ARIA: Getting Started Quickly

Kapil Vyas, Vangelis Metsis, Fillia Makedon

416 Yates Street, 250 Nedderman Hall
Arlington, TX 76019, USA

kapil.

ABSTRACT

ARIA is a popular, reliable and powerful C++
Robotics library commonly used at various research
labs around the world. In spite of its powerful
features, it often presents itself as an intimidating
environment for beginners. This paper is an attempt
to bridge this gap and help a wide array of researchers
who struggle to get started with one of the world's
most reliable robotics API. As such, it is an effort
towards compiling a general guideline that will allow
roboticists, researchers, and hobbyists to quickly get
moving with the robot. The goal is to minimize
upfront issues, both small and big, and allow users of
the library to promptly get to the core task at hand.

Keywords
ARIA, Robots, Mobile Robots, Robotics API

1. INTRODUCTION
1.1 Motivation

The field of Robotics is gaining momentum and with that a
wider audience is involved with the growth. Recent
advances in other areas of computing such as Artificial
Intelligence and Computer Vision has steered it forward
and brought it into mainstream media. This era in time can
be collated with another one in history, one between
computers and operating systems. When computers began
to be more accessible and affordable to a bigger
population, we saw tremendous evolution of the Operating
System. Today, robots just like computers are following
the same trend and they too are facing a desperate need to
have a reliable architecture to support the multitude of
complex programming tasks. One such good library with a
well defined architecture and proven track history is the
ARIA library. ARIA, developed by Mobile Robots Inc.,
stands for Advanced Robotics Interface for
Applications, is a C++ library used to control robots
(Pioneer, PeopleBot, PowerBot, AmigoBot) made by the
same company. ARIA also provides a number of other
libraries that deal with other interesting robotic features
such as speech synthesis and recognition

as@mavs.uta.edu, vmetsis@cse.uta.edu, makedon@uta.edu

(ArSpeechRec_Sphinx), network communication
(ArNetworking), and simultaneous localization and
navigation (ARNL) libraries. It is an Open Source library
that runs on multiple platforms while supporting a number
of robots. The download section of the main site is
continuously updated with new third party softwares. This
alone speaks about the vigorous activity of the users that
make use of the library. It comes with a basic simulator
and out of the box SLAM support.

1.2 Objectives

This paper shall describe how to set up an environment in
Linux and Windows for code compilation, communication
with various onboard sensors, how to use other languages
besides C++ and will walk over sample programs for
common tasks. How to setup G++ compiler(Linux) and
Microsoft’s Visual Studio (Windows) IDE (integrated
development environments) to develop ARIA source code
is provided in Section 4. The main intention is to allow
users to create an environment on their preferred platform
(Linux or Windows) use their favorite programming
language (C++, Java or Python) to work on the project they
began with at once. Section 6 shows how to use the
simulator which can be used to test programs before
running them on the actual robot. Section 7 explains all the
setup needed to write code in Java and Python using the
Java and Python wrappers.

2. RELATED WORK AND
CONTRIBUTION

As an increasing number of robots have found their ways
into research labs, university courses and in the homes of
hobbyists, various issues have arose as a result. One of the
principle issue is that developers have to understand the
different API for each individual robotics platform and
also learn the specific programming language that is used
to access the API. Researchers have suggested the need for
a common development environment. These [development
libraries and software] tools are obviously platform
dependent and thus they cannot easily be used for building
multi-platform robotic systems [3]. One complaint is that a
program cannot be easily ported over to another robotics

mailto:makedon@uta.edu
mailto:vmetsis@cse.uta.edu
mailto:kapil.vyas@mavs.uta.edu

platform even with slight modifications. One has to first
get acquainted with the new platform and redo everything
from scratch. There is unfortunately no standardized way
to interface with robots [1].

This could be addressed by having an international
community create a standard API and companies can agree
to support the published specifications. One challenge is
that the field of robotics itself covers many areas. Say one
robot has a robotic arm and another is loaded with sensors
but has no gripper of any kind. These robots could support
part of the standard API based on what devices can be
availed from them, but then it would again be difficult to
support all the methods for an individual device as
published in the standard document. This would not only
make it cumbersome but create frustration due to partial
support. As such, the idea towards a common platform for
all robots, if not elusive, is very well placed ahead of our
time and would require an elaborate understanding of the
complex underlying architecture of different systems. A
standard platform for a set of robots that share many
features would be more approachable than an all-standard
one. Such an attempt for a set of robots is already making
headway with the Robot Operating System [12]; which is
applicable to a fine set of robots where testing and proper
documentation is still lagging behind for some of the
robots like Mobile Robots PeopleBot. However, the
architecture looks very promising. Again, the catch is that
most companies would avoid this idea to begin with; as
such it limits their freedom by having to abide by a set
standard. Finally, the subset is less than the whole;
performance is lost and a smaller set of usability is
represented by the common robotics platform across
independent robots. Borgstrom who describes a design
and implementation of an adapter layer that integrates the
ARIA library and MATLAB admits, “.. due to the
difference in features between the C++ and MATLAB
languages the exposed API is not complete. One
conclusion is [that] it is possible to create an at least partial
adapter layer [1].”

We approach this problem by narrowing our search for a
very reliable and highly robust open-source API that
supports a multitude of robot designs and capabilities that
can target myriad needs of the robotics field. The API
should be accessible using common platforms (Windows
and Linux) and should be supported by a set of
programming languages that an average programmer is
conversant with. The set of robots that it supports must be
be priced within a reasonable budget size. We chose ARIA
because it closely fits our criteria. It is hard to find a good
library with many useful built-in features. The striking
feature about ARIA is that the library comes with a simple

interface and the developers have provided all kind of
source code for working with almost anything imaginable
that can be carried out by the robot. However, this itself
could be cause enough for beginners to stay away from it
and become overwhelmed. The ARIA library is primarily
designed for professional developers and is meant to be
used as a solid base for large-scale applications [1]. Our
premise is that the library is not complex but
comprehensive. In the long term we are interested to work
with a comprehensive library than one with a small feature
set. ARIA lacked a well-written step-by-step guide to get
started with the library because it assumed that users of the
library were experts in C++. However due to its increasing
popularity as reflected by the number of third party
softwares available for download; one can see the need for
a getting started document which describes all the basic
setup and basic sensor access information in one place.
Until recently (late 2009) and much to the need for the
same cause, Whitbrook wrote on how to use ARIA and
Player to program Mobile Robots, which is more than a
getting started document and covers various facets of the
library in greater detail, which helped in the development
of certain sections of this paper[4]. The main contribution
is to create a short document that summarizes end-to-end
setup of the ARIA library for major platforms (Linux,
Windows) using key programming languages (C++, Java,
Python) with access to basic functionality (camera, laser,
sonar, bumpers and motors) and features (Simulator) in
one single place. At the same time, the goal was to avoid
mixing code with the explanations so that all the coding
artifacts are in accessible place that references all the basic
programming steps. The idea behind was to let beginners
jump into code if they are interested in seeing things
running and delay the explanations for later reference.

