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Abstract—Physical therapy is a crucial part of the rehabilita-
tion process during recovery from an injury that has resulted in
motor function loss. Newly introduced technologies can enhance
traditional physical therapy, first, by complementing the expert’s
work, and second, by providing a platform for rich data collection
and analysis. In this work, we present a prototype adaptive
rehabilitation instrument, based on the use of robotic arm, which
can be dynamically controlled to guide the exercise motion of
the upper extremities, in patients with motor disabilities. Our
proposed method, enables simultaneous active and passive control
of the robotic arm, to produce adaptive force feedback for motion
guidance, and allow for data collection, for patient motor function
assessment.

I. INTRODUCTION

A traffic accident, a battlefield injury, or a stroke can lead
to brain or musculoskeletal injuries that impact motor and
cognitive functions and drastically change a person’s life. In
such situations, rehabilitation plays a critical role in the ability
of the patient to partly or fully regain motor function. In recent
years, a number of different approaches have been proposed,
aiming to assist and enhance the traditional rehabilitation
paradigm, by complementing the patient-therapist interaction
with assistive technologies, such as computer games, virtual
reality, and robot-based rehabilitation systems.

In this work, we present an instrument for rehabilitation
and physical therapy, which is based on the use of a highly
adaptive robotic arm (WAM Arm - developed by Barrett
Technology, Inc. – Fig. 1). The arm utilizes back-driveable,
torque-controlled actuators with 7 degrees-of-freedom, using
a patented cable-driven method to facilitate kinematic motion
when used as a manipulator or active resistance when used
as a haptic device. The device was developed such that safety
for the user is guaranteed in both modes, whether the user
is in proximity of the device or interacting through direct
contact. The maximum amount of torque applied for each
degree of freedom is independently controllable (along with
joint positions, speeds, etc.), which allows the robotic arm to be
easily customized to match user ability while ensuring safety
for all users through maximum allowable limits. The arm is
accompanied by an active-torque gimbals end effector, which
provides a point of contact for a human hand. A force-torque

Fig. 1. Photo of Barrett WAM robotic arm with gimbals.

sensor is also applied to the wrist to provide an additional real-
time measurement when used as an active-resistance haptic
device.

We introduce a new mode of robot-assisted rehabilitation,
where the therapist initially teaches the robotic arm, with a
set of exercises that a patient needs to perform. The correct
trajectories and ranges of motion are captured by the system,
as executed by the therapist. Subsequently, the patient attempts
to perform the same exercise. The system then compares the
trajectory of the patient’s motion with the one previously
executed by the therapist, and in cases where the patient
cannot correctly perform the exercise, either because of lack of
strength or motor function control, or simply because of lack
of understanding, the robotic arm exerts an amount of force in
order to correct the trajectory of motion.

Previous efforts for the use haptic robotic devices in physi-
cal therapy, employ either passive or active motion control for
the robotic arm, which means that either the patient fully con-
trols the motion and the robotic arm acts as a sensor to collect
trajectory data (possibly applying some constant resistance), or
the robotic arm controls the motion and the patient just follows
along. In this work, we present a novel hybrid approach, where
the robotic arm acts as a passive sensor when the patient
follows the prescribed exercise trajectory correctly, whereas



it intervenes to correct that trajectory, applying dynamically
variable levels of force towards the right direction, when the
trajectory is not followed correctly, either in space or in time.
This is achieved through the use of a combination of PID
controller and a space-time trajectory alignment algorithm.

In the following sections, we summarize the related work
in robot-assisted physical therapy, and subsequently we present
our approach and methodology for adaptive physical therapy
using the robotic arm as haptic device that can guide the
exercise execution.

