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Abstract This paper presents a new, publicly avail-

able dataset1, aimed to be used as a benchmark for

Point of Gaze (PoG) detection algorithms. The dataset

consists of two modalities that can be combined for PoG

definition: (a) a set of videos recording the eye motion of

human participants as they were looking at, or follow-

ing, a set of predefined points of interest on a computer

visual display unit (b) a sequence of 3D head poses syn-

chronized with the video. The eye motion was recorded

using a Mobile Eye-XG, head mounted, infrared monoc-

ular camera and the head position by using a set of

Vicon motion capture cameras. The ground truth of

the point of gaze and head location and direction in

the three-dimensional space are provided together with
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the data. The ground truth regarding the point of gaze

is known in advance since the participants are always

looking at predefined targets on a monitor.
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1 Introduction

Eye tracking is a research problem of great interest, due

to its large array of applications ranging from medical

research, to human-computer interaction and market-

ing research. In the era of ubiquitous and mobile com-

puting, the utilization of eye tracking modules enables

the development of easy to use communication inter-

faces with assistive devices and systems. In most ap-

plications, accurate detection or tracking of the Point

of Gaze (PoG) is a prerequisite for the development of

successful systems to utilize input via eye motion. Var-

ious researchers have investigated the problem of gaze

tracking and PoG detection and have proposed meth-

ods to deal with it [2, 4, 6, 7, 9–12, 16].

Authors in [2] present one of the first computer vi-

sion based methodologies proposed for non-intrusive de-

tection of the position of a user’s gaze from the ap-

pearance of the user’s eye. A three-layer feed forward-

network, trained with standard error back propagation,

is used for this purpose, while an accuracy of 1.5 degrees

is reported. A real-time stereo-vision face tracking and

gaze detection system is presented in [9]. In [12] authors

describe the FreeGaze tracking system, which detects

gaze position by the pupil and the Purkinje images.

The gaze position is computed from these two images

by using an eyeball model, specific for each user. Then,

a personal calibration is proposed in order to achieve

accurate gaze direction estimation. In [16] the cornea
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of the eyeball is modeled as a convex mirror, while a

method is proposed to estimate the 3D optic axis of

the eye. The visual axis, which is the true 3D gaze di-

rection of the user, can be determined subsequently af-

ter knowing the angle deviation between the visual axis

and optic axis by a calibration procedure, which is re-

quired for a new individual. Another work based on a

stereo-vision approach is presented in [6] that yields the

position and orientation of the pupil in 3D space. This

is achieved by analyzing the pupil images of two cali-

brated cameras and by a subsequent closed-form stereo

reconstruction of the original pupil surface. Under the

assumption that the gaze-vector is parallel to the pupil

normal vector, the line of sight can be calculated with-

out the need for the usual calibration that requires the

user to fixate targets with known spatial locations. A

methodology that does not use calibration procedures is

presented in [4]. The specific methodology uses multiple

infrared light sources for illumination and a stereo pair

of video cameras to obtain images of the eyes. Each pair

of images is analyzed and the centers of the pupils and

the centers of curvature of the corneas are estimated.

These points, which are estimated without a personal

calibration procedure, define the optical axis of each

eye. To estimate the point-of-gaze which lies along the

visual axis, the angle between the optical and visual

axes is estimated by a procedure that minimizes the

distance between the intersections of the visual axes of

the left and right eyes with the surface of a display while

participants look naturally at the display (e.g., watch-

ing a video clip). Finally a new physical model of the

eye for remote gaze tracking is proposed in [11]. This

model is a surface of revolution about the optical axis

of the eye. Authors in their work determine the mathe-

matical expression for estimating the PoG on the basis

of the specific model and report high accuracy.

Most of the approaches [2, 4, 6, 7, 12, 16] try to de-

tect the PoG at each time point by detecting the pupil

center or other features, while some other approaches

track the eye motion over time [9, 11].

