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ABSTRACT 
There has been significant research in adapting the Semantic Web 

technologies to create flexible context aware pervasive systems to 

enhance fields such as assisted living or smart environments. 

Several ontology based techniques have been proposed to 

simplify modeling knowledge and its relationships, and several 

ontology centered middleware tools are currently being developed 

to provide flexible and viable solutions for application developers. 

However, middleware built on the basis of Semantic Web 

generally suffers from drawbacks in performance, which limits its 

practical applications in the real world. This paper proposes a 

framework to facilitate Quality of Service (QoS) in ontology 

centered context aware pervasive middleware. Our approach 

suggests that context-aware middleware that operate by 

contracting mutual agreements with the client applications and 

provide controls over the amount of data to be processed by them 

can achieve predictable performance and response times. We also 

propose a service contract scheme that allows both client 

applications and middleware to participate in the decisions 

regarding the necessary data transformations required by the 

different system components in order to improve the overall 

system performance.  

Categories and Subject Descriptors 
D.4.8 [PERFORMANCE OF SYSTEMS]: Measurement 

techniques, Performance attributes. 

General Terms 
Measurement, Performance, Design 

Keywords 
Middleware, Pervasive Computing, Context aware applications, 

Quality-of-Service (QoS) 

1. INTRODUCTION 
In recent years pervasive devices and services are increasingly 

becoming a part of our daily activities. Smart phones, PDAs, 

notebooks, medical devices for health monitoring and other smart 

devices construct an inextricable part of the of the typical modern 

professional. Those devices in cooperation with the corresponding 

applications that run on top of them have an aspiration of creating 

a state where services will be provided to people in a continuous 

and transparent way requiring as less of their attention as possible 

and at the same time they will enhance their productivity and 

quality of life by performing routine tasks or tasks that could not 

be performed by people easily without some external assistance. 

This state has been described in literature as Pervasive or 

Ubiquitous Computing [22].  

In the pursuit of making pervasive computing as useful as possible 

in our everyday life we need to make the various computing units 

and applications communicate and cooperate with each other and 

with the surrounding environment. This introduces the problem of 

retrieving, storing and managing knowledge which will allow 

computing devices to make smarter decisions in a broader context 

and in a more macroscopic perspective. That means that we need 

to create larger context aware systems [4] which will handle 

heterogeneous types of information so that the decisions of 

specific components, whether devices or applications, will 

conform to a wider strategy plan.  

In many cases the decisions to be taken by such systems require 

real-time responses which may vary from a few seconds to a few 

nano-seconds. This is often a very challenging task, especially 

when we need to combine huge amounts of data from different 

sources which may also reside in different devices/machines. In 

addition to that, as we climb in the higher levels of the knowledge 

hierarchy the problem of the semasiological management of the 

data becomes even more difficult since there we do not yet have 

equally good solutions for data description and representation. In 

that level, the Semantic Web [2] technologies come into play and 

offer a promising solution for describing the data in a way that can 

be shared by machines and that allows for reasoning. Ontological 

representations [15] can be used to integrate knowledge from 

different domains into a common platform and (meta)data 

description methods such as RDF/XML [14] can be used to unify 

the communication channel among different devices and 

applications.  

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

PETRA’09, June 9–13, 2009, Corfu, Greece. 

Copyright 2009 ACM 978-1-60558-409-6…$5.00. 



However, as it has been shown by previous studies, the 

ontological based reasoning is a computationally demanding task 

and it does not scale well with the amount of available data. 

Taking into account that many of the decisions in context aware 

systems have to be made in real-time we realize that the 

application of such a technology in real-life situations may be 

problematic. This arises the issue of Quality of Service (QoS) that 

those systems can offer to both the end users and to the 

underlying or cooperating applications. While most of the existing 

effort has gone in defining and exploring the different 

functionality aspects of such systems, little work has focused on 

the importance of efficiency and quality of service. However, QoS 

has been well-studied in other areas such as Networking and 

Multimedia applications [13] and some of the conclusions and 

methods that have been derived from there can be applied to 

context-aware pervasive applications as well. 