3. GETTING STARTED

3.1 Remote Communication Approaches

Mobile Robots provides a number of software downloads
(“http://robots.mobilerobots.com/wiki/All Software”) to
use with their robots on the Software and downloads
section of their website. This paper assumes that all robots
come with an onboard computer. One can directly program
the on-board computer. However, the on-board computers
are small and are fixed to the robot. A remote computer is
the best way to work with the robots. There are two ways
to approach communication with the on-board compute.
The first approach is to use a program such as SSH (Secure
Shell) for Linux and Remote Desktop Connection using
Windows. Secure Shell (SSH) is a network protocol used
to communicate between two networked machines [6]. If
this approach is followed, all of these software packages

http://robots.mobilerobots.com/wiki/All_Software

need to be installed on the robot’s on-board computer.
There is no need to install these packages on the remote
machine. On Linux, it is much more sensible to use a
preferred editor on the remote machine and transfer the
code to the on-board computer and run compilation
commands via SSH. On Windows, it is easier to install the
preferred editor on the on-board computer. The second
approach is to use the remote machine and use a client-
server relationship to communicate the two machines. In
this case, all software packages must be installed on both
machines. A client program needs to be written for the on-
board machine which sends requests to a server that is
running on the robot’s onboard computer. The
ArNetworking library is used to write the client and server
programs. Beginners who are getting started with ARIA
should avoid the second approach. Though later, a
beginner may be interested in using a simulator or navigate
a robot from one corner of a room to another using a 2D
map of the apartment room. Mobile Robots Inc. provides a
server program, ARNL guiServer and a client program,
Mobile Eyes™, particularly designed for the purpose of
simulation and navigation. Details about how to setup a
simulation environment and do simultaneous localization
and navigation (SLAM) is provided in the “ARNL
Installation and Operations Manual” [8]. Beginners can
follow directions in that manual if they are planning to do
simulation and navigation. Unless otherwise stated
explicitly, the rest of this paper assumes the second
approach of using a remote computer to communicate via
SSH (Linux)/Remote Desktop Connection (Windows) or
directly using the onboard computer is followed.

3.2 Main Installation

ARIA is the core installation package needed to program
the robots. ARIA version 2.7.2 was used to run all the
sample programs in this document. All these installations
are done on the robot’s on-board computer. The Windows
installation is straightforward using the “accept license-
click next-done” interface. On Linux the source code can
optionally be downloaded in /usr/src or on the
Desktop. Executing r pm -1 (Red Hat machine) or dpkg
-i (Debian machine) will install ARIA at / usr/ | ocal
directory. Linux installs applications that are not part of the
official distribution at /usr/local. You can skip
installation of other packages at this point.

4. ENVIRONMENT SETUP

4.1 Code Compilation on Linux

On Linux, both gcc (GNU Compiler Collection) and g++
compiler version 3.4 or higher are required for ARIA
version 2.7.2. Typing gcc -v and g++ -v will let you know
if the gcc and g++ compiler are installed or not and will

also print the version number. This guide used gcc version
44.1 with a C++ compiler. Use sudo apt - get
i nstall gcc with a to install gcc and sudo apt - get
install g++ to install g++. Debian based Ubuntu
comes pre-installed with the gcc compiler but not the g++
compiler. On Debian, the g++ installation will also install
any dependent packages. The libstdc++.s0.5 is a key
library required to compile ARIA's code because ARIA's
main libAria.so library depends on it. The recent release of
Ubuntu's Karmic Koala has discontinued this library. Thus
compiling the code gives error and warning messages,
complaining of the missing library. The workaround is to
install the missing library from this link. However, when
the compilation is run, it will give a warning message
about using two conflicting libraries libstdc++.s0.5 and
libstdc++.s0.6. To fix this: explicitly include the file path
of the library, that is /ust/lib/libstdc++.s0.5 in the
compilation command. To compile the ARIA code, you
need to use the following command to compile the
program in order to create an executable:

g++ -g -Wall -1/usr/local/Arialinclude

-L/usr/local/Ariallib -1Aria -1dl
-l pthread nyFirstPrgrmcpp -0
nyFirstPrgrm

The -g and -Wall options will print useful warning and
debugging messages. The -lAria, -1dl, and -lpthread are
additional referenced libraries that the linker needs to
know. In C/C++, whenever you include a header file, the
pre-processor replaces the line on which the #include
directive appears with the whole content of the specified
file. When the compiler sees the code, it is seeing a pre-
processed file. The inclusion of a header file does not
imply that you are using a compiled implementation of the
header file. Including, example.h does not mean that a
compiled version of example.cpp is to be linked to create
the executable. At the same time there is no such
convention that a example.h file will always have an
implementation defined in example.cpp. It could be
defined in a different extension with a totally different
name. In short, you also need to tell the linker to link the
appropriate referenced library that the header file is for.
The referenced libraries must be compiled. In our case, the
referenced libraries have been compiled. Some programs
of the ARIA library may give an error: “undefi ned
reference to ‘clock_gettime' ”. In this case
you may need to add -l rt as an additional referenced
library. The command would be:

g++ -g -Wall -1/usr/local/Arialinclude

-L/usr/local/Ariallib -1Aria -1dI
-l pthread -Irt nyFirstPrgrmcpp -0
nyFirstPrgrm

The -L argument specifies the location for linking the
source code with the ARIA library. The —I argument
specifies the location of the ARIA header files. The —o
option followed by the argument will produce an
executable: myFirstPrgrm which can be run by the
command: ./nyFi r st Pr gr m Instead of typing a lengthy
command to compile the program, a onetime makefile can
be created. A simple g++ nyFirstPrgrm cpp
command would compile the program without all the
arguments. See Appendix 1.1 on details about creating a
makefile.

4.2 Code Compilation on Windows

On Windows, only Microsoft’s Visual Studio .NET 2003
and later versions can be used to compile ARIA’s source
code. See Appendix 1.2 for step-by-step instructions for
compiling a program on a Windows platform using
Microsoft Visual Studio 2008. Visual Studio is a powerful
IDE, and it comes with a very good debugger. Linux users
may want to use it as a tool for debugging and later port
the code over to Linux. In this case, they should avoid
writing a program that depends on Microsoft’s Foundation
Classes (MFC).

5. ROBOT PROGRAMMATIC ACCESS
51 Communicating with the Robot

Every program must begin by having a code segment that
sets up the communication between the on-board computer
and the robot. The easiest and generic way to communicate
with the robot for beginners 1is to wuse the
ArSimpleConnector class. The other way is to use the
ArTcpConnection class which is used to write a more
specific connection routine and gives more control over
how you connect with the robot [5]. The latter has the
benefit that one comes out with an understanding of how
the robot communication works but it is way too advanced
for beginners and should be avoided when one is just
trying to get started. The advantage of using the generic
ArSimpleConnector class is that if a simulator is present it
first tries to connect to it before attempting to connect to
the robot itself. Appendix 1.3 gives the code segment to
successfully connect to the robot. Again, as stated earlier,
all of this code can be written using an editor on a remote
machine and then porting over to the robot, say via SSH
using a SCp command (see below) and then compiling it
remotely. It will result in extraneous step if all the setup is
repeated on the remote machine as explained earlier.