In all cases, the inherent difficulty of tracking the

eye itself, plus the fact that the head position has to

be taken into consideration for the estimation of the

final PoG, prevent most systems from giving very ac-

curate results. In addition, direct comparison of the ef-

fectiveness of each of the proposed methods is not pos-

sible, due to the different parameters of the datasets on

which each method has been tested. Although many of

the proposed methods manage to roughly estimate the

PoG on a computer display unit, none of them provides

enough accuracy to allow convenient input through eye

motion in a standard visual computer interface, espe-

cially when head motion is involved. Such fine grained

detection of the PoG would be of great benefit to peo-

ple, for example, that cannot use their hands to interact

with a computer, due to some type of disability.

This dataset aspires to provide a resource for the de-

velopment of new, more accurate eye tracking methods

with focus on PoG detection, as well as a benchmark for

the comparison of such methods. The dataset includes

a set of videos recording the eye motion of 20 human

participants as they looked at predefined positions of a

computer display, or followed a target while it moved

inside the display dimensions.

The ground truth of where the participant was look-

ing at, at every time point, is known in advance, as the

participants were advised to keep their eyes on the tar-

get at all times. The participant’s head position and

orientation relative to the display is tracked in three

dimensions using a Vicon Motion Capture System2,

which provides sub-millimeter and sub-degree accuracy

for the translation and rotation of the tracked object

respectively, in the 3D space. This guarantees a vir-

tually perfect ground truth regarding the participant’s

head position and orientation, which allows researchers

to only worry about dealing with the eye tracking accu-

racy when trying to determine the exact point of gaze.

In the collected data, the motion of the right eye of

each participant as they were staring at, or following,

predefined targets on the display has been recorded us-

ing an Applied Science Laboratories Mobile Eye-XG3,

head mounted, infrared monocular camera. The syn-

chronized and timestamped eye recordings and head

tracking data have been made publicly available to be

used for educational and research purposes.

The main contribution of this work is that this is the

first time that a public dataset provides synchronized

modalities of eye images, head poses, and known gaze

points. One of the fundamental problems of eye track-

ing is the necessity of a calibration process in order

to create a mapping between pupil positions and gaze

vectors in order to compute the PoG [8]. In most 2D

approaches (such as interacting with a computer dis-

play), the calibration mapping directly correlates pupil

position with a PoG and does not explicitly compute a

gaze vector. This results in a mapping that is not ro-

bust to head movement, as any rotation or translation

of the head will introduce error in the calibration (even

a head resting on a pillow will drift over time, which

degrades the accuracy of the calibration). A solution

to this problem is to estimate the PoG by computing

the intersection of the gaze vector originating from the

eye with a point in the environment. This, however, re-

quires knowledge of the head position and orientation

2 http://www.vicon.com/
3 http://www.asleyetracking.com/
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in 3D. We anticipate that our dataset will be of great

benefit to research in this area given that the included

high-fidelity motion capture data will make it possible

to evaluate the effect of sensor noise on the resulting

PoG estimate. We also expect that the dataset will fa-

cilitate the development of advanced calibration and

human eye modeling techniques, since we provide sev-

eral video calibration sequences synchronized with the

head tracking data. Finally, the large corpus of video

data from several different subjects provides a valuable

benchmarking tool for developers of computer vision

based eye tracking algorithms, which tend to perform

differently for various eye shapes, eye colors, etc. Our

dataset makes it possible to evaluate the performance of

new and existing algorithmic approaches while remov-

ing the constraints imposed by hardware and partici-

pant availability. We demonstrate such an application

by evaluating the performance of some mainstream eye-

tracking methods using the dataset.

The rest of this paper is organized as follows. Sec-

tion 2 gives an overview of existing related datasets cre-

ated for similar purposes and explains how our dataset

differentiates from them. In section 3 we describe the

system setup. Section 4 describes the head pose and

the video data streams, while section 5 explains how to

combine them. Section 6 describes the data collection

and data format, while section 7 gives our experimen-

tal results. Finally, in section 8 we give our concluding

remarks and discuss our plans for future work.

