and rendered using a basic preview tool, or its spatial in-
formation, obtained from a PCD file and rendered using
Meshlab [5].

The goal of the feature extraction process is to extract
valuable information from the PNG and PCD representa-
tions of an object in the RGB-D Object Dataset, such as
the object representations in Figure 2. In this case, valuable
information is information that assists the object recognition
system in distinguishing any pair of instances that belong to
different categories.

In this study, we extract a total of 13 features, which are
later used as input to the learning algorithms. Nine of the
features are derived from the RGB color histograms. For
each of the red, green, and blue color histograms of an ob-
ject, the statistical mean, standard deviation, and skew are
computed, giving rise to a total of 9 color-based features.
Three geometric features extracted for this study include
geometric class correlations for a plane, a cylinder, and a
sphere. Essentially, these three features describe how well
the array of 3D data points in the PCD files can be re-
constructed with a plane, a cylinder, and a sphere. One
volumetric feature extracted for this study is the number of
voxels occupied by the point cloud. Voxels provide a conve-
nient measure of volume that is invariant to distance from
the sensor (the raw number of data points corresponding to

the object, for example, will change based on the distance
to the sensor due to decreasing sensor sensing density at
increasing distances).

The geometric features used in this experiment are ex-
tracted from the query object using RANdom SAmple Con-
sensus (RANSAC)-based 3D object segmentation [6]. A ge-
ometric model for each of the classes is fit to the collection
of points for the query object within a certain threshold
(our fitting threshold is the euclidean distance of the point
to the geometric model, which we set to 0.01 meters). To
create a measure of model fitness, we divide the number of
points belonging to the best-fit RANSAC model for each
geometric class by the total number of points in the query
point cloud. This normalized model fitness for each of the
geometric classes is used as the classification feature in our
experiments.

Our identification approach is intended to be used for real-
time applications, thus we chose to utilize features that are
bounded in terms of computation time. RANSAC based
segmentation can be bounded in such a way by setting the
maximum number of iterations to an amount that can be
performed in an acceptable duration of time. For each of our
geometric classes (plane, cylinder, and sphere), we limit the
maximum execution time to 0.2 seconds. This guarantees
that the total time allotted for computation of the gemoetric
features is bounded to 0.6 seconds, which provides sufficient
accuracy for our experiments. While this does not guarantee
that the solution will converge to a best-fit model within the
given time duration, we need only to obtain the maximum
number of points that sufficiently fit any model within the
distance tolerance. Each of the geometric features can be
considered to be a response to that particular class, which
we are able to utilize for identification.

3.3 Supervised Learning Algorithms
We model the problem of object recognition as a multi-

class classification problem, where each object type, belongs
to one of a set of predefined classes (categories). To classify
each object, we follow the supervised learning paradigm, i.e.
we first train a classifier with a set of objects of known labels
(classes), and then we use that classifier to classify any new
object to one of the classes encountered during the training
process.

We have experimented with three of the most popular
learning algorithms used in the computer vision literature,
namely Adaboost, Artificial Neural Networks (ANNs) and
Support Vector Machines (SVMs). Each of these algorithms
have their own advantages and disadvantages, however, as
we will see in the experimental results section, the SVM
turned out to be the most promising method for this prob-
lem, providing the best balance of speed and classification
accuracy.

In the following subsections we give a brief description of
each algorithm, and how we used it in our experiments.

3.3.1 AdaBoost
The application of the AdaBoost algorithm centers on a

classification problem that involves instances, labels, and
classifiers. In this problem, an instance is defined as a de-
scription used to derive a predicted classification. The space
of all possible instances is known as the instance space. A
label is a name that indicates the correct classification of
an object. An instance together with an associated label is



defined as an example. A classifier is a function that maps
instances to labels, and can be viewed as a prediction rule
[16].

Our implementation of AdaBoost takes as input a matrix
containing the set of all observed features for each exam-
ple, a vector containing the class labels corresponding with
each example, and an integer value containing the number
of training rounds to perform. During a given round k, Ad-
aBoost aims to correctly classify the examples that were
misclassified in rounds 1 through k-1. After AdaBoost trains
for the number of rounds specified as an input argument, it
outputs a classification model. During each round of train-
ing, AdaBoost determines a weak classifier which derives
class predictions for each training example. The classifica-
tion model is a vector of “best” weak classifiers, which is
described in detail in the following section. The classifica-
tion model also associates an alpha value with the best weak
classifier for each training round, each corresponding with a
best weak classifier. The alpha value α for a weak classifier
describes that weak classifier’s prediction accuracy. Alpha
is calculated as follows:

α = 0.5 · log((1− ε)/ε) (1)

where ε is the error associated with the current round’s
best weak hypotheses. Once alpha has been calculated for
the current training round, the set of boosted hypotheses
can be updated by using both the weak hypotheses derived
by the best weak classifier and alpha:

