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Abstract—This work presents our effort in analyzing human
biosignals collected during sleep studies, to automatically detect
events related to sleep disorders. We experiment with real sleep
data collected using standard Polysomnography (PSG), and we
detect events of interest from EEG signals, by segmenting the
signal, extracting descriptive features from each segment, and
applying supervised learning for classification. Our preliminary
experimental results show that the event detection goal can be
successfully achieved, while our methods are general enough to
be directly applied to sleep data collected using alternative, non-
invasive sensors.
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I. INTRODUCTION

The National Heart, Lung, and Blood Institute estimates

between 50 to 70 million Americans are currently suffering

from some type of chronic sleep disorder, the vast major-

ity of which remain undiagnosed and untreated due to the

inconvenience and high costs associated with sleep studies

using polysomnograms. In [1], it is mentioned that, especially

in older adults, there are three sleep disorders frequently

seen: sleep disordered breathing (SDB), restless legs syndrome

(RLS)/periodic limb movements in sleep (PLMS), and REM

sleep behavior disorder (RBD). The points mentioned above,

emphasize the need for automatic, non-intrusive methods for

sleep disorder recognition, that patients can use in their homes.

This would not only help decrease health care costs but also

increase the number of diagnosed patients. Sleep medicine is

still at its early stages of development, and new technologies

promise to enable new research to further understand sleep

disorders and their connection with other medical conditions,

and reduce costs.

The current standard in sleep disorder detection and assess-

ment requires the patient to spend one or more nights at a

specialized sleep lab attached to monitors through wired sen-

sors connected to various parts of the human body. Such sen-

sors include Electroencephalograms (EEG), Electromyograms

(EMG), oxymeters, etc. (e.g., [2]). However, this methodology

is quite inconvenient and uncomfortable for the patients due to

the cumbersome wiring required for the biosignal acquisition.

In addition, there is a high cost associated with a sleep test at

a specialized lab [3], which includes the use of facilities and

equipment, as well as, technical staff and physicians involved

in the data collection and interpretation process. As a result

of cumbersome sleep studies performed in sleep labs, many

patients with sleep-related problems may avoid testing and go

undiagnosed. Even those undergoing a full sleep study cannot

be monitored over longer periods of time to assess longitudinal

variations as the one or two night sleep study represents only

a “snap-shot” of the sleep issues manifesting during the study.

In traditional PSG studies, events like sleep arousal, delta

waves, eye movement, limb movement, obstructive apnea,

SpO2 desaturation, etc., are used by sleep experts to infer

various sleep disorders. These events are detected by using

a combination of hardware and software tools, developed

specifically for use by sleep experts, at specialized sleep

labs. Especially the software developed for the analysis of

biosignals collected in PSG studies, is hardware-specific,

optimized at low level, and cannot be reused with different

types of sensors that can collect similar biosignals. Thus,

existing software solutions cannot be reused outside the lab,

in combination with a set of non-invasive, of-the-shelf, plug-

and-play sensors, nor can they easily adapt to the fast-changing

hardware technology.

Our goal is to develop an alternative solution that allows in-

home, non-invasive sleep monitoring and automated analysis

of the collected data to detect, assess and monitor the pro-

gression of sleep disorders. Towards that direction we need to,

first, employ a combination of non-invasive wireless sensors

that have the ability to collect the necessary biosignals to suc-

cessfully diagnose sleep disorders, and, second, automatically

analyze the collected data and report findings in real time or

in retrospect by fusing the input from the heterogeneous set of

employed sensors using supervised and unsupervised machine

learning and data fusion methods.

The present work contributes towards the latter of the above

necessities, which is the automated analysis of raw biosignal

data to detect events of interest during sleep, known to be

related to a variety of sleep disorders. In our approach, we

first segment the continuous, night-long signal into smaller

windows. Subsequently, from each segment (window) we

extract descriptive features that characterize the signal and use



those features to classify each segment as containing an event

of interest or not, using supervised learning methods.