2 Related Work

Since the problem of eye tracking in general has been

studied by previous researchers, there have already been

efforts toward the creation of datasets to facilitate ex-

periments with different aspects of the problem. How-

ever, to the best of our knowledge, all the previous pub-

licly available datasets are either not well suited to the

problem of PoG detection, or other limitations, such

as insufficient head tracking accuracy or lack of ground

truth, do not allow a reliable evaluation of methods

developed for PoG detection via eye tracking. In this

section we give an overview of existing eye tracking

datasets and we explain their limitations regarding the

problem of PoG detection.

In [1], the authors have collected a head pose and

eye gaze dataset of ten participants using a web cam-

era. The participants were instructed to perform a set

of head and eye motions and then specific head pose

and eye gaze estimation methods were tested on the

collected data. The ground truth about the head’s pose

was extracted using 3 LEDs mounted at the partici-

pant’s head. Using this method, one can determine the

location and rotation of the head relative to the cam-

era, but only in the 2D space, i.e., the participants can-

not move towards or away from from the camera. As

for the ground truth regarding the gaze position, only

three discrete classes of gaze directions were used: look-

ing straight forward, looking to the extreme left and to

the extreme right. This is insufficient for applications

where the exact point of gaze needs to be detected in

continuous space.

A similar dataset is provided in [14]. In this dataset

the ground truth regarding the head pose was obtained

by asking the participants to point a laser beam mounted

on their head to a specific location. An extra limitation

of this dataset is that it only provides a set of images

instead of video, which makes unsuitable for tracking

problems.

The eye tracking dataset found in [5] has been gen-

erated for the purposes of examining visual attention

models on a set of video sequences. The eye point of

gaze on the display was determined using a commer-

cially available Locarna “Pt-Mini” head mounted eye

tracker, therefore the tracking accuracy depends on the

tracker and no ground truth is provided.

Finally, in [13], the authors provide a database of

visual eye movements from 29 observers as they look at

101 calibrated natural images. The eye movements of

the participants as they look at the images are recorded

using a Forward Technologies Generation V dual-Purkinje

eye tracker, while holding a fixed head position. Again,

the final PoG provided relies on the capabilities of the

eye tracking system used.

What differentiates our dataset from the above ones,

is that the ground truth of both the PoG on the dis-

play and head rotation/translation in the 3D space are

known in advance and with a high degree of accuracy,

which makes it ideal for testing the accuracy of methods

estimating the point of gaze based on the eye motion,

assuming that the head pose is known.

3 System setup

3.1 Overview

The experimental system comprises mainly:

– a Mobile Eye-XG device that monitors the right eye

(see Figure 1).

– A network of 16 Vicon MX motion capture cameras,

which can be used for extracting the ground truth

position of reflective markers at 100Hz with sub-

millimeter accuracy (see Figure 3).
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Fig. 1 Picture of Mobile Eye-XG, head mounted, infrared
monocular camera. Reflective markers used for head tracking
have been attached to the glasses.

– An LCD Samsung LN32C350 (32 Inch, 1360x768

pixels) display unit, on which we display several pat-

terns (see Figure 4).

– A PC in which the images from the camera are

stored, as well as the head pose and PoG data.

3.2 Coordinate Systems

In this section we describe the coordinate systems (CSs)

of the proposed setup. We have the following CSs:

1. {W ;xw,yw, zw}, the world coordinate system lo-

cated on the ground behind the test participant;

2. {M ;xm,ym, zm}, attached to the upper left corner

of the monitor;

3. {C;xc,yc, zc}, attached to the eye camera;

4. {E;xce,yce, zce}, attached to the center of the Mo-

bile Eye-XG device.

Each CS is defined using the right-hand notation.

For the CS {W} , zw points up and xw points to the

right. The Vicon Motion Capture System returns posi-

tion and orientation data relative to this CS. CS {M} is

attached to the center of the monitor, with zw pointing

up and xw pointing to the right. CS {E} is attached

to the center of the Mobile Eye-XG device, with zw
pointing up and xw pointing to the right. This CS also

corresponds to head position, as the Mobile Eye-XG is

worn on, and does not move relative to the head. Fig-

ure 2 shows the relative assignment of CSs used in the

dataset.

