CS4354 — Fall 2014 — Assignment 6

Due date: Friday, Dec. 5, 2014 at 5:00 pm.

Goal:

The goal of this assignment is to help students understand the use of JUnit to test
Java code.

Description:
In this assignment you will create a set of unit tests, to test the behavior of parts of
the code written for Assignment 4 & 5.

A unit test is an automated piece of code that invokes a unit of work in the system
and then checks a single assumption about the behavior of that unit of work. A unit
of work is a single logical functional use case in the system that can be invoked by
some public interface (in most cases). A unit of work can span a single method, a
whole class or multiple classes working together to achieve one single logical
purpose that can be verified.

Think of unit testing as a way to test the behavior of the code (or parts of the code)
written, without actually having to run the program. For example, in the case of
assignments 4 & 5, assume that the front-end (user interface) part of the program,
and the back-end part of the program, are written by two different developers. How
would the developer of the back-end be able to ensure that the code he/she has
written does what it is supposed to do without having access to the front-end?

A good unit test is:

* Able to be fully automated

* Has full control over all the pieces running (Use mocks or stubs to achieve
this isolation when needed)

* (Can be runin any order, if part of many other tests

* Runsin memory (no DB or File access, for example)

* Consistently returns the same result (You always run the same test, so no
random numbers, for example.)

* Runs fast

* Tests a single logical concept in the system

* Readable

* Maintainable

* Trustworthy (when you see its result, you don’t need to debug the code just
to be sure)

In this assignment, you are asked to create JUnit tests to test the classes
CommunicationMngr and VehicleInventory and all their methods. First you
should consider testing the behavior of theses classes/methods under normal
operation scenarios. For example, to test the method newMessage of the class



CommunicationMngr, you may need to create a test method, which creates a
mock Customer object and some text and then calls the method newMessage to
add the message to the newMessages queue. To ensure that everything worked as
planned, you can then extract that message from the queue and check that the
correct values have been assigned to the new message.

Subsequently, you can consider creating test cases for unusual scenarios, e.g. when a
certain input or behavior is expected to cause an exception to be thrown.

Note that, in order to use the operations of the class CommunicationMngr, you may
first have to create an object of that class. That can be done in a method annotated
with @BeforeClass in the test class (CommunicationMngrTest). This method will
be executed before any other test methods are executed.

At the end create a TestRunner class, which has a main method that runs the unit
tests for the test classes that you have created, and prints out the test results.

Tasks:

1. Implement the JUnit tests as stated in the description section above. Try to be
creative by coming up with test cases that can test as many different
situations as possible.

2. Use a standard Java coding style to improve your program’s visual
appearance and make it more readable. | suggest the Google Java coding
style: https://google-styleguide.googlecode.com/svn/trunk/javaguide.html

3. UseJavadoc to document your code.

Logistics:

This assignment will be done and submitted individually by each student.

Submit your answer in a single file (assign6_xxxxxx.zip). The xxxxxx is your TX State
NetID.

Submit an electronic copy only, using the Assignments tool on the TRACS website
for this class. Do NOT include executable or .class files in your submission.



