
Providing QoS in Ontology Centered Context Aware

Pervasive Systems
Roman Arora, Vangelis Metsis, Rong Zhang and Fillia Makedon

Heracleia Human-Centered Computing Laboratory

Department of Computer Science and Engineering

University of Texas at Arlington
416 Yates St,

Arlington, TX, 76019
001-817-272-5459

{roman.arora, vangelis.metsis}@mavs.uta.edu, {rongz, makedon}@uta.edu

ABSTRACT
There has been significant research in adapting the Semantic Web

technologies to create flexible context aware pervasive systems to

enhance fields such as assisted living or smart environments.

Several ontology based techniques have been proposed to

simplify modeling knowledge and its relationships, and several

ontology centered middleware tools are currently being developed

to provide flexible and viable solutions for application developers.

However, middleware built on the basis of Semantic Web

generally suffers from drawbacks in performance, which limits its

practical applications in the real world. This paper proposes a

framework to facilitate Quality of Service (QoS) in ontology

centered context aware pervasive middleware. Our approach

suggests that context-aware middleware that operate by

contracting mutual agreements with the client applications and

provide controls over the amount of data to be processed by them

can achieve predictable performance and response times. We also

propose a service contract scheme that allows both client

applications and middleware to participate in the decisions

regarding the necessary data transformations required by the

different system components in order to improve the overall

system performance.

Categories and Subject Descriptors
D.4.8 [PERFORMANCE OF SYSTEMS]: Measurement

techniques, Performance attributes.

General Terms
Measurement, Performance, Design

Keywords
Middleware, Pervasive Computing, Context aware applications,

Quality-of-Service (QoS)

1. INTRODUCTION
In recent years pervasive devices and services are increasingly

becoming a part of our daily activities. Smart phones, PDAs,

notebooks, medical devices for health monitoring and other smart

devices construct an inextricable part of the of the typical modern

professional. Those devices in cooperation with the corresponding

applications that run on top of them have an aspiration of creating

a state where services will be provided to people in a continuous

and transparent way requiring as less of their attention as possible

and at the same time they will enhance their productivity and

quality of life by performing routine tasks or tasks that could not

be performed by people easily without some external assistance.

This state has been described in literature as Pervasive or

Ubiquitous Computing [22].

In the pursuit of making pervasive computing as useful as possible

in our everyday life we need to make the various computing units

and applications communicate and cooperate with each other and

with the surrounding environment. This introduces the problem of

retrieving, storing and managing knowledge which will allow

computing devices to make smarter decisions in a broader context

and in a more macroscopic perspective. That means that we need

to create larger context aware systems [4] which will handle

heterogeneous types of information so that the decisions of

specific components, whether devices or applications, will

conform to a wider strategy plan.

In many cases the decisions to be taken by such systems require

real-time responses which may vary from a few seconds to a few

nano-seconds. This is often a very challenging task, especially

when we need to combine huge amounts of data from different

sources which may also reside in different devices/machines. In

addition to that, as we climb in the higher levels of the knowledge

hierarchy the problem of the semasiological management of the

data becomes even more difficult since there we do not yet have

equally good solutions for data description and representation. In

that level, the Semantic Web [2] technologies come into play and

offer a promising solution for describing the data in a way that can

be shared by machines and that allows for reasoning. Ontological

representations [15] can be used to integrate knowledge from

different domains into a common platform and (meta)data

description methods such as RDF/XML [14] can be used to unify

the communication channel among different devices and

applications.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

PETRA’09, June 9–13, 2009, Corfu, Greece.

Copyright 2009 ACM 978-1-60558-409-6…$5.00.

However, as it has been shown by previous studies, the

ontological based reasoning is a computationally demanding task

and it does not scale well with the amount of available data.

Taking into account that many of the decisions in context aware

systems have to be made in real-time we realize that the

application of such a technology in real-life situations may be

problematic. This arises the issue of Quality of Service (QoS) that

those systems can offer to both the end users and to the

underlying or cooperating applications. While most of the existing

effort has gone in defining and exploring the different

functionality aspects of such systems, little work has focused on

the importance of efficiency and quality of service. However, QoS

has been well-studied in other areas such as Networking and

Multimedia applications [13] and some of the conclusions and

methods that have been derived from there can be applied to

context-aware pervasive applications as well.