II. RELATED WORK

The use of robots to enhance rehabilitation has been
previously reported in the literature [1], [2], [3]. Robots
have been used to test how the nervous system models its
external dynamic environment. The nervous system builds
internal models and uses them in combination with feedback
control strategies. Robots are being used for repetitive move-
ment exercises after a brain injury and can haptically assess
sensorimotor performance, quantify training, thus eventually
enhancing motor learning and rehabilitation beyond the levels
possible with conventional training [4].

Exercise delivered by robotic devices helped stroke patient
reduce impairment and increase motor power [2]. Patients
with early sensorimotor robotic training after stroke were
compared to patients with standard poststroke rehabilitation
and found to show greater improvements in functional abilities
[1], [5]. Matarić et al. [6], proposed in-home robot-interaction-
based therapy and further examined upper limb recovery after
hemiparesis, combining the intensity of task-specific training
and the engagement and self-management of goal-directed
actions. Another mechanical orthosis device, SaeboFlex [7] has
supported the weakened wrist, hand, and fingers of patients.
A haptic robot, Wrist-RoboHab [8], utilized hand movement
therapy for treatment and evaluation of forearm, wrist ulnar,
and radial motor disabilities. Finally, in [9], the authors de-
scribe the design and modes of operation of a robot-based
neurorehabilitation framework that enables artificial support of
the sensorimotor feedback loop for patients with severe motor
impairment due to cerebrovascular brain damage (e.g., stroke)
and other neurological conditions.

A strong motivator for the use of robotic devices in
rehabilitation, is that they record and measure the kinematics
and kinetics of human movements (speed, position and force)
with high resolution, and facilitate clinical assessment. In [10],
a closed-loop, position-tracking controller is presented to drive
the robot stably and smoothly stretch the impaired limb of
the patient to move along the predefined trajectory with a
supervisory controller in patients suffering stroke or spinal cord
injury (SCI). In [11] the authors model the arm dynamics of
a post-stroke patient, as an impedance model, and propose
an adaptive control scheme which consists of an adaptive
proportional-integral-derivative (PID) control algorithm and
a damp control algorithm to control the rehabilitation robot
moving along predefined trajectories in a stable and smooth
manner.

Our work takes advantage of the advanced capabilities of
the Barrett Arm in dynamic adaptation, force-feedback, and
torque sensing, in order to deliver a safe, computer-guided

Fig. 2. A user performing a physical therapy exercise with the help of the
Barrett Arm. The user is holding onto the active gimbals attached to the free
end of the robotic arm.

physical therapy regimen. In this paper, we focus mostly on
the utilization of the robotic arm and in (PID) full trajectory
tracking controller during the combined active-passive patient
training, however, this work is part of a bigger effort, to
create an adaptive computer-aided rehabilitation instrument
that also incorporates a number of other factors, such as
specific user profiles, historical data, multi-sensory assessment
of the patient’s condition, etc.

III. APPROACH

A. Overview

We develop a system that can guide a physically handi-
capped patient on performing physical therapy exercises that
focus mainly on their moving and controlling their arms.
Fig. 2 shows an example of user performing a rehabilitation
exercise with the help of the robotic arm. With a highly back-
drivable robotic arm, a patient can be led through performing
an exercise as presented to them from a computer display.
The robotic arm can help guide the patient to follow a precise
trajectory as dictated by previously recorded exercises done
by a physical therapist. The patient can attempt to perform
the prescribed exercise, and whenever they deviate from the
prescribed trajectory, an appropriate correctional force is ap-
plied by the robotic arm to guide them back onto the correct
trajectory. This correctional force is applied in a manner where
the current error, the sum of the errors, and the rate of the
change of error are accounted for in Cartesian 3D space.

Fig. 3 shows a comparison of the trajectory of the motion,
as performed by the therapist, with the one performed by the
patient, in 3D Cartesian coordinates. The two trajectories are
directly captured by the robotic arm. As one can see, there
is difference between the two trajectories. A small difference
is naturally expected, as it is impossible, even for the same
user, to perform an exercise twice following exactly the same
trajectory. However, when the deviation exceeds a specific
threshold, it may be a sign of inability of the patient to perform
the exercise correctly, due to lack of strength or lack of control
of their arm. In such cases a correctional force is applied to
assist the patient, which is guided by a control algorithm, and
it is proportional to the deviation from the correct trajectory.