In this paper we attempt to examine the QoS issues that arise from 

the use of Semantic Web technologies for knowledge 

representation and decision making in pervasive applications and 

we propose a framework that ensures QoS and therefore a smooth 

and consistent operation of systems that involve the cooperation 

of a number of distributed pervasive devices and computation 

nodes with a goal to provide integrated context aware time critical 

services. The framework can function as a part of a middleware 

system which operates between the data collection and application 

layers.  

The rest of this article is organized as follows. Section 2 discusses 

related work. Section 3 describes the basic characteristics of 

ontology centered middleware architecture. In section 4, we 

examine a representative example to illustrate the need for QoS in 

smart environments. In Section 5, we define QoS as a 

maximization problem and develop a framework in order to be 

able to solve this problem. Finally, we present our conclusions in 

Section 6. 

2. RELATED WORK 

In most cases the ongoing efforts for building smart environments 

have concentrated on methods for, first, making the pervasive 

devices as sensitive and accurate as possible in the perception of 

environmental signals, and second, in the cooperation between the 

different nodes of a system which includes communication, data 

sharing and common decision making. To achieve those goals 

most researches have relied on a middleware architecture which 

attempts to bridge the communication gap among the different 

system components and provide a transparent layer to higher level 

applications [20]. 

With the introduction of the concept of Semantic Web [2] and 

semantic representation of knowledge in general there has been a 

significant turn into using such technologies for reasoning and 

decision making in smart environments and context aware 

applications in general [4]. Ontologies [7] have been used for 

formal representation of concepts and relations between them and 

structured data representation methods such as RDF/XML [14] 

have been used for description of resources and metadata. 

Amongst the increasing number of ontology centered middleware, 

we highlight Construct [6], SOCAM [9], COBRA-ONT [5], 

Semantic Context Spaces [8]. 

All these middleware address most of the issues identified as 

important for creating a functional environment, however they do 

not dwell much in issues of efficiency and performance that arise 

due to the existing setup, whether in terms of resources or in 

computation costs. Our architecture on the other hand puts most 

of its effort in the concern of the QoS and performance, as we 

believe this to be the current most important issue restricting the 

existing middleware from becoming highly adopted by the 

community.  

There are however significant challenges when addressing Quality 

of Service in a context aware pervasive systems. We have 

identified several aspects that need to be considered and that will 

affect significantly the design of middleware architecture. Some 

aspects have been identified in existing research such as [9], and 

how reasoning times grow disproportionally as the RDF triple 

store grows in size. [1] identifies the performance problems with 

reasoning and proposes a loosely coupled middleware architecture 

where ontological reasoning is mostly performed asynchronously.  

QoS has also been extensively studied in other application 

domains such as Networking and Multimedia [10] [11] [21]. In 

those domains QoS has been formalized by QoS specification 

languages [13] and specific solutions have been proposed. 

However, although such solutions can be taken into consideration 

when designing QoS enabled smart environments they cannot be 

directly applied due the more complex nature of context aware 

applications which involve heterogeneous devices and data types. 

From our point of view, in context aware pervasive systems the 

problem of QoS must be tackled in a higher level by creating a 

framework that will add the concept of “predictability” in 

behavioral patterns of the different system components in terms of 

efficiency and end-to-end delays. For that reason, in the next 

sections we propose a framework for strategic design of 

middleware applications that will provide QoS by controlling the 

behavior of the client applications that the system supports using a 

protocol for in-advance agreements which are achieved at the time 

each client request service from the system. 