In this paper we attempt to examine the QoS issues that arise from

the use of Semantic Web technologies for knowledge

representation and decision making in pervasive applications and

we propose a framework that ensures QoS and therefore a smooth

and consistent operation of systems that involve the cooperation

of a number of distributed pervasive devices and computation

nodes with a goal to provide integrated context aware time critical

services. The framework can function as a part of a middleware

system which operates between the data collection and application

layers.

The rest of this article is organized as follows. Section 2 discusses

related work. Section 3 describes the basic characteristics of

ontology centered middleware architecture. In section 4, we

examine a representative example to illustrate the need for QoS in

smart environments. In Section 5, we define QoS as a

maximization problem and develop a framework in order to be

able to solve this problem. Finally, we present our conclusions in

Section 6.

2. RELATED WORK

In most cases the ongoing efforts for building smart environments

have concentrated on methods for, first, making the pervasive

devices as sensitive and accurate as possible in the perception of

environmental signals, and second, in the cooperation between the

different nodes of a system which includes communication, data

sharing and common decision making. To achieve those goals

most researches have relied on a middleware architecture which

attempts to bridge the communication gap among the different

system components and provide a transparent layer to higher level

applications [20].

With the introduction of the concept of Semantic Web [2] and

semantic representation of knowledge in general there has been a

significant turn into using such technologies for reasoning and

decision making in smart environments and context aware

applications in general [4]. Ontologies [7] have been used for

formal representation of concepts and relations between them and

structured data representation methods such as RDF/XML [14]

have been used for description of resources and metadata.

Amongst the increasing number of ontology centered middleware,

we highlight Construct [6], SOCAM [9], COBRA-ONT [5],

Semantic Context Spaces [8].

All these middleware address most of the issues identified as

important for creating a functional environment, however they do

not dwell much in issues of efficiency and performance that arise

due to the existing setup, whether in terms of resources or in

computation costs. Our architecture on the other hand puts most

of its effort in the concern of the QoS and performance, as we

believe this to be the current most important issue restricting the

existing middleware from becoming highly adopted by the

community.

There are however significant challenges when addressing Quality

of Service in a context aware pervasive systems. We have

identified several aspects that need to be considered and that will

affect significantly the design of middleware architecture. Some

aspects have been identified in existing research such as [9], and

how reasoning times grow disproportionally as the RDF triple

store grows in size. [1] identifies the performance problems with

reasoning and proposes a loosely coupled middleware architecture

where ontological reasoning is mostly performed asynchronously.

QoS has also been extensively studied in other application

domains such as Networking and Multimedia [10] [11] [21]. In

those domains QoS has been formalized by QoS specification

languages [13] and specific solutions have been proposed.

However, although such solutions can be taken into consideration

when designing QoS enabled smart environments they cannot be

directly applied due the more complex nature of context aware

applications which involve heterogeneous devices and data types.

From our point of view, in context aware pervasive systems the

problem of QoS must be tackled in a higher level by creating a

framework that will add the concept of “predictability” in

behavioral patterns of the different system components in terms of

efficiency and end-to-end delays. For that reason, in the next

sections we propose a framework for strategic design of

middleware applications that will provide QoS by controlling the

behavior of the client applications that the system supports using a

protocol for in-advance agreements which are achieved at the time

each client request service from the system.

3. ONTOLOGY CENTERED MIDDLEWARE
Ontology centered middleware focuses on providing a unified

knowledge and data model. Several architectures that follow this

principle have been proposed [5] [6] [8] [9] [17]. They attempt to

simplify application development by providing a useful set of

APIs and a robust framework for knowledge sharing and

derivation. A general architecture design is illustrated in Fig. 1

In these works, authors have identified the following major

components that a comprehensive middleware should cover:

Fig.1: An example ontology centered middleware architecture

(i) Sensor discovery and sensor data collection. Any context-

aware architecture will operate with sensors transmitting data, the

protocols used for sensor discovery and data collection will play

an important role in the overall flexibility and adaptation that the

system offers to integrate and work with existing hardware.

