CS4354 — Fall 2014 — Assignment 4

Goal:

Due date: Wednesday, Nov. 5, 2014 at 12:00 noon.

The goal of this assignment is to help students better understand the following

concepts:

1. Implementation of Java code from a given UML Class Diagram
2. Use of Java Collections
3. Use of Java Logging
4. Use of Java Threads

Description:
This assignment builds on the car dealership software from the previous
assignments, adding some extra functionality and using Object Oriented Design
Patterns to achieve better structured and more maintainable code. The image
bellow shows an overview of the UML Class Diagram of the software:

Visual Paradigm Standard Edition(Texas State University

Purchase
-supplierlD : int
-purchPrice : float

Transaction *

#vin : String
#date : Date
#empld : int
#invoiceNo : int

BadInputException

-busy : boolean = true

BusyThread

+run() : void

PassengerCar Truck Motorcycle
-bodyStyle : String -maxLoad : float -type : String
-length : float -engineCC : int
Sale
-custld : int
-salePrice : float
Vehiclelnventory Vehicle
-vehicles : LinkedHashSet<Ve... ® *; #vin : String
#make : String
1 #model : String
#year : int
1 TransRecords #mileage : int
~transactions : LinkedHashSet<T..., #price : float
-dealership : Dealership 1
1
1 T
- Deallelt;shlpI - € o
-cui : ConsoleUserinterface A T o
-userRecords : UserRecords 1 e Lmks::ig?yngQue...
1///,/1/ -transRec : TransRecords - )
ConsoleUserinterface -vehinv : Vehiclelnventory 1
~ =~ ~ "|#dealership : Dealership 0.1
#scanner : Scanner .
.- 1 Message
LISEXRECAIHE :lr:'lssegr‘r:el:(ste'rString
AdminView -users : Map<Integer, User> _date : Date
1 ’ -inResponseTo : Message
EmployeeView 0..*
1
x
CustomerView User A Supplier
#id : int -phoneNo : String
#name : String
GeneralView
C Employee Administrator

~driverLicNo : int

#monthlySal : float <

-phoneNo : String
-email : String

#bankAccNo : int
#active : boolean
#pin : int




The above class diagram is also provided as a separate Visual Paradigm project file
for convenience. The students can use the Code Engineering tool of Visual Paradigm
to directly generate Java code from the given class diagram. The generated code will
contain all the required classes, most of the class attributes, and the declaration of
most of the basic class operations (methods). The student will have to add the
missing code to create a fully functional application.

Compared to the description of Assignment 3, the accounting management part was
left out for convenience, and the customer search and communication options are
implemented as command line operations, as opposed to a Web interface.

Specifics:

Interface: As it can be seen from the class diagram, the user interface has
now been decoupled from the rest of the application. This is a standard
practice in application development, by which the front-end of the
application is kept as independent as possible from the back-end. The front-
end handles all the user input/output whereas the back-end deals with the
data management. In this case, the object of the classes CustomervView,
EmployeeView and AdminView act as boundary objects and communicate
with Controller objects such as TransRecords, CommunicationMngr,
etc.,, to complete the necessary operations. The front-end collects all the
necessary input from the user and then calls a method of the back-end to
perform an operation, passing the collected input as arguments. The result is
returned back to the front-end and is subsequently output to the user. When
the program first starts, it loads the GeneralView. From there the user is
shown a menu and can chose to switch to the CustomervView,
EmployeeView or AdminView. To switch to employee or admin view, the
system asks the user to enter their PIN. The fist admin user of the system has
a standard PIN that is known by the system and the user. For every other
admin or employee added to the system, a new PIN should be entered.

Collections: This implementation makes use of different Java Collections to
store the data related to the application. Each collection type was chosen
based on its functionality, while taking into consideration the time
complexity of each operation that will be performed on the data. For
example, for the collection that stores the completed transactions, we don't
want to allow duplicate transactions but care about the order in which the
transactions were completed, hence, we opted in using a LinkedHashSet
collection type. The students should be able to understand why each
collection type was chosen, and also be able to use the necessary operations
of each collection to add, retrieve and update data.

Threading: In order to keep the application responsive, it is a common
practice that the front-end (graphical user interface) runs on a different
thread compared to the back-end. That way, if a back-end operation (e.g.



searching for a vehicle) takes a while to complete, the front end does not
seem frozen and can still respond to the user. Since the amount of data in our
application is small, our back-end operations normally complete
instantaneously. To simulate the case where a back end operation might take
a while to complete, we can artificially slow down some operations. For
example, let's take the method searchInventory() of the class
VehicleInventory. To slow down the operation we can pause the
execution of the method for a random number of seconds, say from 0 to 10.
We can do that by adding the following code in the body of the method:
Thread.sleep((int) (Math.random()*10000)); In order to keep
the user informed that application is still running, the interface can show a
progress bar. We can do that by starting a separate Thread, which prints out
a text-based progress bar. Right before the call of the back-end operation, the
interface can start the thread and set the boolean variable “busy” to true.
As soon as the back-end operation returns, the variable busy can be set to
false, thus stopping the execution of the progress-bar thread. The code
bellow shows an example of what such a thread could like:

public class BusyThread extends Thread {
private boolean busy = true;

public boolean isBusy() { return busy; }
public void setBusy(boolean busy) { this.busy = busy; }

public void run() {
System.out.print("\nWating for response.");
while (busy) {

try {
System.out.print(".");
Thread.sleep(500);

} catch (InterruptedException ex) {
//Interrupted

}

}
System.out.println();

Logging: To keep track of possible errors during execution, applications
usually log these errors to files and also display some of the errors to the
user. Java provides such a mechanism for data logging. For this application,
you are asked to use the Java Logging Framework to log all possible errors
and exceptions that may occur in your program. The errors should be logged
into a file and the console at the same time.

Communication: Communication is a new functionality compared to
Assignment 2. Its purpose is to allow a customer to send a question message
to the dealership and receive a response. When the customer sends a
message, that message is added at the tail of the newMessages queue of the
CommunicationMngr class. An employee has the option to check the queue



for unanswered messages and answer one at a time. Messages are extracted
only from the head of the queue. Each customer message that was answered
is moved to the answeredMessages set. The employee response message
is also added to the same set.

Tasks:

1. Use Visual Paradigm to generate Java code from the given class diagram and
implement all the operations described above.

2. Try to make your program as robust as possible, by using Exception handling
to deal with possible problems that may occur during the program execution.

3. Use a standard Java coding style to improve your program’s visual
appearance and make it more readable. | suggest the Google Java coding
style: https://google-styleguide.googlecode.com/svn/trunk/javaguide.html

4. Use Javadoc is for every public class, and every public or protected member
of such a class.
Other classes and members still have Javadoc as needed. Whenever an
implementation comment would be used to define the overall purpose or
behavior of a class, method or field, that comment is written as Javadoc
instead. (It's more uniform, and more tool-friendly.)

Logistics:

This assignment will be done and submitted individually by each student.

Submit your answer in a single file (assign4_xxxxxx.zip). The xxxxxx is your TX State
NetID.

Submit an electronic copy only, using the Assignments tool on the TRACS website
for this class. Do NOT include executable or .class files in your submission.