3. ONTOLOGY CENTERED MIDDLEWARE 
Ontology centered middleware focuses on providing a unified 

knowledge and data model. Several architectures that follow this 

principle have been proposed [5] [6] [8] [9] [17]. They attempt to 

simplify application development by providing a useful set of 

APIs and a robust framework for knowledge sharing and 

derivation. A general architecture design is illustrated in Fig. 1  

 

 

In these works, authors have identified the following major 

components that a comprehensive middleware should cover: 

Fig.1: An example ontology centered middleware architecture 



(i) Sensor discovery and sensor data collection. Any context-

aware architecture will operate with sensors transmitting data, the 

protocols used for sensor discovery and data collection will play 

an important role in the overall flexibility and adaptation that the 

system offers to integrate and work with existing hardware. 

(ii) Inter-operable model for creating, accessing, and storing 

ontological data. A common model that can be shared by all 

software applications and middleware services. This is 

accomplished through the use of ontologies, which help define 

concepts and their corresponding properties. In [8], Sensor 

Wrappers are proposed as a mechanism to convert raw data into 

ontology data while separating sensor hardware specifics from 

applications. Frameworks such as Jena [3] are used to store both 

the ontologies, and data, generally in Semantic Web standard 

formats such as OWL [15] and RDF [14] triples.  

(iii) Ontological inference. The use of ontological reasoning 

through the language constructs available, combined with rule-

based reasoning allow for a flexible mechanism to derive 

knowledge. Some widely used inference engines include Jena [3], 

Pellet [18], and Racer [12]. 

(iv) Ontological data access and dissemination. Data routing, 

synchronization, and dissemination algorithms differ significantly 

depending on whether the architecture is centralized, distributed, 

or P2P. The query language of preference has become SPARQL 

[16] since its adoption as a W3C standard. Queries are 

represented as a series of RDF triples <Subject, Predicate, 

Object> where some triple values are left as query variables. 

(v) Efficiency. Many strategies are proposed. Efficient persistent 

data storage in schema-aware [19] databases is one of the 

proposals, where a table is created for every single <Subject, 

Predicate> combination. This increases performance time when 

accessing information that is maintained in a database. To reduce 

inference time, strategies focus on minimizing the amount of on-

demand reasoning that needs to be carried out and establish 

mechanisms to take advantage of off-line reasoning [1]. Other 

strategies proposed include data subscription by applications and 

maintaining the data store as minimal as possible [9]. 

The previous architectures however do not propose methods to 

allow for QoS and the required resource management techniques 

to accomplish such. Given that inference is a major deterrent in 

performance and limits the viability of such infrastructure for 

time-sensitive applications, we model inference execution time as 

a maximization problem and provide a framework to enable 

solving the underlying problems in inference time. We look into 

the required aspects [23] to allow for QoS in such architectures. 

Next, we illustrate examples of time-sensitive applications and the 

problems they face in the traditional ontology centered 

architectures that have been proposed so far. 

4. QoS IN PRACTICE 

4.1 Example problem that requires QoS 
Following we describe an example of a context-aware scenario in 

which applications require QoS in order to function properly. Our 

intentions are to highlight some of the existing problems with 

context-aware applications, and later address these in our 

proposed QoS-aware architecture. We consider the scenario of a 

smart building used by a company and equipped with sensors that 

are capable of detecting the employee's location and current 

status. Furthermore, the building has an ontology centered 

middleware architecture in place responsible for collecting, 

transforming and distributing data to satisfy application queries, 

like portrayed in Fig.1 

We now consider a series of context-aware applications running 

on this environment, each of which have different QoS 

requirements and work by requesting data to the middleware. The 

middleware is in charge of managing and distributing the data in 

appropriate formats such that the advantages of a unified 

representation for concepts and data are maintained.  

The first application is an activity reminder; it attempts to 

periodically update the employee with possible activities he wants 

to carry out. The activities that the employee wants to do are 

initially programmed into his PDA at a given frequency, for 

example every day, then the PDA application will query the 

middleware to obtain the person's current and past location as well 

as status information to determine how best to organize and 

execute his day to day activities. The reason why this application 

is time-sensitive is because as you carry out your daily activities, 

you will visit locations and might deviate from the proposed 

routes, in those cases, the application needs to recalculate new 

routes or schedules that might be of your interest. The application 

must execute in short period of time, because if it takes time the 

user is not likely to wait, and instead will think by himself what 

activity to carry out next and ignore the recommendation. For this 

reason, we think a short response time, for example 5-7 seconds 

might be acceptable, anything longer might prompt the user to put 

down his PDA and plan his own schedule.  