(ii) Inter-operable model for creating, accessing, and storing

ontological data. A common model that can be shared by all

software applications and middleware services. This is

accomplished through the use of ontologies, which help define

concepts and their corresponding properties. In [8], Sensor

Wrappers are proposed as a mechanism to convert raw data into

ontology data while separating sensor hardware specifics from

applications. Frameworks such as Jena [3] are used to store both

the ontologies, and data, generally in Semantic Web standard

formats such as OWL [15] and RDF [14] triples.

(iii) Ontological inference. The use of ontological reasoning

through the language constructs available, combined with rule-

based reasoning allow for a flexible mechanism to derive

knowledge. Some widely used inference engines include Jena [3],

Pellet [18], and Racer [12].

(iv) Ontological data access and dissemination. Data routing,

synchronization, and dissemination algorithms differ significantly

depending on whether the architecture is centralized, distributed,

or P2P. The query language of preference has become SPARQL

[16] since its adoption as a W3C standard. Queries are

represented as a series of RDF triples <Subject, Predicate,

Object> where some triple values are left as query variables.

(v) Efficiency. Many strategies are proposed. Efficient persistent

data storage in schema-aware [19] databases is one of the

proposals, where a table is created for every single <Subject,

Predicate> combination. This increases performance time when

accessing information that is maintained in a database. To reduce

inference time, strategies focus on minimizing the amount of on-

demand reasoning that needs to be carried out and establish

mechanisms to take advantage of off-line reasoning [1]. Other

strategies proposed include data subscription by applications and

maintaining the data store as minimal as possible [9].

The previous architectures however do not propose methods to

allow for QoS and the required resource management techniques

to accomplish such. Given that inference is a major deterrent in

performance and limits the viability of such infrastructure for

time-sensitive applications, we model inference execution time as

a maximization problem and provide a framework to enable

solving the underlying problems in inference time. We look into

the required aspects [23] to allow for QoS in such architectures.

Next, we illustrate examples of time-sensitive applications and the

problems they face in the traditional ontology centered

architectures that have been proposed so far.

4. QoS IN PRACTICE

4.1 Example problem that requires QoS
Following we describe an example of a context-aware scenario in

which applications require QoS in order to function properly. Our

intentions are to highlight some of the existing problems with

context-aware applications, and later address these in our

proposed QoS-aware architecture. We consider the scenario of a

smart building used by a company and equipped with sensors that

are capable of detecting the employee's location and current

status. Furthermore, the building has an ontology centered

middleware architecture in place responsible for collecting,

transforming and distributing data to satisfy application queries,

like portrayed in Fig.1

We now consider a series of context-aware applications running

on this environment, each of which have different QoS

requirements and work by requesting data to the middleware. The

middleware is in charge of managing and distributing the data in

appropriate formats such that the advantages of a unified

representation for concepts and data are maintained.

The first application is an activity reminder; it attempts to

periodically update the employee with possible activities he wants

to carry out. The activities that the employee wants to do are

initially programmed into his PDA at a given frequency, for

example every day, then the PDA application will query the

middleware to obtain the person's current and past location as well

as status information to determine how best to organize and

execute his day to day activities. The reason why this application

is time-sensitive is because as you carry out your daily activities,

you will visit locations and might deviate from the proposed

routes, in those cases, the application needs to recalculate new

routes or schedules that might be of your interest. The application

must execute in short period of time, because if it takes time the

user is not likely to wait, and instead will think by himself what

activity to carry out next and ignore the recommendation. For this

reason, we think a short response time, for example 5-7 seconds

might be acceptable, anything longer might prompt the user to put

down his PDA and plan his own schedule.

The second application is an energy efficiency adjustment

program; it retrieves current location information of all people in

the building as well as past location information to establish what

regions should reduce their energy consumption in the building.