H = H + α · h (2)

where H is the set of boosted hypotheses, and h is the
set of weak hypotheses. The greater the value of alpha, the
greater the effect of the weak hypotheses have when chang-
ing the boosted hypotheses. Before the round of training
terminates, the distribution of weights across the training
examples must be updated to reflect the updated boosted
hypotheses:

W =
exp(−HT ·y)∑N

i=1 exp(−H
T ·y)

(3)

By making these updates, AdaBoost assures that each
training round, the examples that have been most frequently
misclassified will have the greatest weight. In other words,
AdaBoost maintains a reward system where the greatest re-
ward is achieved when examples misclassified in previous
training rounds are correctly classified.

The AdaBoost algorithm boosts hypotheses that are bi-
nary classifications of instances, either +1 or -1. However,
when there are more than two classes to predict from, it
is necessary for these base hypotheses to express varying
degrees of confidence. To achieve this, we implement an
extension of the basic AdaBoost algorithm where the base
learners report self-rated confidence scores that estimate the
reliability of each binary prediction, and a one-versus-all ap-
proach to perform multi-class classification.

Weak Learners: During each round of training, the
weak learner of our object recognition system creates a weak
classification rule by using a decision stump, which is a de-
cision tree with one test at the root [14]. Our weak learner
takes as input a vector containing a single object feature ex-
tracted from all the examples, a vector containing the class

labels corresponding with each example, and a vector con-
taining the training weights, or importances, corresponding
with each example. It outputs a weak classifier.

The weak classifier is a structure that consists of a best
threshold, a best error, and a direction. The threshold is a
floating point number value between the minimum and max-
imum feature values of the feature vector input. The thresh-
old is found by stepping through possible threshold values
with a step size proportional to the difference between the
maximum and minimum feature values. The best threshold
is chosen and updated when a threshold is found that di-
vides the weighted training examples in a way such that the
misclassification error is less than the previous best error. In
such a case, the threshold being observed is recorded as the
new best threshold, the corresponding error is recorded as
the new best error, and a direction, either 1 or -1, is chosen
based on whether or not the new best error is less than 0.5,
respectively.

3.3.2 Multilayer Neural Network
The second learning algorithm used to construct a clas-

sification model is the multilayer artificial neural network
(ANN) [14]. A neural network is composed of many per-
ceptrons, forming an input layer, several hidden layers, and
an output layer. At any given perceptron j, some num-
ber n of input features has the potential effect of activating
j’s output channel. Whether or not j’s output channel is
activated depends on on the result of several calculations.
One can think of a perceptron as a training example in the
dataset because the number of perceptrons corresponds to
the number of training examples. First, a sum is taken of
the i-dimensional input vector, multiplied by a vector of i
weights corresponding with the i inputs. Mathematically,
this sum over j’s inputs is denoted as inj , and is defined as:

inj =

n∑
i=0

wi,jai (4)

With this expression, one can see how the vector of inputs
resembles neural signals and how the vector of weights re-
sembles the strengths, or connectivity, of each signal.

Second, using the value computed for inj , an activation
function is used to determine how the perceptrons to the
inputs, potentially propagating the input’s information fur-
ther through the neural network. The activation function
for given perceptron j is defined as:

aj = g(inj) = g(

n∑
i=0

wi,jai) (5)

The activation function can be defined in many different
ways, but the majority of the time, it is simply the logis-
tic function. Thus, the activation function can usually be
expressed as:

aj = g(inj) = Logistic(inj) =
1

1 + e−inj
(6)

Third, using the output of the activation function, some
small constant α (i.e. 0.05), and the true label y of example
j corresponding with perceptron j and the set of inputs used
to compute (4), the feature input weights can be updated.
During this update, features that are better category sepa-
rators are assigned more weight and features that are poor



category separators are assigned less weight. Mathemati-
cally, this weight update for a given feature i is defined as:

wi = wi + α(y − hw(x))× hw(x)(1− hw(x))× xi (7)

Throughout the training process, Equations (4), (6) and
(7) are applied to update the weight distribution over the
features at every layer of the neural network for a specified
number of epochs. An epoch can be defined as an iteration
where the weight distribution over the attributes is updated
once for each example in the training set. For the current
work, the number of epochs defined such that the neural net-
work will continue training for more epochs until the weight
distribution over the features converges, or 1000 epochs have
been reached.

3.3.3 Support Vector Machine
The third machine learning algorithm used to construct a

classification model is the Support Vector Machine (SVM)
algorithm. The SVM algorithm works by constructing a
model which represents the training or testing instances in
a hyperplane. The SVM algorithm then generates support
vectors which separate the instances by their categories. The
SVM algorithm generates support vectors and hence makes
predictions that maximize the distance of correctly classified
instances from the support-vector defined decision bound-
aries.