The second application is an energy efficiency adjustment 

program; it retrieves current location information of all people in 

the building as well as past location information to establish what 

regions should reduce their energy consumption in the building. 

As the current location information for the employees changes 

and deviates from the predicted model computed from past 

location information, the energy efficiency program needs to 

adjust itself. This application is also real-time, as updates in the 

application's behavior should happen in very short periods of time 

so as to avoid energy settings from disrupting users in their day to 

day activities. We consider for example, that this application's 

response time might need to be around 2 seconds, so that it can 

adjust energy settings in different regions fast enough so as to not 

trigger a negative reaction on employees, or force them to have to 

do manual adjustments to energy related devices.  

A possible representation of the concepts involved in these 

example applications is represented bellow. We distinguish four 

different ontologies, these are: ActivityEvent, LocationEvent, 

TimeEvent, and Employee. 



The idea behind these ontologies is that both applications share 

the same knowledge model, they submit queries requesting for the 

same type of ontology data. 

4.2 Existing QoS related problems 
We distinguish two main problems in the applications defined in 

the previous section when used in the currently existing ontology 

centered middleware architectures. The first one is that the 

existing architectures have no information regarding the access 

patterns and requirements of the different applications; therefore 

they are unable to provide Quality of Service. We believe the 

solution to this problem is to introduce a QoS negotiation 

mechanism between client application and middleware where the 

client can agree to certain access patterns, and the middleware can 

agree to carry out multi-resource reservations to guarantee query 

execution times. On the other hand, we want to introduce as 

minimal complexity as possible to the design of client 

applications.  The second problem, and the main reason why 

existing work does not dwell in QoS is that ontological inference 

is a computationally expensive task, generally considered 

intractable, and in order to be able to guarantee execution times, it 

is necessary to impose limitations on the amount of data being 

processed. For example, in Fig. 2, both applications will request 

for LocationEvent and ActivityEvent data. The size of the 

retrieved data by the client applications varies depending on the 

nature of the data, the amount of data that has been collected so 

far by the sensors, and the requirements of the client application. 

The solution is indeed to limit the size of the data set, and we 

propose a strategy that allows for great flexibility with the expense 

of introducing the client into the process of sensor data 

transformation into ontological data.  

There is a conflict of interest by different applications running on 

the middleware as to their expectations on how data should exist 

in the system to provide their QoS requirements. For example, the 

previously discussed applications will require the ActivityEvent 

and LocationEvent data set to be of different sizes, matching their 

desired response times. One possible solution to this problem is to 

introduce the client in the process of transforming raw sensor data 

into ontological data. By allowing the client to participate in the 

decisions on how data should be created, updated, and deleted at 

the initial point of service negotiation between client and server, 

this issue can be addressed. 

Because these two context-aware, time-sensitive applications have 

the same interests for data and different QoS requirements, they 

are relevant examples to our proposed work and will help 

illustrate better the solutions proposed.  Both, deriving activities 

and location relationships require the use of an inference engine, 

and thus both suffer from the time complexities of doing inference 

on large data sets.  

There are many factors that influence the end-to-end delay in 

either centralized or distributed service oriented architectures, 

generally these are the resources involved in providing the 

services, like network bandwidth, memory, CPU, I/O, and storage 

space. These have been studied in depth by the community as 

computers and their purposes have evolved. Different heuristic 

algorithms have been proposed for issues such as multi-processor 

real-time task scheduling, resource reservation, and multimedia 

distribution. However, problems arising from the calculations 

performed in ontology centered middleware architectures have 

received very little attention, and existing architectures such as 

Construct [6], COBRA [5], SOCAM [9], SCS [8] have focused 

their attention on non-time critical applications and demonstrating 

the flexibility and value of ontology centered architectures, 

showing little attention into time related issues.  The development 

and execution of the proposed two applications would lack QoS 

support in any of the above mentioned architectures, and thus 

would not operate as desired. For this reason, we present a 

different perspective of an ontology centered middleware 

architecture, where it is possible for time-sensitive applications to 

function.  