As the current location information for the employees changes

and deviates from the predicted model computed from past

location information, the energy efficiency program needs to

adjust itself. This application is also real-time, as updates in the

application's behavior should happen in very short periods of time

so as to avoid energy settings from disrupting users in their day to

day activities. We consider for example, that this application's

response time might need to be around 2 seconds, so that it can

adjust energy settings in different regions fast enough so as to not

trigger a negative reaction on employees, or force them to have to

do manual adjustments to energy related devices.

A possible representation of the concepts involved in these

example applications is represented bellow. We distinguish four

different ontologies, these are: ActivityEvent, LocationEvent,

TimeEvent, and Employee.

The idea behind these ontologies is that both applications share

the same knowledge model, they submit queries requesting for the

same type of ontology data.

4.2 Existing QoS related problems
We distinguish two main problems in the applications defined in

the previous section when used in the currently existing ontology

centered middleware architectures. The first one is that the

existing architectures have no information regarding the access

patterns and requirements of the different applications; therefore

they are unable to provide Quality of Service. We believe the

solution to this problem is to introduce a QoS negotiation

mechanism between client application and middleware where the

client can agree to certain access patterns, and the middleware can

agree to carry out multi-resource reservations to guarantee query

execution times. On the other hand, we want to introduce as

minimal complexity as possible to the design of client

applications. The second problem, and the main reason why

existing work does not dwell in QoS is that ontological inference

is a computationally expensive task, generally considered

intractable, and in order to be able to guarantee execution times, it

is necessary to impose limitations on the amount of data being

processed. For example, in Fig. 2, both applications will request

for LocationEvent and ActivityEvent data. The size of the

retrieved data by the client applications varies depending on the

nature of the data, the amount of data that has been collected so

far by the sensors, and the requirements of the client application.

The solution is indeed to limit the size of the data set, and we

propose a strategy that allows for great flexibility with the expense

of introducing the client into the process of sensor data

transformation into ontological data.

There is a conflict of interest by different applications running on

the middleware as to their expectations on how data should exist

in the system to provide their QoS requirements. For example, the

previously discussed applications will require the ActivityEvent

and LocationEvent data set to be of different sizes, matching their

desired response times. One possible solution to this problem is to

introduce the client in the process of transforming raw sensor data

into ontological data. By allowing the client to participate in the

decisions on how data should be created, updated, and deleted at

the initial point of service negotiation between client and server,

this issue can be addressed.

Because these two context-aware, time-sensitive applications have

the same interests for data and different QoS requirements, they

are relevant examples to our proposed work and will help

illustrate better the solutions proposed. Both, deriving activities

and location relationships require the use of an inference engine,

and thus both suffer from the time complexities of doing inference

on large data sets.

There are many factors that influence the end-to-end delay in

either centralized or distributed service oriented architectures,

generally these are the resources involved in providing the

services, like network bandwidth, memory, CPU, I/O, and storage

space. These have been studied in depth by the community as

computers and their purposes have evolved. Different heuristic

algorithms have been proposed for issues such as multi-processor

real-time task scheduling, resource reservation, and multimedia

distribution. However, problems arising from the calculations

performed in ontology centered middleware architectures have

received very little attention, and existing architectures such as

Construct [6], COBRA [5], SOCAM [9], SCS [8] have focused

their attention on non-time critical applications and demonstrating

the flexibility and value of ontology centered architectures,

showing little attention into time related issues. The development

and execution of the proposed two applications would lack QoS

support in any of the above mentioned architectures, and thus

would not operate as desired. For this reason, we present a

different perspective of an ontology centered middleware

architecture, where it is possible for time-sensitive applications to

function.

We believe there is significant work on resource management,

thus, our focus will be to study and understand the complexities

that arise from inference and its computational requirements and

how they could be addressed in ontology centered middleware

architectures.

5. METHODOLOGY AND ARCHITECTURE
In order to allow an ontology centered middleware architecture to

provide QoS support to context-aware applications, we need to

provide an infrastructure to allow applications to describe their

structure and query patterns; this is generally referred to as QoS

specification. In section 5.2 we explore our QoS specification

format in detail. We characterize an application as ultimately

consisting of queries, which have end-to-end delay requirements.

There are many factors that influence the end-to-end delay of an

application's queries. Most of them can be handled through

heuristics and multi-resource reservation, such as those to manage

network bandwidth, memory usage, task scheduling, and I/O.