Fig. 3. 3D plot of the trajectory of motion of the hand position of a therapist
and a patient performing one repetition of an exercise. The blue continuous line
represents the therapist’s trajectory, which is used as the reference trajectory,
whereas the green line represents the trajectory of motion of the patient’s hand.
The red lines show the distance of the therapist and patient hand positions at
the corresponding key-points.

Besides spatial, the deviation can also be temporal, i.e. the
patient performs the exercise much slower or much faster than
the therapist. When either of the two deviation types occurs,
an error-correction force is applied to bring the patient’s hand
position closer to the prescribed trajectory. The force vector is
calculated dynamically, in discrete time intervals, defined as
key-points. At each key-point the direction of the force vector
is calculated to point towards the corresponding key-point
of the reference trajectory. The force amount to be applied
towards that direction, is proportional to the distance of patient
hand position at the current key-point, from the corresponding
therapist hand position at the corresponding key-point. The
red lines in Fig. 3, show the distances of a sample comparison
between therapist and patient trajectories for a singe repetition.

The control algorithm used is the PID controller [12] which
is implemented for each 3D axis of each active force under
position and orientation. The resulting PID gains (eq. 4) are
then reduced to where the positional control is not too strict
or stiff, allowing the patient some freedom in deviating off
the path, otherwise moving the robotic arm along a strict 3D
path would be difficult due to the tangential forces received
along curvatures of the path. This is due to the difficulty, for
any person not expertly familiarized with moving his or her
limbs through an exact 3D trajectory, to correspond to that
exact path.

The PID, proportional-integral-differential, controller is de-
scribed by the following equations:

P = ê(t) (1)

I =

∫ t

0

ê(t)dt (2)

Fig. 4. Simulated 3D rendering of the robotic arm and an animated human
avatar. The 3D simulation clip is used to demonstrate the correct way of
exercise execution to the patients.

D =
d(ê(t))

dt
(3)

u(t) = KP ∗ P +KI ∗ I +KD ∗D (4)

Where t is the time at which the PID controller computes
its correctional effects. KP , KI , and KD are usually constant
gains, which are tweaked for the specific application and it’s
operating environment. Equation 4 is the resultant combination
of the individual PID components and ê is the error vector
of the robotic arm’s end effector (i.e. the patient’s hand) off
of the reference trajectory. The result is used to adjust the
robotic arm’s driving motor forces. For the tasks of aiding a
patient complete a physical therapy exercise, these gains would
be modified to allow for a certain amount of deviation from
the reference path. For example, the resulting PID controller
could limit the patient’s deviation at 1 foot maximum off
course before it applies significant correctional motor forces
and makes it very difficult to deviate any further.

B. Physical Therapy Procedure

The procedure starts with a physical therapy specialist
performing the exercises with the robotic arm for the system
to record into its database. When the patient is ready to
start the physical therapy session, he or she would view
the playback of the reference trajectory, in a simulated 3D
environment showing the robotic arm and a virtual human
animated character (avatar), as shown in Fig. 4, in order to
learn how to perform the maneuvers for the exercise. The
exercises are shown to the patient one at a time, along with
instructions regarding the required number of repetitions, etc.

When performing the exercise, their position along the
trajectory is displayed on screen to provide visual guidance.
During each exercise that the patient performs on the robotic
arm, the actual trajectory is recorded along with any influences
the robotic arm had to apply to correct the patient’s move-
ments. This data is later used by the therapist for evaluation
of the patient’s performance.
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Fig. 5. Comparison between the reference (therapist) trajectory (blue
continuous line) and the patient trajectory (red dashed line) in the 3 axes
of the Cartesian coordinates.