We believe there is significant work on resource management, 

thus, our focus will be to study and understand the complexities 

that arise from inference and its computational requirements and 

how they could be addressed in ontology centered middleware 

architectures. 

5. METHODOLOGY AND ARCHITECTURE 
In order to allow an ontology centered middleware architecture to 

provide QoS support to context-aware applications, we need to 

provide an infrastructure to allow applications to describe their 

structure and query patterns; this is generally referred to as QoS 

specification. In section 5.2 we explore our QoS specification 

format in detail. We characterize an application as ultimately 

consisting of queries, which have end-to-end delay requirements. 

There are many factors that influence the end-to-end delay of an 

application's queries. Most of them can be handled through 

heuristics and multi-resource reservation, such as those to manage 

network bandwidth, memory usage, task scheduling, and I/O. 

However, ontology centered middleware requires the use of an 

inference engine, where it is not possible to determine the 

inference time unless the size of the data set used is known. In 

order to know how much data will be used by a query, it is 

necessary to establish restrictions on how data is generated for the 

ontologies, and their corresponding properties. Each property in 

an ontology can have a restriction on how many data entries can 

be associated with that property. We call this the cardinality of a 

property.  This posses a conflict of interest, as the data restrictions 

that are necessary for one context aware application might not be 

suitable for another context-aware application. A possible solution 

would be to have both applications rely on a different set of 

ontologies with different cardinality constraints for their 

properties, but that would defeat the purpose of an ontology 

centered middleware architecture, whose greatest value is a unified 

Fig. 2: Sample UML diagram displaying application ontologies 



model for knowledge and data representation. To solve this 

problem we propose a trade-off where we relax the unity of the 

data in order to allow some level of QoS support. This is 

accomplished by using Data Transformers, which are further 

described in section 5.3. This component allows the client to have 

some level of participation on the process of converting raw data 

into ontological data. This is done in order for different 

applications to be able to modify the same sensor data and 

produce different data while storing it using the same knowledge 

representation. While this might seem counter-intuitive, the goal is 

to make a fine-grained distinction in the different ontological 

properties used by the applications, where a single property can be 

treated as a set of different <property, cardinality> couples by the 

middleware's inference engine. The challenge is to make this 

process completely transparent to the client application. We 

elaborate more on this idea in the following sections.  

The basic flow of our proposed middleware would be as follows: 

 

1. The client application requests sensor information to the 

middleware. The sensor information describes what 

sensors are available to the middleware and also provide 

specifics about the sensors, such as for example, unit 

representation, accuracy, and frequency. The client 

application needs to determine if it understands the data 

that the sensor is producing and if it has in its library of 

“drivers”, we call this a Data Transformer, one that will 

be able to convert the sensor's raw data into RDF. Data 

Transformers share some common functionality with the 

Sensor Wrappers introduced in [8], but they go beyond 

such functionality, their details are described in Section 

5.2 

2. Using its own QoS requirements, the client application 

builds a QoS specification file that includes its query 

access pattern information, details are described in 

Section 5.1. Additionally, the specification file includes 

a list of “Data Transformers” it will need the server to 

install to convert the data appropriately. We imagine the 

Data Transformers to be written in a format that restricts 

their access in the server to read appropriate sensor data 

and to write only to the data store, so as to avoid 

security issues. 