[kapil @remotehost~]$ scp kapil @onboardhost hello.cpp

5.2 Communicating with the Robot’s

Devices

In the code of Appendix 1.3 when the main robot class
object (robot) is instantiated, the instance already includes
motors but does not include any sensors such as laser,
bumpers, sonar and camera. Laser, sonar and bumpers
inherit from a single parent class called the
ArRangeDevice and the group can be called ‘“Ranged
Devices”. Therefore they have the same method of
connecting to the robot. In appendix 1.4, code shows
initialization and connection of the ranged devices and the
camera with the main robot object. The ARIA Architecture
has been designed in such a way that the ranged devices
(sonar, bumpers and laser) can be initialized without
requiring the robot object and thus the sensor values can be
accessed. The ranged devices need to be explicitly added
using the addRangeDevice(). In the case of the camera, a
non-ranged device, the initialization cannot be made
without the robot object. Since the camera is typically
connected to the robot microcontroller's auxilliary serial
port, and also uses ArRobot task cycle callbacks, a
connected and running ArRobot object is required[5]. The
section below shows how individual devices can be
controlled and their sensor values be accessed.

5.2.1 Motors

The ArRobot object is used to give motor commands to the
robot. Taking a look at the ARIA API reveals more than
150 methods that relate to the ArRobot class[5]. It may
take a good deal of time to realize which methods are used
to fully control the robot’s motion. Beginners should not
be overwhelmed by this; knowing half a dozen of the
available methods should enable maximum control of the
robot’s motion. Appendix 1.5 summarizes key methods
related to motor control.

The API has one good utility class for describing motion
(ArAction). It is recommended that the API be read after
one becomes familiar to dig for useful utility classes to
reduce development time. One such useful utility class is
the ArPose class. The ArPose class allows setting up of
different positional poses that the robot can move through.
The constructor takes three arguments; the (x,y) position
and the n™ position starting with n=0. As such this class
can be used to move the robot through a planned path
assuming a certain coordinate frame defined by the
programmer. The ArPoseWithTime is inherited from the
ArPose class and also ties the time when the pose was
taken.

5.2.2 Sonar
Sonar is one of the ranged devices and maps the closest
object detected. It assists the robot to stay clear off

collisions. Each sonar array has 8 transducers but only one
transducer is fired at a time from each of the sonar
array[13] from left to right. The acquisition rate for each
array is 40milliseconds/transducer (40Hz). A Peoplebot
has 8 sonar arrays and to read all the raw sonar values can
take about 0.32s. The sensitivity of the sonar is roughly
between 0.01-5Smeters but exact range depends on the
ranging rate as set by the position of the sonar-gain
potentiometer. The sonar-gain potentiometer’s position can
alter the range and sensitivity. It is a visible cap just
located near the underside of the sonar array. Using a flat
screw, turning the cap counter-clockwise makes the sonar
less sensitive and is useful for operating in a noisy
environment. This also reduces the ability of the robot to
see tiny objects because of its reduced sensitivity. But if
one is operating in a calm area, high sensitivity gain can be
set. However, if the surface is too reflective or there is a
heavy carpet underneath, then the sonar will detect the
floor as an obstacle. It is advised that the sonar settings be
made later and only if needed depending on the severity of
the operating environment or a need to get a more refined
data set.

170 -170
180

Figure 1: Sonar base showing angular distribution [13]

The ARIA library describes the outward facing area
surrounding the sonar as ‘“polar region”[S]. To get a
reading from each of the sonar array, one needs to specify
exactly the polar region. The polar region is described by a
start and end angle in degrees in counterclockwise
direction. The front is at zero degrees. Therefore to get
sonar values on the front side of the robot, the slice of the
polar region would have a start angle at -90 and an end
angle of 90. Specifying the other way round (90,-90)
would yield values on the backside of the robot. In short
(0,10) would mean 10 degrees left of the front side but

(10,0) would mean 350 degrees on the remaining area.
However, the value returned by the sonar is not a distance
measure from the sonar array to the object identified.
ARIA’s sonar method getReadingPolar() adds a constant
radius from a fixed center of the robot. The radius can be
obtained from the getRobotRadius() method of the
ArRobot class. Appendix 1.6 has a code snippet that
shows accessing the sonar values.

5.2.3 Laser

Laser Rangefinder is another ranged device and also maps
the closest object detected. The ArSick class defines the
laser object, and just like the ArSonarDevice class for the
sonar, they both inherit from the ArRangeDevice class.
The way to programmatically access by polar region works
the same way as the sonar. See Appendix 1.7.1 for laser-
specific code to access values from the range finder.
Appendix 1.7.2 describes how to access all the laser values
using an iterator which is slightly different code-wise from
the sonar; since the former does it more comprehensively,
it returns a huge data set than the later.

5.2.4 Bumpers

The bumpers are triggered when an obstacle comes into
contact with the robot and is the last line of defense when
other obstacle detection sensors have failed. Additionally,
Mobile Robot has a safe feature that will stop the robot
from moving if any of the bumpers has been physically
removed[13].

B2 B4
Bl WO ps
Front Bumpers : PR .
B0 . — B |
left | right
wheel | wheel

1
Figure 2: Bumper base showing the bit values of the front

bumpers including the left and right wheel; that is bit 3
would represent the center bumper on the front side [13]

Programmatic access of bumpers is simple as calling the
getStallValue() method of the ArRobot class. This returns
an integer whose value in binary format expresses the stall
flags of the bumpers, left wheel and right wheel. In a robot
with both front and rear bumpers, the binary number will
produce 16 significant bits of information and if it has just
one set of bumpers, front or rear, then only 9 bits will be of
interest. The bits represent the stall flags or indicators for

the bumpers, left wheel and right wheel. Assuming a robot
with both the front and rear bumpers, 16-bits of
information can be retrieved from the integer returned. A
simple binary And (&) can be used to access the individual
bits. Say, to access the bit zero, we would And it with 2
raised to the bit number.

int stallValue = robot.getStall Val ue();
int bit0 = stallValue & 0;

A bit is set to 1 if a bumper or wheel represented by that
bit is stalled, otherwise it is set to 0. Bit O is the left wheel
stall indicator. In the above code, if bitQ has value 1 then
the left wheel is stuck and cannot move. Bits 1-7 matches
the first bumper, so say for the front bumpers in figure 1,
bit 1 would stand for the leftmost bumper,B1 and bit 5
would stand for the rightmost bumper,B5 while bit 6 and 7
does not mean anything. Bit 8 would correspond to the
right wheel stall indicator. Bits 9-15 correspond to the
second bumper set, say the rear bumpers which also has a
set of 5 bumpers, but bit 14 and bit 15 are unused and will
have default zero value.

The ArRobot class also provides methods to check if front
and rear bumpers are present and also access the number of
front and rear bumpers:

i nt nunfFront, nunRear;
i f(robot. hasFront Bunpers())

nunfront =
r obot . get Nun¥r ont Bunper s() ;

i f(robot. hasRear Bunpers())
nunRear = robot. get NunRear Bunpers();

5.2.5 Camera

The camera is positioned in such a way that robots with a
gripper can use the camera to inspect the contents of
gripper. On PeopleBot, the 16X zoom lens color camera is
mounted at chest height, such that face detection and
object recognition and tracking can be done. The robot’s
(Canon VC-C4[R] or C50i) cameras come with a
programmable robotic pan-tilt base[12]. The ArVCC4
class is used to control the pan, tilt and zoom mechanisms
and some other aspects of the cameral[5].