4 Video and Head pose Streams

This section describes the video and head pose data

streams captured by the system. In each recording ses-

Fig. 2 The coordinate systems for the world
{W ;xw,yw, zw}, the eye camera {C;xc,yc, zc} Mobile
Eye-XG {E;xce,yce, zce} and monitor {M ;xm,ym, zm}
.

sion, the user is instructed to visually track target points

on a fixed video display while wearing an eye recording

device. This device collects video data of the partici-

pant’s eye while being tracked in 3D within a motion

capture system. The data streams from the motion cap-

ture system are synchronized with the video frames pro-

vided by the eye recording device, as well as the pixel

coordinates of the video display target points.

The device used to obtain the eye video data is an

Applied Science Laboratories Mobile Eye-XG. The Mo-

bile Eye-XG is worn on each participant’s head during

data collection, and is positioned such that the user’s

right eye is centered in the video frame. The recording

of the right eye over the left is advantageous in that a

higher percentage of the population exhibits right eye
versus left eye dominance. The video data is recorded

with a resolution of 768 x 480 pixels at a frame rate

of 29.97 Hz. The provided resolution is considered ad-

equate for most tracking applications due to the close

proximity (less than 5 cm) of the camera to the partici-

pants eye and the use of a wide-angle lens, which results

in the corneal area occupying the majority of the image

space. Each video is provided as an individual AVI file

encoded with the Motion JPEG Video (MJPG) codec.

The Mobile Eye projects a triangular infrared glint pat-

tern on the user’s eye during recording, which can be

used as an additional tracking feature.

The user head position and pose was measured dur-

ing the data collection process using a Vicon motion

capture environment. The motion capture system con-

sists of 16 tracking cameras surrounding an area mea-

suring roughly 10 x 10 meters. The system is able to

track the position and orientation of multiple rigid struc-

tures equipped with reflective markers at a rate of 100

Hz with sub-millimeter accuracy. The tracked struc-
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Fig. 3 Picture of the Vicon Motion Capture System setup
at the Heracleia Laboratory.

tures of interest in our case were the display unit and

the participant’s head. The reflective markers used to

track the head are actually attached to the skeleton

of the glasses (see Figure 1). Therefore, different head

shapes or hair styles should not affect head tracking

parameters. After the glasses have been worn by each

participant, every head movement will correspond to

the same movement (direction and rotation) for the

skeleton of the glasses. Camera position with respect

to the eye stays fixed throughout the recording process

for each participant. Figure 3 shows the Vicon setup

that was used during the data collection process. The

pose stream is composed of homogeneous transforma-

tion matrices from CS W to CS M (MHW ) and from

CS W to CS E (EHW ). Generally, the transformation

H is a 4x4 matrix, which relates a source point Ps and

a destination point Pd through a rotation R and trans-

lation t as follows:

Pd = H ·Ps ⇔ (xd, yd, zd, 1)T =

[
R t

0 1

]
(xs, ys, zs, 1)T

(1)

The H matrix is calculated by a least squares method,

if no outliers are assumed. For more general cases a re-

view of related methods can be found in [3].

5 Integration of gaze estimation and head

position

To map the pupil coordinates to monitor coordinates,

the homogeneous transformation matrices can be em-

ployed. This can be calculated from

Mxp = MHW ·WHE · EHC · Cxp (2)

where in general AHB is the homogeneous transfor-

mation matrix from the CS A to the CS B. MHW is

generally constant but we measure it anyway through

the motion capture system, since there might be some

motion of the display unit due to vibrations. WHE is

also measured online using motion capture and the re-

flective markers on the Mobile Eye-XG. EHC is cali-

brated during the first session experiments.