3. The server will now perform QoS translation, to analyze 

and determine if the client application requirements can 

be met. In the case of distributed systems, this will 

involve coordinating with other servers and reserving 

resources such as CPU time in the task scheduler, and 

other resources such as network bandwidth or disk 

space. The server will also determine further QoS 

constraints that the client is not able to determine 

initially, since it does not know the current middleware's 

utilization and resource availability. The major factor 

that it will determine is what cardinality values are 

acceptable for the different ontologies used by the client 

application, and will govern the creating/update/deletion 

of ontological data. 

4. The server will provide a response either accepting or 

rejecting the client's request and informing him of 

further constraints he must follow. These constraints are 

restrictions in the cardinality of collections in properties 

of ontologies. These are not a natural restriction, but 

rather are imposed by the server. 

5. The client will now determine if the cardinality 

constraints imposed are acceptable or not, it can then 

accept the service or attempt to renegotiate with the 

server, say by introducing different QoS requirements. 

6. Once the client has accepted, the middleware will go 

ahead and perform the required resource reservations, in 

terms of allocating and reserving CPU time in its task 

scheduler, and other reservations such as bandwidth, 

memory, and disk space. 

5.1 Data Use Maximization  
At this point we consider inference execution time as a 

maximization problem where we are given application 

requirements and the set of ontology properties used by each of its 

queries and we attempt to determine the cardinality constraints 

that each ontological property should have in order to satisfy the 

QoS. In our approach we assume that we have a set of predefined 

cardinality values for property. This is done so that applications do 

indeed reuse the same type of data, by using an existing property 

with established cardinality. 

In our system each client application submits queries to the 

middleware and expects to get a reply within a specified time 

constraint. Also each query response must have been calculated 

using a certain minimum amount of data, in order to be 

considered a valid response. The minimum amount of data and 

time constraints are agreed during the client-middleware 

agreement negotiation. Because we are using ontologies, we 

define the minimum amount of data in terms of the ontology 

properties that will be used by the query. The way we define the 

minimum amount of data is through the properties/predicates 

involved in the query. Ontologies consist of different types of 

properties, and when we query for them, we call them predicates. 

Therefore, each query consists of a number of predicates. 

The delay of the system's response depends on the cardinality of 

the predicates to be processed, as they affect the amount of data. 

Fig.3: A proposed QoS negotiation mechanism 



We represent the amount of data as the variable x, and we use the 

constant value c to represent the type of data for the property. 

There are generally many types of properties, for the same 

cardinality value, the processing of different property types will 

take different amounts of time. We can define the problem of 

providing QoS by using maximum system resource utilization as a 

maximization problem as follows: 

Cardinalities: X = {x1, x2,..., xn}, X Є V= {v1, v2,..., vk} 

xi: cardinality value assigned to client i. 

V: predefined set of allowed cardinality values. 

Constants: C = {c1, c2,..., cn} 

ci: constant describing the amount of resources used by the 

middleware to serve client i using one unit of data. The value of 

ci is related to each <client, query, predicate> triplet. 

Time constraints: T = {t1, t2,..., tn} 

ti: time constraint specified by the client i. 

Maximize: c1x1+c2x2+…+cnxn 

Subject to: time(ci,xi )≤ ti 

Note: although we define the cardinality variables as variables 

that can take discrete values vi, and thus our problem appears to 

be an instance of Integer Programming, it is not intractable 

because the number k of different possible values is finite and 

relatively small. 

Each client has been dedicated a specific amount of resources 

depending only on the total number of clients that are being 

served. Therefore the amount of time that the system needs to 

respond to the client for each specific combination of queries and 

predicates is affected only by the cardinality of the amount of data 

that the client will be using. 

The goal is to provide as better service as possible to the clients as 

long as a minimum QoS is guaranteed for all the clients. In cases 

where the number of clients is small and their requirements for a 

minimum QoS is smaller than what the system can provide the 

system can optionally offer an even better service by allowing 

them to access more data. When new clients are added then the 

system recalculates the amounts (cardinalities) of the data that can 

be accessed by each client up to a point where a minimum amount 

of data (according to the initial agreement) can be accessed by 

each client and the time constraints are met. After that point the 

middleware system rejects any requests for new client 

subscriptions.  