To test the effectiveness of our methods in detecting sleep

disorder-related events, we use PSG data collected during real

sleep studies. Even though the final goal is to use our methods

to detect events from non-standard PSG sensors, the nature

of the biosignals collected from the non-invasive sensors will

not change, and the same methods should be possible to

directly apply to signals coming from other sensors. The added

advantage of using PSG data to evaluate our methods is that

we can compare to existing solutions, custom-build towards

the analysis of PSG signals.

Our preliminary experimental results using machine learn-

ing methods show that it is possible to automatically detect

sleep disorder-related events with high accuracy. Detecting

events of interest, is the first step towards detecting sleep

disorders which are related to these events.

In the following sections, we first discuss the related work

in sleep monitoring, as well as similar methods used to attack

the problem. Subsequently, we develop our methodology for

sleep-related event detection. Next, we present the experimen-

tal evaluation of our methods, and finally, conclude this work.

II. RELATED WORK

Related research in sleep studies has focused on detecting

various parameters of sleep for humans and animals as well

as sleep quality and body posture recognition. [4] uses EEG

and other signals and Markov modeling techniques to classify

normal and abnormal human sleeping patterns. The authors in

[5] evaluate classification results using spectral and nonlinear

analysis for feature extraction and Quadratic Discriminant

Analysis (QDA), Linear Discriminant Analysis (LDA), k-

NN and Linear Regression (LR) for classification. In [6] the

authors try to assess sleep quality using near-infrared video

only. The authors apply a homomorphic filtering technique to

tackle the problem of over exposure in the center, common in

near-infrared cameras. [7] describes a new method for feature

selection called multi-class f-score feature for sleep apnea

classification of varying disorder degrees. The authors in [8]

combine machine learning classifiers to detect real-time sleep

apnea and hypopnea syndrome based on pulse and oxygen

levels. In [9] a system of non-invasive sensors for detecting

sleep patterns used kinect depth images and a bed pressure mat

for recognizing pre-defined motion patterns and sleep postures

with 90% accuracy. In [10] correspondence analysis was used

to track changes in sleep patterns for individuals of varying

health. [11] used machine learning algorithms for automated

recognition of obstructive sleep apnea syndrome with 92%

accuracy.

Even though there have been several efforts in applying

technology to detect various parameters of sleep quality, to

the best of our knowledge, there is no existing solution that

can successfully replace PSG by providing a comprehensive

alternative for sleep disorder-related event detection, which can

be used to reliably assess sleep disorders outside the lab. Our

work paves the way towards that direction, by developing a set

of machine learning-based methods and tools that are generic

enough to be used with a variety of sensors for that purpose.

In the following paragraphs of this section we look further

into the related work of the specific algorithmic approaches

that we use in our methodology.

Signal segmentation is often a necessary preprocessing step

for pattern recognition. Related work for signal segmentation

includes methods specifically for segmenting biosignals for

classification as well as methods for segmenting signals in

general. [12] describes a method where signal segmentation

and reconstruction-modeling is performed simultaneously. The

equipartition principle segmentation gives signal segments that

have equal errors in reconstruction selecting the most suitable

model amongst wavelet, fourier and polynomial modeling to

describe each segment. [13] gives a general procedure for

segmenting audio signals by first extracting a sequence of

short-term and mid-term feature vectors, then normalizing the

extracted features to zero mean and standard deviation of one

to unbias dissimilarity from overrepresenting features with

large values and finally computing a dissimilarity measure

for each pair of successive feature vectors to detect the local

maxima where the locations of the maxima are the endpoints

of the detected segments. The authors in [14] performed multi-

channel EEG signal segmentation by first denoising the multi-

channel signal using a FIR filter, then applying a PCA on

the filtered multi-channel signal afterwards using two sliding

overlapping windows for detecting signal property changes

for signal segmentation and finally using the first principal

component to further segment the whole set of time series.