6 Data Collection and Dataset Structure

A total of 20 participants (2 women and 18 men) partic-

ipated in our data collection sessions. The participants

were graduate and undergraduate students of the Uni-

versity of Texas at Arlington. Some of them had normal

vision and some of them wore contact lenses or spec-

tacles. The participants that normally wore spectacles

did not use them during the data collection process.

However, their vision level was still good enough to lo-

cate the displayed target on the monitor. The special

characteristics of each participant are given as meta-

data together with the dataset.

Each participant performed two video recording ses-

sions in which they looked at (or followed) a target on

the display unit. Both sessions recorded data from three

different video target patterns, resulting in six videos

total per participant. In the first session, the partici-

pants were allowed to move only their eyes while keep-

ing their head still, whereas in the second session, they

were allowed to freely move their heads and eyes at their

convenience. The videos provided from both recording

sessions capture both smooth pursuit and gaze fixation

data in a continuous form (i.e., the ground-truth PoG

locations are not discretized into a small number of la-

bels, as they are in other datasets). Figure 4 shows a

photo taken during the data collection process. In the

photo, the reader can see the experimental setup used

for the data collection.

In the first session, the participants were asked to

keep their head still and their eye motion, while looking

at different patterns of targets appearing on the com-

puter display, was recorded. In the first pattern, a tar-

get appeared at nine different positions of the display

for a few seconds and the participants were instructed

to look at the target as soon as it appears and until

it disappears. Note that since the human eye may re-

quire a few milliseconds from the moment the target

appears on display until the moment the eye point of

gaze moves to fall onto it, the target location and the

point of gaze may not align for a few milliseconds after

the appearance of each target. However, they should be

aligned soon after.
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Fig. 4 Photo taken during the data collection process. The
photo shows a participant wearing the eye video recording
device, as well as the rest of the experimental setup including
the display unit, the data collection hardware and some of
the Vicon system cameras.

Similarly, in the second pattern, 16 targets appeared

on the display and the participant had to repeat the

same procedure. The number of targets and their lo-

cation on the display was chosen so as to resemble

common calibration patterns used by eye trackers. The

third pattern, instead of static targets, involved a tar-

get moving inside the display and the participants had

to follow the target with their eyes at all times. This

pattern is particularly useful for eye tracking methods

which do not statically determine the point of gaze but

follow the center of the pupil or other eye features over

time. Figure 5 shows an example of the three target

patterns shown on the display during the recording ses-

sions.

Since in real life people do not move only their eyes

but also their heads to look at different targets (or fol-

low a target as it is moving), in the second session the

participants repeated the same process as in the first,

but this time they did not have any constraints regard-

ing their head motion. The exact position of the head

in the 3D space was tracked by the Vicon system us-

ing a set of markers attached to the head mounted eye

video recorder. For convenience, four markers were also

attached at the corners of the computer display. This

allows us to determine the exact location of the head

and the display monitor in the same coordinate system.

Figure 6 visualizes the locations of the head and the

computer display in the 3D space as captured by the

Vicon System.

Requiring from the users to keep their head still

while moving only their eyes, in the first session, is a

common practice used by many eye tracking systems

which incorporate some kind of calibration before us-

ing the eye input. Such systems are used in cases of

(a) 9 point calibration pattern

(b) 16 point calibration pattern

(c) smooth pursuit motion pattern

Fig. 5 An example of the target locations on which the par-
ticipants have to focus their point of gaze during the data
collection process. For convenience, the figures show all of the
target locations at once. During the data collection process
only one target at a time is displayed.

patients with full body paralysis (e.g. Amyotrophic lat-

eral sclerosis (ALS)). In those situations, the patients

are not able to voluntarily move their heads, however,

a slight involuntary drifting may occur even if the head

is supported by a pillow or headrest. The accuracy of

such systems deteriorates over time even with subtle

head movement, and thus, re-calibration is required for

the system to become usable again. One of the reasons

that we included the session of trying to hold the head

still in our collected data, was to consider such cases

and provide the option for experiments that evaluate

the accuracy loss due the head position drifting. The

purpose here is not to make sure that the head remains

completely still throughout the session, but to simulate
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Fig. 6 A representation of the 3D space and the tracked
objects as perceived by the Vicon Motion Capture System
using world coordinates.

real life situations where minor movements may occur

when the head is not fixed using some external sup-

port. The exact head position and orientation is still

tracked by the Vicon system and provided as ground

truth. This allows researchers to detect if motion has

occurred, and if so, it can be taken into consideration

in order not to throw off the calibration.