5.2 QoS Specification - An XML 

representation of the client's QoS 

requirements 

In our architecture, client applications are required to send QoS 

specification files when establishing an agreement for service. 

These specification files consist of varied types of information, 

that help the middleware calculate the application's requirements 

and carry out the necessary multi-resource reservations.  

We define the following concepts that will be used in the 

specification file: 

 A context-aware application consists of a series of tasks. 

 Each task consists of a number of states and the 

corresponding transitions.  

 In each state, a specific set of queries will be executed. 

 Transition between a task's states happens when a series 

of query result values are satisfied. 

 Each query has its own QoS requirements. 

 A state's QoS requirements are satisfied when the QoS 

requirements of all queries taking place in that state are 

satisfied. 

 Similarly, a task's QoS requirements are satisfied when 

the transition between the states that this task involves 

happens within a predefined amount of time, i.e. the 

QoS of each state is satisfied. 

 An application's QoS requirements are satisfied when 

all the application's states' are met. 

Thus, each application is described as consisting of Task nodes. In 

our examples, these could map to for example an activity reminder 

or a route organizer. Each task has its own independent behavior 

and QoS constraints. Task behavior is described by a collection of 

states, and each State consists of a series of queries with their QoS 

constraints, (i.e. end-to-end delay). Typical application behavior 

and query pattern change depending on its internal state. Our 

interest is to capture and provide this information to the 

middleware. 

Generally speaking it is very hard for an application developer to 

know exactly how big or small should the cardinalities be. 

Initially, property cardinalities will be set according to some 

predefined values, and then, based on statistical observations on 

the data and usage patterns, these values will be adapted to 

 

Fig.4: An example Xml QoS specification file 



optimize performance.  

Figure 4 illustrates how the QoS information is specified in an 

XML file. We can observe the hierarchy relationships and we can 

distinguish QoS requirements at the query level. 

However, in order for a client application to be able to operate 

effectively with a given cardinality constraint, it needs to be able 

to determine how sensor data is mapped onto ontological data. For 

this purpose, we present the concept of the Data Transformer. 

5.3 The Data Transformer Architecture 

Proposed research on ontology centered middleware focuses on 

many issues, but puts little stress on how data generation affects 

performance. The assumption is generally that all applications 

share a big set of data that has been gathered by sensors, and then 

transforms this data and distributes it to the client application 

when needed. Our approach deviates tangentially from such 

architectures, we consider that data generation is the key problem 

to reasoning performance and thus we propose a completely 

different mechanism on how data should be generated. In order to 

do this we introduce in the QoS specification file a complex node 

called the “Data Transformer” whose goal is to control the 

creation, update, and deletion of statements from the data store. 

The data transformers are provided by the client and act as 

“drivers”. Once the client application has queried the middleware 

for sensor types, it identifies from the list of data transformers if it 

knows how to manipulate the sensors available so as to generate 

the desired ontology statements. If this is possible, it will then 

send these Data Transformer nodes in its QoS Specification, else, 

application developers are responsible for obtaining and possibly 

developing these “drivers” from sensor descriptor files. The Data 

Transformer node consists of the following elements, first, it 

contains a list of all the ontologies that will be used to map raw 

data to statements. For each ontology, it will retrieve from the 

middleware the established cardinality constraints and use these to 

determine how it should create/update/delete ontological data. 

We present a mechanism by which for example, the two 

previously discussed applications could have different 

cardinalities for LocationEvent data, one requiring there to be at 

least 500 instances, and another requiring at least 5000 instances, 

where instance here refers to when an object is created out of an 

ontology and corresponds to data entries. Clearly, if both 

applications where to share the same data, this would present a 

conflict, since the data does not map as well for both applications 

and will create processing delays that might be acceptable by one 

application and not by the other one. The purpose of the data 

transformer is to be able to isolate both uses of the same property 

LocationEvent, in such a way that we do not need to make 

distinctions, so as to be able for both to use the same ontologies, 

yet at the same time to have both applications use a different data 

set for this property. We accomplish this by using a schema-aware 

database in which tables are generated for every RDF <Subject, 

Predicate> combination. Additionally, different tables are created 

for the same <Subject, Predicate> combination when this 

predicate has multiple cardinalities. 