The camera operates in two modes; unidirectional and
bidirectional. In unidirectional mode, when a command
packet is sent by the ArVCC4 class to the camera, it does
not return a response; it simply delays for some time to
allow the camera to complete processing the command it
was sent. In bidirectional mode, when a command packet
is sent to the camera, it takes about 300ms for it to generate
a response. However, the response does not indicate when
the command will be completed, it only gives a binary
indication as to if a command will be executed or not. The

default constructor sets it to unknown communication
(COMM_UNKNOWN) which means it wuses a
bidirectional mode if a response is received. See Appendix
1.8 for a complete list of key methods to control the pan-
tilt base. Before calling the methods, one must check that
the camera was successfully initialized:

bool check = nyCanera.init();

It should be noted that the simulator program, MobileSim,
does not simulate the programmatic pan-tilt base.

There are many ways to access the images grabbed by the
pan-tilt-zoom camera. Video for Linux (V4L) is a core
Linux library which underpins many popular Linux
applications related to camera such as the GUVCView,
Cheese and the GStreamer. Appendix 1.9.1 provides a
generic class for Linux developers and employs the Video
for Linux (V4L) library. To use the generic class, UVC
drivers must be installed [11]. You can use a program like
gstreamer and type in gStreaner-properties to
check if the UVC drivers are installed or not. Appendix
1.9.1.1 provides the header file, Appendix 1.9.1.2 gives the
source file and Appendix 1.9.1.3 shows a sample test
program that uses the generic camera class. The class is
written in such a way that it can be used to grab images
from multiple cameras. As such, it is making use of Linux
threads. Appendix 1.9.2 provides a generic class for
accessing camera in a Windows environment.

Other third party resources are ACTS and OpenCV.
ActivMedia Color Tracking System(ACTS), is mainly
used for blob tracking where multiple images of the blob to
be tracked is supplied to the camera as part of the training
process. After which the robot can be made to follow the
blob. If the blob is spherical, the radius can be used as a
variable to push the robot forward or backward and the
center of the sphere can be used to pan and tilt the camera
accordingly. The details about using the ACTS Software
can be found in the ACTS User Manual [9]. Another great
resource is OpenCV which is excellent for vision
processing tasks. Interested readers can visit [7] to learn
more about OpenCV or read the book “Learning OpenCV:
Computer vision with the OpenCV library” [10] by Gary
Bradski.

6. USING THE SIMULATOR

A useful feature of the ARIA library is that it comes with
an easy to setup simulator, called MobileSim. Beginners
can safely test their programs on a simulator before trying
them out on the real robot. An introductory robotics course
can benefit twofold. The programs in such courses are
often complex and a simulator prevents damage to the
robot and allows for resolving any ensuing bugs and

program logic before actual testing. The other benefit is
that the ARIA class of robots are expensive, thus it makes
them a limiting resource. The simulator can also override
this problem.

The link provided in Chapter 2 “Getting Started” enlists
MobileSim as one of the downloadable packages. In
Linux, once the package is installed using the dpkg - i
command, pressing ALT+F2 and typing Mobi | €Si mor
typing the same on a shell prompt, starts the simulator.
This opens a dialog box prompting for a robot model and a
map. A more explicit command can be typed by including
the robot model and the location of the map which
prevents the initial dialog box to open:

Mobi | eSi m -m
nmyRobot Model

my Pat h/ myMap. map -r

Once the Simulator is running, the source code can be
executed using the . / myPr ogr amon the shell prompt. If
need be, ARIA also comes with a Map editing program,
Mapper3Basic. The program allows for setting up new
environments and modifying existing ones using an easy-
to-use interfaces.

7. USING THE WRAPPERS

ARIA provides two wrappers for developers who would
like to program in Java or Python. In essence, the wrappers
supply programmers with a Java and Python API that
actually calls the standard C++ library (libAria.so on Linux
and Aria.dll on Windows) using the wrapper layer[5S].
However the ARIA library has not been thoroughly tested
using the wrapper packages. Unlike the huge C++ code
repository of examples and test programs in the ARIA
package, the Java and Python package installation does not
provide ample code repository. However, it is hoped that
with increasing use of the library in those languages,
developers will share their valuable source code and create
proper Java and Python documentation for the ARIA
library.

71 Java Wrapper

A Java SDK version 1.6 (Java SE6) or higher must be
installed prior to the use of the wrapper. Unlike the
installation of the Python wrapper, installation of the Java
wrapper will not complain if a Java SDK is not installed.
In Windows it is necessary to set the bin folder of ARIA in
the list of environment path variable. This allows Java
programs to access the Java wrapper's dynamic linked
library found in the bin folder. As described in Section 5,
“Using the Simulator”, Java programs too can be run using
the simulator. A simulator needs to be started before
running the compiled Java programs. To compile the

programs in Windows or Linux use the following
command, assuming the program is located in the
examples directory:

javac -classpath
Hel | 0. j ava OR

..ljavalAria.jar Hello.java

..ljaval Aria.jar

javac -cp

There is a slight difference between the way the program is
run on Windows and Linux. In Windows use the following
command:

java -cp ../javal/Aria.jar;. Hello

In Linux the semicolon is replaced by the colon, that is:

java -cp ../java/Aria.jar:. Hello

See Appendix 1.10 for a sample Java program that does
simple motor control obtained from one of the downloaded
examples, provided for easy reference.

7.2 Python Wrapper

Before installing the Python wrapper package, one should
install a version of Python that the wrapper was built with.
The wrapper found at the Downloads section requires
Python version 2.4 for Debian Linux or Windows and
Python version 2.2 for RedHat [5]. If a different version is
available on the host machine then the wrappers need to be
rebuilt. If Python 2.6 is used, a renaming of the dynamic
linked library (_AriaPy.dll or _AriaPy.so to
_AriaPy. pyd) is required under the python directory.
An environment path variable needs to be set up that links
to the python folder under ARIA. Similarly, a simulator
can be used to test the Python programs. Again, just as
decribed in Section 5, a simulator needs to be started
before running a python program. Double clicking the file
on Windows will run the python program or typing the
following command on Windows or Linux will run the
program:

pyt hon nyPyt honExanpl e. py

See Appendix 1.11 for a sample Python program that does
simple motor control obtained from one of the downloaded
examples, provided for easy reference.

8. CONCLUSION

The main motivation of this paper is to create a guide that
breaks this initial block both for beginners and researchers
and allow for maximum adoption of this great library. The
library is also ideal for an introductory robotics class. The
Java support of the library provided by the Java wrapper,
can be used to teach introductory Object Oriented
programming to high school students. Such a course would
have a visual component to it. ARIA's library is highly

featured and one cannot miss the edutainment part it would
provide to the students. As such, the paper can be used as a
lab handout for a course in Robotics or one designed to
teach Object Oriented Principles (OOP) as an initiative
towards tactile or kinesthetic learning.

9. REFERENCES
[1] Borgstrom, “ARIA and Matlab Integration With
Applications,” 2005.

[21 K.. O'Hara and J.S. Kay, “Investigating open source
software and educational robotics,” Journal of
Computing Sciences in Colleges, vol. 18, 2003.