6.1 Dataset Structure

In this section we describe the structure of the dataset

and the details of the provided format. For each one of

the twenty participants, the dataset includes six videos

in avi format and corresponding metadata. File sets

00001, 00002, 00003, come from the first session in which

the participant was to remain as still as possible, and

file sets 00004, 00005, 00006, come from the second ses-

sion in which the participant was freely allowed to move

their head.

File sets 00001 and 00004 contain the videos of the

first pattern of each session (a target appearing in 9 dif-

ferent locations of the display unit), file sets 00002 and

00005 contain the second pattern (16 target locations),

and file sets 00003 and 00006 contain the videos coming

from third pattern (target moving within the display).

The metadata includes two homogeneous transfor-

mation matrices, H from {W} to {M} and H from {W}
to {E}, and it also includes the (i, j) pixel location of

the target location for each video frame. This data is

packaged as a MATLAB (.mat) data file and as a CSV

file. The .mat file contains a structure which includes

the two homogeneous transformation matrices and the

pixel locations. The data is written into the CSV file

with each column corresponding to a frame in the video,

rows 1:16 represent the flattened homogeneous transfor-

mation matrix from {W} to {E}, rows 17:32 represent

the flattened homogeneous transformation matrix from

Fig. 7 An example video frame contained in the dataset

metadata value(s)
gender male

age 24
glasses no

contacts no

EHW


0.99628 −0.04734 0.07197 −367.86231
0.04230 0.99666 0.06990 704.13371
−0.07504 −0.06660 0.99495 1219.87140

0 0 0 1



MHW


1.00000 −0.00124 −0.00015 −350.59819
0.00124 1.00000 0.00063 1677.67326
0.00015 −0.00063 1.00000 1081.51075

0 0 0 1


Mxp

[
683
384

]
Table 1 Example metadata for the video frame shown in
Figure 7. Metadata for each frame is provided in both MAT-
LAB and CSV files for convenience.

W to M, and rows 33:34 represent the flattened pixel

locations. The transformation matrices are unflattened

by their (i, j) value being the (((i− 1)× 4) + j) of their

respective columnar data. The pixel locations are un-

flattened by their (i, j) value being the first and second

values respectively. Pixel locations can be easily con-

verted to metric units using H from {W} to {M} and

the known display resolution.

Figure 7 shows a single frame from the video set,

while Table 1 shows the metadata corresponding to the

video frame and participant.

7 Experimental results

To demonstrate the utility of the proposed dataset, we

used it to evaluate the performance of the popular star-

burst algorithm [15] compared to some other conven-

tional approaches.

The starburst algorithm works by roughly estimat-

ing the pupil center (simple thresholding), fitting an
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ellipse to the pupil ’blob’, and then refining the ellipse

by considering pupil edge points, which lie on rays pro-

jected outward from the center of the first ellipse. It

then finds a corneal reflection (a small dot made from

an IR LED), and computes the vector between the pupil

ellipse center and corneal reflection center.

In the experiments, we evaluated the effectiveness

of the starburst algorithm versus simple pupil blob cen-

ter tracking and rough ellipse fitting. The blob center

method tracks only the center of mass of the thresh-

olded pupil image, while the fitted ellipse method tracks

the center of the best-fit ellipse around the pupil blob

with no other refinements. These methods are each per-

formed using the same 5 test video sets which were se-

lected from the overall dataset of 20 participants.