Given feature vectors xi and corresponding labels yi ∈
{−1, 1} for some arbitrary number of instances l, the SVM
algorithm solves the optimization problem

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (8)

subject to the constraints yi(w
Tφ(xi) + b) ≥ 1 − ξi and

ξi ≥ 0.
Often, it is not easy to find an optimal linear separator

in the input space x, but it is possible to find linear sep-
arators in a feature space with higher dimensionality. To
map the original input space to the new, high-dimensional
feature space we make us of a kernel function φ(x). We
use the (Gaussian) radial basis function (RBF) kernel. The
RBF kernel on two samples x and x′, represented as feature
vectors in some input space, is defined as

K(x,x′) = exp(γ||x− x′||22) (9)

where γ = − 1
2σ2 .

To achieve optimal performance, the optimal values of pa-
rameters C and γ above, need to be determined. Before
building classification models for the various-sized classifi-
cation tasks, we optimize those input parameters using an
exhaustive grid search, by cross-validation on the training
set.

Since classification of the instances within the RGB-D Ob-
ject Dataset involves multiple categories, the values of y,
y = −1 and y = 1, correspond with the instance not being a
member of some specified category and being a member of
some specified category, respectively. This “one-versus-all”
approach proves effective, and yielded the highest perfor-
mance of any classifier, as it can be seen in the experiments
section.

Prediction Accuracy vs. Runtime and Task Size
Categories Accuracy Test Time Per Instance (s)

10 0.9419 0.030515
20 0.8519 0.062318
30 0.8246 0.093466
40 0.7685 0.12494
51 0.7146 0.16078

Table 1: AdaBoost performance.

Prediction Accuracy vs. Runtime and Task Size
Categories Accuracy Test Time Per Instance (s)

10 0.9474 0.00001170526
20 0.8213 0.0000036827381
30 0.7824 0.000016679368
40 0.6765 0.00000674687
51 0.5157 0.000083871

Table 2: Artificial Neural Network (ANN) perfor-
mance.

4. EXPERIMENTAL RESULTS
We evaluate the performance of our object recognition ap-

proach using the RGB-D Object Dataset described in sec-
tion 3.1. In our experiments, we evaluate the performance
of our object recognition system by recording the classifica-
tion accuracy and the instance classification (testing) times,
using the HoldOut, cross-validation option in Matlab, which
returns logical index vectors for cross-validation of N obser-
vations by randomly selecting P ∗N (approximately) obser-
vations to hold out for the evaluation set. We used P = 0.3.
The training times of the system are not of interest to a
real-time application since the training happens off-line, in
advance, and thus are not reported. We have recorded these
values for various size classification problems using 10, 20,
30, 40, and 51-categories from the dataset, to demonstrate
how the classification accuracy and classification times scale
as the size of the dataset and the number of classes increase.

Tables 1, 2 and 3 show the performance of Adaboost, ANN
and SVM algorithms respectively. For each table, the first
column lists the number of categories (classes) that were
used in that experiment, the second column shows the clas-
sification accuracy in the range [0, 1] (i.e. number of cor-
rectly classified instances over total number of instances),
and the third column shows the average classification time
per instance, in seconds.

Prediction Accuracy vs. Runtime and Task Size
Categories Accuracy Test Time Per Instance (s)

10 0.974036 0.001079599
20 0.93888 0.0010226605
30 0.934808 0.002284086
40 0.916956 0.004052287
51 0.895562 0.00649148

Table 3: Support Vector Machine (SVM) perfor-
mance.



4.1 Classification Accuracy
As it is easily noticeable, the three different learning al-

gorithms show different behavior in terms of classification
accuracy and speed. SVM turns out to be the most accu-
rate algorithm, while ANN is the fastest one. Adaboost, at
least with the current set of features, does not manage to
excel in any of the two categories. SVM manages to achieve
a 97.4% accuracy for the 10-class classification problem, and
it continues to maintain a relatively high accuracy of 89.6%,
all the way up to the 51-class classification problem. For
comparison, a randomly guessing classifier would perform
with approximately 10%, 5%, 3.3%, 2.5%, and 2% accuracy
for the 10, 20, 30, 40, and 51 category classification tasks,
respectively.

To give the reader a better overview of the misclassifica-
tion errors that occurred during the classification process,
in Figure 3 we plot the confusion matrix of the SVM per-
formance for the 20-category problem1. The confusion ma-
trices provide helpful information for identifying reasons for
misclassification. When observing the accuracy and error
percentages for arbitrary category i, notice that row i and
column i provide different insights about the classification
of this category. The index of the row gives the output class
(prediction) of the category, while the index of a column
gives the target class (actual label) of a category. Essen-
tially, the sum of errors along row i gives the expectation
of accuracy level for a prediction made to category i for
instances from all categories, and the sum of errors along
column i gives the average accuracy of all categorical label
predictions for instances with true category label i. As one
can notice, the most common misclassifications occur be-
tween object of similar size and shape, e.g. food can vs.
food jar, or phone vs. camera, etc.