[3] A. Farinelli, G. Grisetti, and L. Iocchi, “Design and
implementation of modular software for programming
mobile robots,” International Journal of Advanced
Robotic Systems, vol. 3, 2006.

[4] OpenSSH. (2010, June 7). In Wikipedia, The Free
Encyclopedia. Retrieved 19:06, June 13, 2010, from
http://en.wikipedia.org/w/index.php?
title=OpenSSH&o0ldid=366479723

[51 “MobileRobots Advanced Robotics Interface for
Applications (ARIA) Developer's Reference Manual
2.7.2,” ActivMedia Robotics, LLC, MobileRobots Inc,
20009.

[6] "Linux UVC Documentation," Linux UVC Open-
Facts, berliOS, 05:29 Nov 15, 2007. [html].

http://openfacts.berlios.de/index-en.phtml?
title=Linux+UVC [Accessed: May 20, 2010]

[71 "How to use OpenCV to capture and display images
from a camera," CameraCapture OpenCV Wiki,
OpenCV, 2008-05-28 14:02:33. [html].
http://opencv.willowgarage.com/wiki/CameraCapture
[Accessed: May 20, 2010]

[8] Laser Range-Finder Installation and Operations
Manual, Version 1, ActivMedia, NH, USA, (2002)

[91 ACTS User Manual, Version 6, ActivMedia, NH,
USA, (2006)

[10] G. Bradski and A. Kaehler, Learning OpenCV:
Computer vision with the OpenCYV library, O'Reilly
Media, Inc., 2008.

[11] Monisit, Kristofer . "UVC". Ubuntu. May 20th 2010
<https://help.ubuntu.com/community/UVC>.

[12] ROS (Robot Operating System). (2010, June 11). In
Wikipedia, The Free Encyclopedia. Retrieved 20:14,
June 13, 2010, from
http://en.wikipedia.org/w/index.php?

title=ROS (Robot Operating System)é&oldid=367349
467

[13] A. Robotics, “Pioneer 2/PeopleBot Operations
Manual, ActivMedia Robotics, 44 Concord St.,
Peterborough NH, 03458,” October, vol. 4, 2001.

http://en.wikipedia.org/w/index.php?title=ROS_(Robot_Operating_System)&oldid=367349467
http://en.wikipedia.org/w/index.php?title=ROS_(Robot_Operating_System)&oldid=367349467
http://en.wikipedia.org/w/index.php?title=ROS_(Robot_Operating_System)&oldid=367349467
https://help.ubuntu.com/community/UVC
http://en.wikipedia.org/w/index.php?title=OpenSSH&oldid=366479723
http://en.wikipedia.org/w/index.php?title=OpenSSH&oldid=366479723
http://opencv.willowgarage.com/wiki/CameraCapture
http://openfacts.berlios.de/index-en.phtml?title=Linux+UVC
http://openfacts.berlios.de/index-en.phtml?title=Linux+UVC

APPENDIX 1

1. CREATING A MAKE FILE

Create a file and name it Makefile. Say myProgram.cpp is the name of the C++ source code and myProgram will be the
name of the executable after compilation, then insert the following lines in the makefile:

all: program

CFLAGS=-fPIC -g -Wall
ARIA INCLUDE=-I/usr/local/Aria/include
ARIA_LINK=-L/usr/local/Aria/lib -1Aria -lpthread -1dl1 -1lrt /usr/lib/libstdc++.s0.5

[

%: %.Cpp
$ (CXX) $(CFLAGS) $(ARIA_INCLUDE) $< -o $@ $(ARIA_LINK)

Save this file in the same location as the source file. Now, to compile the source code, type make myProgram.cpp
myProgram at the command line. To execute the code, type ./myProgram. It should be noted that using the existing
Makefile that comes with the installation takes a longer time to compile, however typing just make withouth any arguments
using the default makefile will compile all the programs in the examples folder, creating the respective executables for each
program.

2. STEPS TO COMPILE ARIA PROGRAMS IN VISUAL STUDIO 2008:

1. Download Visual C++ Express if any version of Visual Studio is not installed.

2. Create a folder (say in C: drive), and name it Aria. Within this folder, create two subfolders; “include” and “lib”.
3. Inside the “include” folder move all the header files that came with the installation of ARIA.

4. Move all the “dll” files inside the “lib” folder.
5

When creating a new project, under Tools->Options->Projects and Solutions->VC++ Directories, add the above
paths for the two folders in their respective directory settings.

6. Add the same paths (in this case it would be: “C:/Aria/lib” and “C:/Aria/include”) to your Environment Variables.

3. COMMUNICATING WITH THE ROBOT [5]
#include "Aria.h"

/** Qexample myDemo.cpp

*/

int main (int argc, char** argv)
{
// mandatory init
Aria::init ();

// Declarations for basic startup:

// [1l] set up our parser

ArArgumentParser parser (&argc, argv);

// [2] set up our simple connector that takes in the parser object
ArSimpleConnector simpleConnector (&parser);

// [3] main robot class

ArRobot robot;

// loads the default arguments if no arguments were passed
parser.loadDefaultArguments () ;

file:///C:/Aria/include
file:///C:/Aria/lib

// parse the command line... fail and print the help if the parsing fails
// or if the help was requested
if (!'Aria::parseArgs () || !parser.checkHelpAndWarnUnparsed())
{
Aria::logOptions () ;
exit (1) ;

// set up the robot for connecting

if (!simpleConnector.connectRobot (&robot))

{
printf ("Could not connect to robot... exiting\n");
Aria::exit (1);

}

// true means if we lose connection the robot should stop
robot .runAsync (true) ;

// Connection has been established with the robot now

// the lock () and unlock () commands ensure no interference with other commands
// and appear in a block

robot.lock (); // every time, we send a command to robot, we lock it
robot.comInt (ArCommands: :ENABLE, 1); // enable the motors
robot.unlock (); // and unlock it after it has been executed

// Command to turn robot 90 degrees to the right
robot.lock () ;

robot.setHeading (90) ;

robot.unlock () ;

// shutdown and getout
Aria: :shutdown () ;

4. COMMUNICATING WITH THE SENSORS: LASER, BUMPERS, SONAR & CAMERA
#include "Aria.h"

/** Rexample mySensor.cpp

*/

int main (int argc, char** argv)

{
Aria::init () ;
ArArgumentParser parser (&argc, argv);
ArRobot robot;

// Initializing all the devices:
// [1] Laser:

ArSick myLaser;

// [2] Sonar:

ArSonarDevice mySonar;

// [3] Bumpers:

ArBumpers bumpers;

// [4] Camera:
ArVCC4 myCamera (&robot) ;
myCamera.init () ;

// Add the sensors to the robot
robot .addRangeDevice (&mySonar) ;

robot .addRangeDevice (&myBumpers) ;

myLaser.runAsync () ;

if (!connector.connectlLaser (&myLaser))

{
exit (0);
}

robot .addRangeDevice (&myLaser) ;

parser.loadDefaultArguments () ;

if (!Aria::parseArgs () || !parser.checkHelpAndWarnUnparsed())