In [15] an adaptive segmentation was performed using a

wavelet transform by decomposing the signal into signals with

different frequency bands and then applying a nonlinear energy

operator on the decomposed signals to combine the amplitude

and frequency contents of the signal to find boundaries of

segments. The adaptive segmentation was then applied on real

EEG data to evaluate its performance on segmenting non-

stationary signals.

Much work on classification of biosignals has focused on

the use of EEG, EMG and ECG signals. [16] provides an

overview of the applicability of the wavelet transform to EEG

signals for sleep analysis and how the wavelet transform

addresses the major shortcomings of the Fourier transform.

Furthermore, the paper describes the application of the wavelet

transform to EEG signal analysis in context of analyzing a

synthetic composite signal, pattern-oriented analysis, analysis

of arousal reactions, analysis of EEG in different sleep stages

and analysis of an all-night sleep recording. [17] uses hidden

information stored in the characteristic shapes of EEG signals

to classify four types of movements. Spectral analysis of

EEG signals and speech recognition techniques were used for

suitable parametrization and model structure and HMMs were

used for classification. [18] used a single channel EMG sensor

to recognize hand gestures. Frequency domain, time domain

and statistical features were extracted from the EMG signal

and real-time classification with good recognition accuracy

was achieved with a combination of two simple linear classi-



TABLE I
SIGNALS RECORDED BY PROFUSION PSG.

Signal # Signal type Sampling freq.
1 E1-M2 128 Hz
2 E2-M1 128 Hz
3 F3-M2 128 Hz
4 F4-M1 128 Hz
5 C3-M2 128 Hz
6 C4-M1 128 Hz
7 O1-M2 128 Hz
8 O2-M1 128 Hz
9 ECG1-ECG2 128 Hz

10 Chin1-Chin3 128 Hz
11 Chin2-Chin1 128 Hz
12 M1 128 Hz
13 Snore 128 Hz
14 Pulse 16 Hz
15 CPAP Flow 16 Hz
16 Alt Snore 128 Hz
17 Alt Nasal Press 16 Hz
18 Thermister 32 Hz
19 Alt Thor 32 Hz
20 Alt Abdo 32 Hz
21 Sum 32 Hz
22 SpO2 16 Hz
23 Leg/R 128 Hz
24 Leg/L 128 Hz
25 Tidal Vol 16 Hz
26 Leak 16 Hz
27 CPAP Press 64 Hz
28 Position 16 Hz

fiers in decision level fusion. [19] used an HMM approach for

online beat segmentation and classification of electrocardio-

grams by means of waveforms modeling, multichannel beat

segmentation and classification and unsupervised adaptation

to the patient’s ECG.

III. METHODOLOGY

A. Data

The data used in our experiments were collected during

sleep study sessions, at the Texas State Sleep Center, using

the Compumedics ©Profusion PSG 3 and were converted

to anonymized format for research purposes. Profusion PSG

allows the recording of 28 different physiological signals,

at different sampling rates, as listed in (Table I). Signals

#1-8 are electroencephalogram (EEG) signals, signal #9 is

the electrocardiogram (ECG) (combination of two electrodes),

signals #10 & 11 are electromyography (EMG) signals from

the chin, signal 12 is a mastoid region reference signal, signals

#13 & 16 monitor snoring, and signals #23 & 24 are EMG

signals from the legs. All the above signals are sampled at 128

Hz.

Profusion PSG, besides facilitating signal recording and ex-

porting into textual format for analysis, provides visualization

of the raw signals, for visual assessment by the clinical expert,

as well as annotations of events that can be automatically

detected from the PSG data, e.g. sleep stage, limb movement,

respiratory events, etc. Fig. 1 shows a snapshot of a 30-second

epoch, of a patient in NREM 3 sleep stage, as recorded in a

sleep study. The Profusion software and the sensors used to

collect the signals, come as a package, and the signal analysis

capabilities of the software have been built and optimized for

these sensors.