Adaboost had the second best of overall accuracy in our
experiments, while the Artificial Neural Network was the
worst performer among the three algorithms test, especially
when tested with a larger number of classes. We should
note here that we experimented with different parameters
and different number of hidden layers for the ANN. The
reported levels of accuracy are the best we could obtain,
and that was when using 20 hidden layers.

For comparison, Lai et al. [8] report 83.8% classifica-
tion accuracy using SVM with Gaussian Kernel as a learn-
ing algorithm in 2011, whereas the same team [3] reports
a maximum of 87.5% accuracy for the 51-category classi-
fication problem, using their unsupervised feature learning
approach, in their most recent work.

4.2 Classification Speed
One of the main goals of this work was to create and

object recognition system that can be used in real-time ap-
plications. To achieve that goal we rely on a small set of
features, described in section 3.2, which can be extracted
fast and also allow for fast instance classification using ex-
isting learning algorithms, while at the same time providing
enough information to achieve a high classification accuracy.

Tables 1, 2 and 3 list the test times for each algorithm
and number of categories evaluated. Test time refers to the
time that it takes for a classifier to classify one object to one
of the predefined classes (categories). The reported times

1We chose to visualize 20 categories instead of 51 for read-
ability reasons.

show the average time (in seconds) required to classify one
object, however, the differences between different objects
are negligible, since we use the same 13-dimensional feature
vector type for every object, differentiating only the values
of the features. The experiments were ran on a machine with
2 GHz Intel Core i7 processor and 4 GB 1333 MHz DDR3
memory. We used the Adaboost and ANN implementations
in Matlab and the LibSVM [4] implementation of SVM.

As it can be clearly seen in the tables, ANN was by far
the fastest classification algorithm, achieving times in the
order of a few microseconds, regardless of the number of
classes. SVM was the second fastest algorithm, taking a few
milliseconds to classify each object, while the time seems
to be increasing linearly with the number of classes, and
subsequently the total number of objects in the training
dataset. Adaboost was proven to be considerably slower,
requiring about 0.16 seconds to classify each object for the
51-category set. Taking into consideration SVM’s superior
performance in terms of classification accuracy, it appears
to be the learning algorithm of choice in this case.

When compared to the object recognition system of Lai
and colleagues in [9] and Bo and colleagues in [2], it is ev-
ident that the our approach outperforms the state of the
art object recognition systems with regard to classification
times. While Lai and colleagues report a classification time
of approximately 1.8 seconds, and Bo and colleagues report
a classification time of 0.51 seconds, the SVM classifier in
combination with our proposed set of features takes approx-
imately 0.006 seconds, on average, to classify a tested object
among all the categories in the RGB-D Dataset. This guar-
antees that even with a larger dataset and number of classes,
the classification time will still remain well under a second.

For a real-time system, on top of the classification time,
we should add the feature extraction time for each object,
reported in section 3.2, which is independent of the type of
the object and the number of objects in the training dataset.

5. CONCLUSION AND FUTURE WORK
In this work have presented our proposed approach to cre-

ating an accurate and fast object recognition system, based
on RGB-D imaging data. We introduce a novel feature ex-
traction methodology and we evaluate it in combination with
well-known supervised learning algorithms, on a publicly
available RGB-D Object Dataset. Our system manages to
overtake existing state-of-the-art approaches both in terms
of classification accuracy and speed, allowing for a real-time
object recognition system.

As it becomes obvious, the feature extraction process and
the final set of extracted features, are of major importance
to achieving high classification accuracy and high classifi-
cation speed at the same time. Our system extracts color,
geometric and volumetric features which are proven to be
very successful in categorizing the majority of the objects in
the dataset. However, as it can be observed from the con-
fusion matrix, for objects which are similar in color, shape
and volume (e.g. camera and cell-phone), we see higher mis-
classification rates.

One direction of future work that would confront this
problem would be adding scale-invariant feature transform
(SIFT) features to the feature space by extracting symme-
try and texture information from the point cloud instances.
For example, a camera may not be distinguishable by its
color or geometric shape, but it often contains a protruding
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Figure 3: SVM Confusion Matrix, 20-Category Classification

lens on one of its faces that serves as an asymmetry that
distinguishes it from other small digital objects such as the
calculator and cell phone. Of course any new set of features
added, should be also efficiently extracted and should not
add a big overhead to the classification algorithm.
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