{
Aria::logOptions () ;

exit (1) ;
}
if (!simpleConnector.connectRobot (&robot))
{
printf ("Could not connect to robot... exiting\n");

Aria::exit (1);
}
robot.runAsync (true) ;
robot.lock () ;

robot .comInt (ArCommands: : ENABLE,

robot.unlock () ;

// Command to turn robot 90 degrees to the right

robot.lock () ;

robot .setHeading (90) ;
robot.unlock () ;
Aria::shutdown () ;

5. KEY METHODS TO CONTROL ROBOT’s MOTION [5]

Method

Details

double getAbsoluteMaxTransVel()

Returns the robot’s maximum translational velocity
(mm/s)

double getAbsoluteMaxRotVel()

Returns the robot’s maximum rotational velocity (°/s)

bool setAbsoluteMaxTransVel(double maxVel)

Sets the maximum translational velocity (mm/s). It
returns true if it can set the value provided, otherwise
it returns false.

bool setAbsoluteMaxRotVel(double maxVel)

Sets the maximum rotational velocity (°/s). It returns
true if it can set the value provided, otherwise it
returns false.

void setVel(double velocity)

Sets the translational velocity (mm/s)

void setRotVel(double velocity) Sets the rotational velocity (°/s)

void setVel2(double leftVelocity, double rightVelocity) | Sets the desired velocity of the left wheel and the
right wheel of the robot; both in mm/s

void stop() Stops the robot

void move(double distance) Moves the robot in stated distance either forward or
backward based on sign of value.

void setHeading(double heading) Sets the absolute heading of the robot in degrees

Void setDeltaHeading(double deltaHeading) Sets the new heading to provided value relative to the

one it had before the method call

6. PROGRAMMATIC ACCESS OF SONAR VALUES [4]
1. A slice of the polar region (front: -90 to 90)

#include "Aria.h"

/** Qexample mySonarl.cpp

*/

int main (int argc, char** argv)

{
Aria::init ();
ArArgumentParser parser (&argc, argv);
ArRobot robot;

ArSonarDevice mySonar;
robot .addRangeDevice (&mySonar) ;

double value; // variable to hold the closest value from all the sonar readings

// angleAtValue is passed as pointer to method to retrieve angle at closest value
double angleAtValue;

value=mySonar.currentReadingPolar (=90, 90, &angleAtValue) ;

2. Specific Sonar array

/** Qexample mySonar2.cpp
%)

int main(int argc, char** argv)

{
Aria::init ();
ArArgumentParser parser (&argc, argv);
ArRobot robot;

ArSonarDevice mySonar;
robot .addRangeDevice (&mySonar) ;

ArSonarDevice mySonar;
robot .addRangeDevice (&mySonar) ;

int id = 5;// say, the specific sonar array is 5

ArSensorReading* values; // This class abstracts range and angle read from sonar

value = robot->getSonarReading(5);
double range = value—->getRange () ;
double angle = value->getSensorTh() ;

3. All the Sonar sensors

/** Qexample mySonar3.cpp

*/

int main(int argc, char** argv)

{
Aria::init () ;
ArArgumentParser parser (&argc, argv);
ArRobot robot;

ArSonarDevice mySonar;
robot .addRangeDevice (&mySonar) ;

int total = robot->getNumSonar(); // get the total number of sonar on the robot
ArSensorReading* values; // This class abstracts range and angle read from sonar

for(int 1 = 0; 1 < total; i++)

{

value = robot->getSonarReading (i) ;
double range = value->getRange();
double angle = value->getSensorTh () ;

}

7. PROGRAMMATIC ACCESS OF LASER VALUES [4]
1. Slice of the polar region (front: -90 to 90)

#include "Aria.h"

/** Qexample myLaserl.cpp

*/

int main (int argc, char** argv)

{
Aria::init () ;
ArArgumentParser parser (&argc, argv);
ArRobot robot;

ArSick myLaser;
robot .addRangeDevice (&myLaser) ;

double value; // variable to hold the closest value from all the laser readings

// angleAtValue is passed as pointer to method to retrieve angle

double angleAtValue;

value=myLaser.currentReadingPolar (-90, 90, &angleAtValue) ;

2. All the laser values

#include "Aria.h"

/** Qexample myLaser2.cpp

*/

using namespace std;
int main (int argc, char** argv)

at closest value

{

Aria::init ();

ArArgumentParser parser (&argc, argv);

ArRobot robot;

ArSick myLaser;

robot .addRangeDevice (&myLaser) ;

// Create a list of ArSensorReading values
list<ArSensorReading *> *values;

// Create an iterator to loop through the above values
list<ArSensorReading *>::const_iterator it;

values = myLaser->getRawReadings () ;

int i = -1;

double angle, range;

for(it = values->begin(); it != values->end(); it++)
{

i++;

range = (*it)->getRange() ;

angle = (*it)->getSensorTh() ;

}

8. PROGRAMMATIC CONTROL OF CAMERA’s PAN-TILT BASE[S]

Method Details
double getMaxNegPan() Returns the minimum angle(°) that the camera can pan to
double getMaxPosPan() Returns the maximum angle(°) that the camera can pan to

double getMaxNegTilt()

Returns the minimum angle(°) that the camera can tilt to

double getMaxPosTilt()

Returns the maximum angle(°) that the camera can tilt to

int getMinZoom()

Returns the minimum attainable zoom by the camera

int getManZoom()

Returns the maximum attainable zoom by the camera

double getPan()

Returns the current pan angle(°)

double getTilt()

Returns the current tilt angle(®)

int getZoom()

Returns the current zoom state of the camera

bool haltPanTilt()

Halts all pan tilt movement and returns and returns true on
success and false if unable to halt

bool haltZoom()

Halts zoom movement

bool pan(double degree)

Pans the camera to the angle argument(°®), the returned
Boolean value indicates success or failure

bool panRel(double degree)

Pans the camera to an angle relative to current pan angle

bool tilt(double degree)

Tilts the camera to the angle argument(°), the Boolean flag
indicates success or failure

bool tiltRel(double degree)

Tilts the camera to an angle relative to current tilt angle

bool pantilt(double pdeg, double tdeg)

Pans and Tilts the camera to pdeg and tdeg respectively

bool pantiltRel(double pdeg, double tdeg)

Pans and Tilts the camera to pdeg and tdeg which are angles
relative to the current pan and tilt angle

bool zoom(int value)

Zooms the camera to the integer value, the returned Boolean
value indicates success or failure

9. ACCESSING CAMERA IMAGES
1. Linux: Using UVC Drivers (V4L)

a. Header file:

/// @file Image.h

/// @brief Header generic image class

#ifndef _ IMAGE_H
#define _ IMAGE_H

class Image

{

public:

/// @brief Constructor

/// Q@param[in] w Width of the image

/// @param[in] h Height of the image

/// @param[in] ptr Raw image bytes

/// Q@param[in] sz Size in bytes of the given image

Image (int w, int h, char* ptr, int sz) width (w), height (h),
size(sz) { }

/// @brief Destructor, removes image data
~Image () { delete[] data; }

char* getRawData () { return data; }

int getWidth () const { return width; }
int getHeight () const { return height; }
int getSize () const { return size; }
void setRawData (char* ptr) { data =
void setWidth (int w) { width = w; }

ptr;