The event detection annotations provided by Profusion are

trusted by sleep experts to assess sleep disorders, hence, we

consider them accurate enough to be used for training and

testing our more general, machine learning-based event detec-

tion methods. In this work, we use the provided annotations as

the ground truth for the evaluation our methods. Fig. 2 shows

sample annotations provided by Profusion for an EEG signal

including an arousal event, and an EEG and an EMG signal

including a leg movement event. In this work we used the data

from a full night sleep study (8 hrs, 25 mins) of one patient.

Our experimental results are limited to sleep arousal and leg

movement events. The dataset included 121 arousal events,

342 right leg movement and 359 left leg movement events.

B. Signal Segmentation

Signal segmentation is often a necessary preprocessing step

for classification. After the signal has been segmented into

smaller windows, features can be extracted from each window

(segment) and be used for event detection. In this work we

experimented with, and compared, two different approaches

for the segmentation of the EEG signals:

1) A fixed-size window segmentation with a 30 second

window size and two second overlap.

2) An adaptive, variable-length signal segmentation tech-

nique described in [20].

The fixed-size window segmentation approach is obviously

easier to implement, but it has the disadvantage that the

window size may be much larger than the actual duration

of the event of interest. As a result, the features extracted

and used for classification may include a lot of irrelevant

information, which can hurt the event detection accuracy.

The adaptive, variable-length segmentation attempts to seg-

ment the signal into regions where there is a detectable change

in the signal pattern, assuming that this change signifies an

event of some kind. The actual type of event can be recognized

at a later stage. As our experimental results show, this results

in higher recognition accuracy.

Analysis of long-term EEG signals requires that the sig-

nals be segmented into stationary-like epochs, which can be

accomplished by taking into account statistical properties of

the signal such as amplitude and frequency. Real world time

series data is typically non-stationary and the extraction of

useful information from the observed time series necessitates

first removing as much noise as possible from the signal

with the use of a filter or smoother when pre-processing

the signal. The adaptive signal segmentation technique first

filters the signal to attenuate short-term variations to allow for

a more reliable segmentation and then segments the filtered

signal based on changes of the amplitude and frequency

using a modified version of the Varri method. The adaptive

segmentation required the use of the first principal component



Fig. 1. A 30-second epoch visualization of the signals recorded by Profusion PSG 3 software, during a sleep study.
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Fig. 2. Left: Example of an arousal event (EEG signal). Middle: Example of a leg movement event (EEG signal). Bottom: Example of a leg movement
event (EMG signal).

for multi-channel EEG signal segmentation as described in

[14] to allow the same number of windows for each signal,

which was needed for the classification step (Fig. 3).

The Savitzky-Golay filter is a useful tool for denoising and

smoothing signals where the post-filtered signal contains less

noise than the original signal and displays less distortion than

other simpler techniques such as the moving average filter.

The Savitzky-Golay filter is defined as a weighted moving

average with weight given as a polynomial of specific degree.

The coefficients of a Savitzky-Golay filter, when applied to

a signal, perform a polynomial P of the degree k, is fitted

to N = Nr + Nl + 1 points of the signal, where N is the

window size and Nr and Nl are signal points on the right and

signal points on the left of a current signal point, respectively.

The main advantage of the Savitzky-Golay filter is that it tries

to preserve the features of times series such as its relative

minima and maxima, which is an important issue for signal

segmentation. Unlike wavelets, these filters don’t have shifting

effects after filtering the signal which is a vital characteristic

to detecting true boundaries of epochs. For the EEG data, we

have used an an order 3 polynomial Savitzky-Golay filter and

a frame size of 51 samples.

Since the segmentation of multi-channel signals should be

performed over all channels, in most cases it is important to

extract information present in all parallel time series at first.

A principal component analysis can be used to do this by

reducing the dimension of a matrix EN,M which represents

multichannel data, where the N is the number of observations

and M is the number of EEG channels. The multichannel EEG

matrix can be transformed into a new matrix that contains

channels with decreasing variance by first computing the

principal component coefficients, PM,M , of EN,M and then



using the matrix product YN,M = EN,M · PM,M . To enable a

single segmentation of all eight EEG signals, the first principal

component, that is the first column of YN,M , was used for the

multi-channel segmentation.