Video based eye trackers are generally sensitive to

factors such as eye color, eye shape, user age, previous

corrective surgery, camera position, etc. This can often

be mitigated by adjusting tracking parameters for each

user, but occasionally a tracker may fail completely un-

der certain conditions. The test video sets were chosen

such that they gave meaningful, easy to compare results

for each of the methods that we evaluate, and also in or-

der to perform the necessary processing in a reasonable

amount of time.

In each case, the tracker was calibrated using the

9 point calibration pattern video corresponding to the

test set. A linear mapping between the pupil/CR vec-

tors and known screen coordinates was created, one

for each of the evaluated methods for each participant.

Each method is run on the remaining two head motion-

free videos acquired during the first participant record-

ing sessions. Each estimated point-of-gaze (PoG) was
measured against the known screen target locations,

provided by the dataset metadata files for each video.

The videos containing head motion from the second

participant recording sessions were not used, since the

trackers we evaluated were not designed with this in

mind. Figure 8 shows the application of each tracking

method to a single video frame from the test set.

The RMSE error of each method is presented in Ta-

ble 2. Simple outlier rejection was performed on the

tracking results (an error over 100 pixels was removed

from consideration). This was generally caused by blink-

ing and/or delay as the user fixates on a new target

location. No other filtering of the data was performed.

Using simple outlier rejection, 8.49% of the tracking es-

timates were removed (i.e. 91.51% of the frames where

kept to compute the results in Table 2).

In Figure 9 we showcase the results of the gaze esti-

mation experiments using simple blob center tracking,

ellipse center tracking, and full starburst algorithm im-

plementation. The starburst algorithm shows an over-

(a) Eye threshold (b) Eye threshold center of
mass

(c) Eye threshold ellipse (d) starburst algorithm re-
sults

Fig. 8 Application of the various pupil tracking methods to
a test video frame. Each of the three methods were performed
for every frame in the test set

Method blob center ellipse center starburst
Outliers 93 51 42

Average error 38.22 26.49 17.75
MSE 1869.18 1017.11 513.22

Root MSE 43.23 31.89 22.65

Table 2 Experimental results of the 3 tracking methods. The
error is given in pixels.

all higher degree of accuracy than the other methods.

The sequential application of various refinement meth-

ods (threshold centering, rough ellipse fitting, then el-

lipse refinement via starburst) results in a clear gain

in accuracy at each step. This fact can be valuable to

designers of flexible tracking systems that may have ac-

curacy requirements and available processing resources

that change over time. It is also shown that the num-

ber of outliers decreases as each refinement step is ap-

plied, especially once an ellipse is fit to the threshold

blob area. This is likely due to an increased robustness

to motion blur and corneal reflection location as the

eye changes position, since the blob tracking is based

on dark pixel center of mass and does not assume any

knowledge of the pupil geometry.

8 Conclusion and Future Work

In this paper we have described a new publicly avail-

able eye tracking video dataset. The dataset has been

collected and published with the purpose of facilitating

the research in point of gaze detection or any other re-

lated eye tracking applications. The hardware used, the



A Dataset for Point of Gaze Detection using Head Poses and Eye Images 9

(a) blob center

(b) ellipse center

(c) starburst algorithm

Fig. 9 Gaze extraction for the experiments using the star-
bust algorithm. The 9 red points are the known target loca-
tion and the blue points are the point of gaze (PoG) computed
using the linear calibration.

collection methodology and related metadata accom-

panying the dataset, such as the ground truth about

the point of gaze and head pose, are presented and ex-

plained. We expect that this dataset will be a useful re-

source to the eye tracking community. We have already

evaluated the dataset using three popular approaches

and namely the starburst algorithm, simple pupil blob

center tracking, and simple fitted ellipse tracking.

A resource still missing from the eye tracking com-

munity is a dataset where objects located or moving

in the 3D space, instead of a 2D computer display, are

followed by the human eye. Such a resource would be of

great interest to robotics applications where the com-

munication of humans with robots involves interaction

in the 3D space. In the near future we are planning to

publish another dataset that covers this gap.
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