C. Trajectory Error Quantification

The goal of the system is to have a patient perform certain
rehabilitation exercises following the protocol prescribed by
the therapist as closely as possible. The protocol may often
require the robotic arm to apply resistance against the direction
of motion, or assistance, depending on the capabilities of the
patient.

In cases where the patient’s trajectory of motion deviates
from the prescribed one, the system intervenes to correct that
trajectory. This correction serves multiple purposes:

1) maintains the range-of-motion of the patient’s joints
within acceptable levels to avoid possible strain in-
juries;

2) actively teaches the patient of the correct range of
motion to be followed;

3) collects data that can be used by the therapist to assess
the patient’s motor deficiencies and monitor progress
over time.

The trajectory deviation is quantified as error in space
(3-axes (x, y, z)) and in time. Fig. 5 shows the differences
in trajectories, in the three axes, of a real measurement
taken from two different users performing one repetition of
a given exercise, whereas Fig. 6 shows the respective absolute
errors, of the same measurement, in the three axes, assuming
that the two trajectories are temporally aligned (using key-
points). Assuming temporal alignment, the three errors can be
calculated as follows:

ex(t) = xtherapist(t)− xpatient(t) (5)

ey(t) = ytherapist(t)− ypatient(t) (6)

ez(t) = ztherapist(t)− zpatient(t) (7)

In the general case, temporal deviations are also considered
as errors, which we try to eliminate by applying some force
parallel to the trajectory tangent, either in the direction of
motion (to speed up the motion) or opposite to the direction
of motion (to slow down the motion). If we want to allow
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Fig. 6. Quantification of the deviation of the patient’s trajectory compared
to the reference trajectory, measured as error in the 3 axes of the Cartesian
coordinates.
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Fig. 7. Temporal trajectory alignment on axis y using the DTW algorithm.

temporal deviations, and focus only on spatial trajectory error,
then a more sophisticated method for trajectory alignment
is required. In such situations, a one-to-one matching of
points in the three axes would not yield meaningful results,
since the main error measured, would be attributed to the
temporal deviations. To eliminate that problem, we employ
Dynamic Time Warping (DTW) [13] to fist align the sequences
temporally and then measure the spatial deviation error. DTW
has been successfully used in the past for the optimal alignment
between two given (time-dependent) sequences. Fig. 7 shows
the corresponding alignment of the y axis (of the same
measurement as in Fig. 5), using DTW. As one can note, the
algorithm is trying to achieve an optimal temporal alignment of
the two trajectories, by matching corresponding frames in order
to minimize the overall spatial error. At each time point, the
length of the green line that connects a point in the reference
trajectory (blue) with the patient trajectory (red), measures
the temporal deviation. Given that temporal alignment, the
spatial error can be measured by taking the absolute difference,
|ypatient − yreference|, between each pair of matched frames.

IV. CONCLUSION AND FUTURE WORK

In this work, we have presented an innovative physical
therapy system, based on the use of robotic arm, to guide
exercise execution. The system is able to record the thera-
pist exercise trajectory and help the patient to execute the
same trajectory using passive and active training modes. Even
though our current work lacks qualitative evaluation of the
effects of the proposed system on the rehabilitation progress



of real patients, the proposed methods have been successfully
evaluated in the lab, in experiments with healthy subjects. The
system will be evaluated in clinical studies in the near future,
as part of a bigger system that incorporates multimodal sensor
data analysis in order to better assess the condition of the user
at each moment and adapt accordingly.

One problem with having different users performing the
same exercise trajectory is that they could have different
physical characteristics such as body height and arm length.
To combat this, a camera system could be used to transform
the trajectory against the users physical characteristics to make
the exercise more effective for them. To make things straight-
forward, were are currently experimenting with a Kinect depth
sensor and its OpenNI library, to capture the user’s pose and
physical characteristics, using the built in skeleton tracker.
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