In the modified Varri method two sliding windows are

used. This method relies on a combination of a frequency

measure estimated by the sum of the difference of consecutive

signal samples and amplitude values of the signal in relevant

windows as follows:

Adif =

l∑

k=1

|x|

Fdif =

l∑

k=1

|xk − xk−1|

where l and xk are the window length and the kth signal

point, respectively. Then, the measure difference function, G,

is defined as:

Gm = A1|Adifm+1 −Adifm |+ F1|Fdifm+1 − Fdifm |
where m is the number of the window; A1 and F1 are constant

coefficients which change in various applications. Local max-

ima in the G function, above a threshold that is defined before,

specify boundaries of the segments. Fig. 3 shows an example

of segmentation achieved using the described method.

C. Feature Extraction

The features extracted from the signal include the average

and standard deviation of the amplitude, power spectral density

estimate peaks, energy and power of the signal, energy entropy

of the signal and the zero crossing rate of the EEG signals.

Power spectral density estimate peaks were looked at to

have a description of the rate of oscillation of signal (distance

between peaks) and a description of the shape of oscillation

of the signal(relative amplitude of peaks). These features were

chosen because the sleep events, leg movement and arousal

events, to be detected are associated with spikes in the EEG

signals being measured which correspond to changes in the

strength of the signal and changes in the oscillation of the

signal.

The energy of a discrete-time signal, xi(j), j = 1, ..., N for

the ith frame, where N is the length of the frame is defined

as

E(i) =

N∑

j=1

|xi(j)|2

The power of the signal can be obtaned by normalizing the

frame energy by dividing the value obtained from the equation

above by the length of the frame, N , to remove the dependency

on the frame length. The energy of a signal is expected to have

high variation over signal frames where arousal events occur,

that is to say that the energy envelope quickly varies between

high and low energy states for signal frames containing arousal

events. Due to this property of EEG signal energy during

arousal events, an additional feature that can be paired with
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Fig. 3. Top: Original signal. Bottom: Filtered and segmented signal.

the energy of the signal to increase classification performance

would be the standard deviation of the energy envelope. An

alternative to this pair of features that doesn’t depend on

the intensity of the signal would be to use the ratio of the

standard deviation to the mean of the energy of the signal,

which can give a significant performance boost depending on

the application [13].

The zero-crossing rate describes the rate of sign-changes

of the signal during a specified time and can be interpreted

as a measure of the noisiness of a signal, that is to say that

noisier signals have higher zero crossing rates, and as a way

of describing some of the spectral properties of a signal. The

zero-crossing rate of a discrete-time signal, xi(j), j = 1, ..., N
for the ith frame, where N is the length of the frame is defined

as

Z(i) =
1

2N

N∑

j=1

|sgn[xi(j)]− sgn[xi(j − 1)]|

where sgn() is the sign function. In certain applications such

as binary classification of audio signals, the standard deviation

of the zero crossing rate over multiple signal windows can

be used to distinguish between different types of signals, for

example speech and music signals [13]. In the context of

biosignal processing, [21] describes a complexity measure,



fractal dimension values based on a detrended zero-crossing

function, which is used to compare irregularity of time series

data in terms of the signal’s complexity. The complexity

of an ECG and EEG signal can be used to differentiate

between intricate phenomena such as emotion, imagination

and movement for the purpose of medical diagnosis. For

our purposes, we used a modified crossing-rate where we

subtracted the mean value of the signal frame from each data

point in he frame before computing the zero crossing rate

since time series data with a high complexity value can be

obtained from the high rate of the zero-crossing point, that

is to say that the complexity of the time-series data can be

directly computed from the zero-crossing rate of the signal.