First, the Data Transformer is registered for a given type of sensor 

data. Upon collecting such data, the middleware runs the data 

transformer. The transformer is thus responsible for converting 

the raw data into statements. Then, at the point where persistent 

storage is going to be carried out, the data transformer uses its 

configuration to select the appropriate table under which the data 

will be stored. For example, the first application could use for its 

inference the table <Employee, hasLocationEnvet#500> while 

the second application will store it in a table called <Employee, 

hasLocationEvent#5000>. 

The advantages of having two different data transformers on the 

same type of data is that both of them have full access and rights 

on the creation/deletion/update of the data without having to 

overlap or cause conflicts. The disadvantage is that the overall 

amount of data we store is much greater and that we sacrifice 

some unity in the way data is stored for a given ontology. This is 

required though, as it is not possible to expect all applications to 

have same purposes for the same data. Nonetheless, any other 

approach in which there would be an interest in distinguishing the 

data between these two applications would eventually require 

more statements and therefore more data. So we believe this is a 

trade off that will always be necessary. 

5.4 Prototype Experiment 

We develop a prototype experiment to study the proposed 

framework. We imagine a scenario in which there are hundreds of 

employees, all of which have PDAs running a context-aware 

Activity Reminder program. We've built a simple QoS-aware 

Activity Reminder application that requires a response time of 2s 

from the middleware. The application can operate in three 

different modes, each of which takes advantage of a specific data 

transformer. The data transformers generate and handle activity 

statements, the first one handles up to 1000 statements (Mode 1), 

the second one 500 statements (Mode 2), and the third one 100 

statements (Mode 3). We allow an increasing number of instances 

of the Activity Reminder application to run on the framework, 

from 50 instances up to 400. Each instance represents a different 

employee's application. The middleware is in charge of adjusting 

the operation mode of the instances to maintain QoS 

requirements. A chart of the middleware's adjustment on the 

applications is presented in the figure bellow 

 

Fig. 5: Snapshot of Activity Reminder instances vs Operation 

mode. 

Clearly, as the load on the system increases, the middleware relies 

on the availability of the application to operate at different modes 

with different amounts of data to reduce overall load and maintain 

QoS constraints. Evaluating the quality of the recommendations 

produced by the Activity Reminder under decreased amounts of 

data can be accomplished through user feedback. Alternatively, 



we intend as future work to study the optimality of allowing 

applications to prioritize the data sources and running these 

through the data maximization algorithm proposed. 

6. CONCLUSION 
In this paper, we have examined the problem of providing QoS in 

smart environments which are built using an ontology centered 

middleware architecture. According to our view, the best way to 

ensure QoS in such environments is that the middleware system 

should be able control the amount of data that processes and 

distributes to each client application. We believe providing 

differentiated services, where a client application can participate 

in the decision of how data is to be generated and can negotiate its 

requirements in terms of QoS is the key to enabling prediction of 

system's behavior and response times. For that reason we propose 

a framework that uses a negotiation mechanism between the client 

applications and the middleware system which ensures that all 

applications that have been grated service will have at least a 

minimum QoS. Furthermore, when the minimum QoS for each 

application has been met but the system has not consumed the 

total amount of available resources we suggest a method to 

distribute those resources to the client applications in a way that 

maximizes the system's utilization and provides an improved 

service to the clients. Finally, we give an example for the 

formulation of the negotiation method between the client 

applications and the middleware system and we explain how the 

client applications can participate in the data transformation from 

the initial raw formats to ontological representations in order to 

improve efficiency. 
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