}

data (ptr),

void setHeight (int h) { height = h;
void setSize(int sz) { size = sz;

private:
int width, height, size;
char* data;

bi

#endif

@file Camera.cpp
/// Qfile Camera.h
/// @brief Header for Camera class object

#ifndef _ CAMERA_H
#define _ CAMERA_H

finclude "Image.h"
#include <stdlib.h>
#include <pthread.h>

/// Q@brief A structure describing a frame's buffer

struct Framebuffer

{

void* addr; //< The memory-mapped address of the buffer

int length; //< The length of the buffer

}i

class Camera

{

private:

int cameralD; ///< Unique camera identifier
int camfile; ///< UNIX file handle for camera

Framebuffer* buffers; //< Array of frame buffers

int nr_buffers; //< Number of frame buffers

//Multithreaded stuff

pthread_t thread; ///< Handle to thread that controls this camera
volatile Image* last_captured; //< Pointer to last image captured.

then the thread will capture a new image
volatile bool active;

bool initCamera () ;
public:

Camera () : cameralID(-1), camfile(-1),

~Camera () ;

int getCameraFile() const { return camfile; }

Framebuffer* getFramebuffer (int i)

volatile Image* getLastFrame () const { return last_captured;

{ return &buffers[i];

void setlLastFrame (Image* img) { last_captured =

buffers (NULL) ,

img;

nr_buffers (0)

}

}

}

If NULL,

int isActive () { return active; }

/// Q@brief Initializes the camera

/// @param id Camera ID that uniquely identifies the camera
/// @return The error state, one of HardwareError codes
HardwareError initialize (int id);

/// @brief Begins capture of an image from the camera
void beginCaptureImage () ;

/// @brief Releases the capture device housekeeping
void releaseCapture();

}i

fendif

b. Source file:

/// @Qfile Camera.cpp
/// @brief Code for Camera class object

//This uses Video For Linux 2.0 (V4L2) API

#include "Camera.h"

#include <stdlib.h> // NULL defintion

#include <stdio.h> // sprintf ()

#include <errno.h> // errno

#include <string.h> // memset ()

#include <fcntl.h> // fcntl ()

#include <unistd.h> // open(), close(), etc.
#include <sys/mman.h> // mmap ()

finclude <sys/ioctl.h> // ioctl ()

#include <asm/types.h> //required for videodev2.h
#include <linux/videodev2.h>

#include <pthread.h>

static int open_cam(const char* name);

static int waitioctl (int fd, int request, void* arqg);
static void stream_on (int £d);

static void stream_off (int £fd);

static void disp_errno (const char* str);
static void* camera_thread(void* cam) ;

Camera: :~Camera ()
{
}

HardwareError Camera::initialize(int CameralD)

{

char charname[128];

//Ignore double initialize() calls
if (this->isActive())
return HWERR_SUCCESS;

sprintf (charname, "/dev/video%d", CameralD);

//Open camera device, report any errors
camfile = open_cam(charname) ;
if (camfile == -1)
return HWERR_DISCONNECTED;
else if (camfile == -2)
return HWERR_UNABLE_TO_INITIALIZE;

if (this—->initCamera () == false)
{

close (camfile);

return HWERR_UNABLE_TO_INITIALIZE;
}

//Set up thread variables
last_captured = (Image*)0OxdeadcOde;
active = true;
if (pthread_create(&this—->thread, NULL, camera_thread, (void*) this)
{
close (camfile);
return HWERR_UNABLE_TO_INITIALIZE;

return HWERR_SUCCESS;

void Camera: :beginCapturelImage ()

{
//Signal to thread to capture the image
last_captured = NULL;

}

void Camera::releaseCapture ()
{
close (camfile) ;
active = false;

}

static int waitioctl (int fd, int request, void* arqg)
{

int retval;

do
{

retval = ioctl (fd, request, arg);
} while (retval == -1 && EINTR == errno);

return retval;

}

static int open_cam(const char* name)
{

struct stat st;

int fd;

}

//Can't stat () the file? (doesn't exist)
if (stat (name, &st) == -1)
return -1;

//Open camera for R/W access and make non-blocking
fd = open(name, O_RDWR | O_NONBLOCK, O0);

//Can't open file?
if (fd == -1)

return -2;

return fd;

bool Camera::initCamera ()

{

struct v41l2_capability cap;
struct v412_format fmt;

struct v412_requestbuffers req;
int fd = this->camfile;

int i;

//Query hardware capabilities
if (waitioctl (fd, VIDIOC_QUERYCAP, &cap) == -1)
return false;

//Does device support streaming?
if (cap.capabilities & V4L2_CAP_STREAMING == 0)
return false;

//Set up camera format

memset (&fmt, 0, sizeof (fmt));

fmt .type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = CAMERA_WIDTH;
fmt.fmt.pix.height = CAMERA_HEIGHT;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_MJPEG;
fmt.fmt.pix.field = V4L2_FIELD_NONE;

//Tell V4L to set camera to use this format
if (waitioctl (fd, VIDIOC_S_FMT, &fmt) == -1)
return false;

//Request buffers

memset (&req, 0, sizeof (req));

req.count = 4;

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

reqg.memory = V4L2_ MEMORY_MMAP;

if (waitioctl (fd, VIDIOC_REQBUFS, &req) == -1)
return false;

// Really need at least double buffering
if (reg.count < 2)
false;

buffers = new Framebuffer[reqg.count];

//Memory map each buffer

for (i=0; i<reg.count; i++)

{
struct v412_buffer buf;
memset (&buf, 0, sizeof (buf));

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = 1i;

//Query the i'th buffer's information
if (waitioctl (fd, VIDIOC_QUERYBUF, &buf))
{

delete[] buffers;

buffers = NULL;

return false;

}

//Set up the memory map

buffers[i].length = buf.length;

buffers[i] .addr = mmap (NULL, buf.length, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, buf.m.offset);

if (MAP_FAILED == buffers[i].addr)
{

delete[] buffers;

buffers = NULL;

return false;

}

//Now, enqueue the buffer
if (waitioctl (fd, VIDIOC_QBUF, &buf) == -1)
{

delete[] buffers;

buffers = NULL;

return false;

}
stream_on (fd) ;
return true;

}

static void stream_on (int £fd)

{
enum v412_buf_ type type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

waitioctl (£fd, VIDIOC_STREAMON, &type);
}

static void stream_off (int £fd)
{
enum v412_buf_ type type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

waitioctl (fd, VIDIOC_STREAMOFF, &type);

L1707 777707 7777777777 77777777777/77/7777777
// CAMERA THREAD
L1707 777707 7777777777 77777777777777777777
static void* camera_thread(void* cam)
{
Camera* camera = (Camera*)cam;
int fd = camera->getCameraFile();

while (camera—->isActive ())
{
if (camera->getLastFrame () != NULL)
usleep (1000); //sleep for 1000 usec, or 1 msec
else

{
fd_set fds;

//Set up an unlimited wait-for-read fd set
FD_ZERO (&fds) ;
FD_SET (fd, &fds);