The energy entropy of a discrete-time signal, xi(j), j =
1, ..., N for the ith frame, where N is the length of the frame

is defined as

H(i) = −
K∑

m=1

em · log2(em)

where em, which can be considered a sequence of probabili-

ties, is the ratio of the energy of the subframe to the energy

of the window for one of K sub-frames of a fixed length. That

is, for subframes em, for m = 1, ...,K, we have

em =
EsubFramem

Ewindowi

where

Ewindowi
=

K∑

k=1

EsubFramek

. The energy entropy of a signal measures abrupt changes

in the energy level of a signal, where a low energy entropy

indicates that there are abrupt changes in the energy envelope

of the signal. This is a result of the fact that if one of

the subframes, m0, has a high energy value, Esubframem0
,

relative to the other subframes, then the corresponding value

for em0
will be high and reduce the entropy of the sequence

em. This feature is useful for detecting events where there

is a considerable change in the energy of the signal; for

example, an audio signal of three gunshots will show that

at the beginning of each gunshot the energy entropy of the

signal drops noticeably [13]. In [22], the energy entropy of

EEG signals was used to preprocess motor imagery EEG data

to enable a more reliable classification of four types (left hand,

right hand, foot and tongue movements) of motor imagery. The

choice of energy entropy of EEG signals is useful because

EEG signals typically have poor spatial resolution and low

signal-to-noise ratio for specific physical activity that occurs

simultaneously with background physical activity [22].

The power spectral density estimate of the EEG signals

was obtained using Welch’s method which returns an array

of power measurements and the associated frequency vector,

which we then used to obtain the main peaks of the power

measurements and their locations to use as features. Welch’s

method splits data into overlapping segments of windowed

data and finds the average of their periodograms which allows

for power spectral density estimates that have less variance

than other periodogram methods [23]. The Welch spectral es-

timate of the ith discrete-time signal frame, xi(j), j = 1, ..., L,

where L is the length of the frame, is defined as

P̂ (fn) =
1

K

K∑

k=1

Ik(fn)

where the K modified periodograms, Ik, are defined as

Ik(fn) =
L

U
|Ak(n)|2

for k = 1, 2, ...,K, where

fn =
n

L

for n = 0, ..., L
2 ,

U =
1

L

L−1∑

j=0

W 2(j)

and W (j) for j = 0, ..., L − 1 are data windows used

to form the sequences X1(j)W (j), ..., XK(j)W (j) and

A1(n), ..., AK(n) are the finite Fourier transforms of these

sequences [24]. [25] describes the use of the power spectral

density estimate of EEG signals as a feature for effectively

describing disturbed brain activity that can be used for de-

tecting epileptic seizure events. Due to the ability of the

power spectral density estimates’ relative peak distances and

amplitudes to describe the shape and rate of the oscillation of

EEG signals, we used it as a feature for detecting arousal and

leg movement events.

D. Event Detection

The current study focuses on detecting two types of events,

using only the EEG signals collected by the 8 available

channels. These events are:

1) Arousal from sleep,

2) Left and right leg movement.

An “arousal from sleep” event is a micro-awakening or an

abrupt change of EEG from a deeper stage of NREM sleep to

a lighter stage, or from REM sleep toward wakefulness, with

the possibility of awakening as the final outcome. Such an

event can be triggered by various causes (e.g. a sleep apnea),

and may be accompanied by increased chin (EMG) activity

and heart rate, as well as by an increased number of body

movements. Increased arousals are associated with increased

daytime sleepiness and decreased performance, similar to that

seen in sleep deprivation.

A “leg movement event” is a more simple type of event,

which just denotes that some leg movement occurred. It can

be triggered by disorders like the restless leg syndrome, or it

can just be the result of awakening due to some other cause.

In any case, it is an indicator of disruption from normal sleep.

Classification: Our event detection problem can be reduced

to a classification problem by taking each segment (window)

of the signal and testing it against a classifier that decides

if that segment contains an event of interest or not. In our



situation, we have a different classifier for each different type

of event, thus forming a binary classification problem. The

added benefit of this approach is that in each segment we can

detect more than one type of events. For example, a segment

can include both a leg movement and an arousal event, which

is actually very common in sleep studies.