//Wait for an image...
if (select (fd+1, &fds, NULL, NULL, NULL) > 0)
{
struct v412_buffer buf;
//Dequeue the buffer
memset (&buf, 0, sizeof (buf));
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (waitioctl (fd, VIDIOC_DQBUF, &buf) != -1)
{
//Create an in-memory duplicate of this
information
char* rawdata = new char[camera-
>getFramebuffer (buf.index)->length];
memcpy (rawdata, camera-—
>getFramebuffer (buf.index)->addr, camera->getFramebuffer (buf.index)->length);

//Create a new image from this
Image* img = new Image (CAMERA_WIDTH,
CAMERA_HEIGHT, rawdata, camera->getFramebuffer (buf.index)->length);

//Enqueue the buffer we just dequeued,

invalidate all other buffers (so we don't read old data next time)
waitioctl (fd, VIDIOC_QBUF, &buf);
//stream_off (fd) ;

//Post frame to other thread
camera—->setlLastFrame (img) ;

}
} //select ()
} // need frame

} // while thread is active

return NULL;

static void disp_errno (const char* str)

{

const char* reason = " (unknown)";
switch (errno)

{

case EIO: reason = "EIO"; break;
case EINTR: reason = "EINTR"; break;
case EINVAL: reason = "EINVAL"; break;

}

printf ("%$s: %s\n", str, reason);

c. Test program:

/// Q@brief Camera capture image test
#include "Camera.h"

#include <stdio.h>

void testMain ()
{
Camera cam;
Image* img;
int i;
if (cam.initialize (0) != HWERR_SUCCESS)
{
Printf (“Failed to initialize camera /dev/videoO");
return;
}
cam.releaseCapture () ;
return;

2. Windows using OpenCV: [7]
#include "cv.h"
#include "highgui.h"

#include <stdio.h>

// A Simple Camera Capture Framework
int main () {

CvCapture* capture = cvCaptureFromCAM(CV_CAP_ANY);

if (!capture) {
fprintf (stderr, "ERROR: capture is NULL \n");
getchar () ;

return -1;

}

// Create a window in which the captured images will be presented
cvNamedWindow ("mywindow", CV_WINDOW_AUTOSIZE);

// Show the image captured from the camera in the window and repeat
while(1) {

// Get one frame

IplImage* frame = cvQueryFrame (capture);

if(!'frame) {
fprintf (stderr, "ERROR: frame is null...\n");
getchar();
break;

}

cvShowImage ("mywindow", frame);
// Do not release the frame!

//If ESC key pressed, Key=0x10001B under OpenCV 0.9.7 (linux version),
//remove higher bits using AND operator
if((cvWaitKey (10) & 255) == 27) break;

}

// Release the capture device housekeeping
cvReleaseCapture (&capture);
cvDestroyWindow ("mywindow") ;

return 0;

10. Java Example: Direct Drive commands [5]
/* A simple example of connecting to and driving the robot with direct

* motion commands. */
import com.mobilerobots.Aria.*;

public class simple

{

static

{
try
{

System.loadLibrary ("Ariadava") ;

}

catch (UnsatisfiedLinkError e)

{

System.err.println ("Native code library libAriadava failed to load. Make sure
that its directory is in your library path\n" + e);
System.exit (1) ;

}
}

public static void main(String argv[])

{

System.out.println ("Starting Java Test");
Aria.init ();

ArRobot robot = new ArRobot ();
ArSimpleConnector conn = new ArSimpleConnector (argv) ;

if (!'Aria.parselArgs ())
{
Aria.logOptions();
Aria.shutdown () ;

System.exit (1) ;
}

if (!conn.connectRobot (robot))
{
System.err.println ("Could not connect to robot, exiting.\n");
System.exit (1) ;
}
robot.runAsync (true) ;
robot.lock () ;
System.out.println ("Sending command to move forward 1 meter...");
robot .enableMotors () ;
robot .move (1000) ;
robot .unlock () ;
System.out .println ("Sleeping for 5 seconds...");
ArUtil.sleep (5000) ;
robot.lock () ;
System.out .println ("Sending command to rotate 90 degrees...");
robot.setHeading (90) ;
robot.unlock () ;
System.out.println ("Sleeping for 5 seconds...");
ArUtil.sleep(5000)
robot.lock () ;
System.out.println ("Robot coords (" + robot.getX() + ", " + robot.get¥Y() +
", " + robot.getTh() + ")");
robot .unlock () ;

robot.lock () ;
System.out.println("exiting.");
robot.stopRunning (true) ;

robot .unlock () ;

robot.lock () ;

robot .disconnect () ;

robot .unlock () ;
Aria.shutdown () ;

11. Python Example: Direct Drive commands [5]

import com.mobilerobots.Aria.*;
from AriaPy import *import sys

Global library initialization, Jjust like the C++ API:
Aria.init ()

Create a robot object:
robot = ArRobot ()

Create a "simple connector" object and connect to either the simulator
or the robot. Unlike the C++ API which takes int and char* pointers,

the Python constructor just takes argv as a list.

print "Connecting..."

con = ArSimpleConnector (sys.argv)

if not con.parseArgs():
con.logOptions ()
Aria.exit (1)

if not con.connectRobot (robot) :
print "Could not connect to robot, exiting”
Aria.exit (1)

Run the robot threads in the background:
print "Running..."
robot.runAsync (1)

Drive the robot a bit, then exit.
robot.lock ()

print "Robot position using ArRobot accessor methods: (", robot.getX(), ","

robot.getY (), ",", robot.getTh(), ")"

pose = robot.getPose ()

print "Robot position by printing ArPose object: ", pose

print "Robot position using special python-only ArPose members:
pose.y, ",", pose.th, ")"

print "Sending command to move forward 1 meter..."

robot .enableMotors ()

robot.move (1000)

robot .unlock ()

print "Sleeping for 5 seconds..."

ArUtil.sleep(5000)

robot.lock ()

print "Sending command to rotate 90 degrees..."
robot.setHeading (90)

robot .unlock ()

print "Sleeping for 5 seconds..."

ArUtil.sleep(5000)

robot.lock ()

print "Robot position (", robot.getX(), ",", robot.getY(), ",",
pose = robot.getPose ()

print "Robot position by printing ArPose object: ", pose

print "Robot position using special python-only ArPose members:
pose.y, ",", pose.th, ")"

robot .unlock ()

print "Exiting."

Aria.shutdown ()

",

pose.x,

14

4

robot.getTh (),

",

pose.x,

4

") n

4

	1. INTRODUCTION
	1.1 Motivation
	1.2 Objectives

	2. RELATED WORK AND CONTRIBUTION
	3. GETTING STARTED
	3.1 Remote Communication Approaches
	3.2 Main Installation

	4. ENVIRONMENT SETUP
	4.1 Code Compilation on Linux
	4.2 Code Compilation on Windows

	5. ROBOT PROGRAMMATIC ACCESS
	5.1 Communicating with the Robot
	5.2 Communicating with the Robot’s Devices
	5.2.1 Motors
	5.2.2 Sonar
	5.2.3 Laser
	5.2.4 Bumpers
	5.2.5 Camera

	6. USING THE SIMULATOR
	7. USING THE WRAPPERS
	7.1 Java Wrapper
	7.2 Python Wrapper

	8. CONCLUSION
	9. REFERENCES
	1. CREATING A MAKE FILE