To classify the signal segments, we follow a supervised

learning approach, where the system is first trained using

segments with known event labels, and subsequently it is

tested on segments with unknown labels. Our dataset contains

121 arousal events, 342 right leg movement and 359 left leg

movement events. The supervised learning algorithms used

and compared in this work were Naive Bayes, Logistic Regres-
sion and Decision Trees, as implemented in MATLAB. 10-fold

cross validation was used to train and test the classifiers for

each event type.

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental

results of applying the methods discussed in the previous

section to detect the two types of events of interest: (1) arousal

events, and (2) left leg movement and right leg movement. It

should be noted that the leg movement event is broken down

into two event sub-types, i.e. left leg movement and right leg
movement. We attempt to detect each one of those separately.

We evaluate the performance of our methods by applying

three standard metrics commonly used in pattern recognition,

namely Accuracy, Recall and Precision values, for each com-

bination of classification algorithm and segmentation tech-

nique, as shown in Table II.

A. Detecting Arousal Events

The first case of interest in our experiments is to detect

whether the person is being aroused from sleep. This is useful

in cases, for example, for detecting common sleep disorders

such as hypopnea, obstructive sleep apnea and restless leg

syndrome where an arousal event follows events such as

oxygen desaturation, an increase in breathing effort and leg

movements. EEG arousals can be observed as abrupt shifts in

EEG frequency lasting at least 3 seconds and preceded by at

least 10 seconds of sleep.

The highest accuracy obtained for arousal event detection

was accomplished by the Decision Tree (DT) classifier, for

both the fixed window segmentation and the adaptive window

segmentation, at 84.84% and 90.57% respectively. While the

Decision Tree (DT) and Logistic Regression (LR) classifiers

had an increase in performance for accuracy, recall and pre-

cision, when the adaptive segmentation was used, the Naive

Bayes (NB) classifier had a drop in performance in accuracy

and recall, in addition to being the worst performing classifier

in those categories. However, the Naive Bayes classifier per-

formed the best in terms of precision for both the fixed window

segmentation and adaptive segmentation as well as having an

increase in precision from the fixed window segmentation to

the adaptive segmentation.

B. Detecting Left and Right Leg Movement Events

Another case of interest is to detect when leg movement

occurs during the patient’s sleep. Like the arousal event, the

detection of leg movement can be related to various sleep

disorder symptoms. Movement at the end of an obstructive

apnea event can be seen in the chin EMG channel, the snore

microphone and the leg EMG channels. Another common

sleeping disorder that affects more than 80 percent of people

with restless leg syndrome is periodic limb movement of sleep

which is characterized by involuntary leg twitching or jerking

movements during sleep that typically occur every 15 to 40

seconds, sometimes throughout the night (National Institute

of Health, National Institute of Neurological Disorders and

Stroke, 2010). In general the most accurate biosignal to detect

leg movements would be the leg muscle EMG signal, when

available. However since this study focuses on EEG signal

analysis, we used the 8 EEG signal channels to detect leg

movement.

The highest accuracy obtained for left leg movement event

detection was achieved by the Decision Tree for both the fixed

window segmentation and the adaptive window segmentation

at 74.86% and 88.39% respectively. Just as with the perfor-

mance statistics of the arousal event, the Decision Tree and Lo-

gistic Regression classifiers had an increase in performance in

accuracy, recall and precision, when the adaptive segmentation

was used, while the Naive Bayes had a drop in accuracy and

recall and overall worst performance in all the performance

statistics with the exception of precision. Similar performance

trends were seen in the right leg movement event detection.

Overall, as expected, the adaptive, variable-length signal

segmentation achieves better results compared to the fixed

window.

V. CONCLUSION AND FUTURE WORK

This work presented our effort in developing the method-

ology for automatically detecting events of interest, related

to sleep disorders. Our preliminary experimental results show

that the event detection goal can be successfully achieved,

while our methods can also be applied to sleep data collected

using alternative to PSG, non-invasive sensors, which is the

ultimate goal of our effort. Future work will include detecting

more types of events, using more data for each type of event,

and experimenting with more classifiers and extracted features,

to achieve the best accuracy possible.
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