However, ontology centered middleware requires the use of an

inference engine, where it is not possible to determine the

inference time unless the size of the data set used is known. In

order to know how much data will be used by a query, it is

necessary to establish restrictions on how data is generated for the

ontologies, and their corresponding properties. Each property in

an ontology can have a restriction on how many data entries can

be associated with that property. We call this the cardinality of a

property. This posses a conflict of interest, as the data restrictions

that are necessary for one context aware application might not be

suitable for another context-aware application. A possible solution

would be to have both applications rely on a different set of

ontologies with different cardinality constraints for their

properties, but that would defeat the purpose of an ontology

centered middleware architecture, whose greatest value is a unified

Fig. 2: Sample UML diagram displaying application ontologies

model for knowledge and data representation. To solve this

problem we propose a trade-off where we relax the unity of the

data in order to allow some level of QoS support. This is

accomplished by using Data Transformers, which are further

described in section 5.3. This component allows the client to have

some level of participation on the process of converting raw data

into ontological data. This is done in order for different

applications to be able to modify the same sensor data and

produce different data while storing it using the same knowledge

representation. While this might seem counter-intuitive, the goal is

to make a fine-grained distinction in the different ontological

properties used by the applications, where a single property can be

treated as a set of different <property, cardinality> couples by the

middleware's inference engine. The challenge is to make this

process completely transparent to the client application. We

elaborate more on this idea in the following sections.

The basic flow of our proposed middleware would be as follows:

1. The client application requests sensor information to the

middleware. The sensor information describes what

sensors are available to the middleware and also provide

specifics about the sensors, such as for example, unit

representation, accuracy, and frequency. The client

application needs to determine if it understands the data

that the sensor is producing and if it has in its library of

“drivers”, we call this a Data Transformer, one that will

be able to convert the sensor's raw data into RDF. Data

Transformers share some common functionality with the

Sensor Wrappers introduced in [8], but they go beyond

such functionality, their details are described in Section

5.2

2. Using its own QoS requirements, the client application

builds a QoS specification file that includes its query

access pattern information, details are described in

Section 5.1. Additionally, the specification file includes

a list of “Data Transformers” it will need the server to

install to convert the data appropriately. We imagine the

Data Transformers to be written in a format that restricts

their access in the server to read appropriate sensor data

and to write only to the data store, so as to avoid

security issues.

3. The server will now perform QoS translation, to analyze

and determine if the client application requirements can

be met. In the case of distributed systems, this will

involve coordinating with other servers and reserving

resources such as CPU time in the task scheduler, and

other resources such as network bandwidth or disk

space. The server will also determine further QoS

constraints that the client is not able to determine

initially, since it does not know the current middleware's

utilization and resource availability. The major factor

that it will determine is what cardinality values are

acceptable for the different ontologies used by the client

application, and will govern the creating/update/deletion

of ontological data.

4. The server will provide a response either accepting or

rejecting the client's request and informing him of

further constraints he must follow. These constraints are

restrictions in the cardinality of collections in properties

of ontologies. These are not a natural restriction, but

rather are imposed by the server.

5. The client will now determine if the cardinality

constraints imposed are acceptable or not, it can then

accept the service or attempt to renegotiate with the

server, say by introducing different QoS requirements.

6. Once the client has accepted, the middleware will go

ahead and perform the required resource reservations, in

terms of allocating and reserving CPU time in its task

scheduler, and other reservations such as bandwidth,

memory, and disk space.

5.1 Data Use Maximization
At this point we consider inference execution time as a

maximization problem where we are given application

requirements and the set of ontology properties used by each of its

queries and we attempt to determine the cardinality constraints

that each ontological property should have in order to satisfy the

QoS. In our approach we assume that we have a set of predefined

cardinality values for property. This is done so that applications do

indeed reuse the same type of data, by using an existing property

with established cardinality.

In our system each client application submits queries to the

middleware and expects to get a reply within a specified time

constraint. Also each query response must have been calculated

using a certain minimum amount of data, in order to be

considered a valid response. The minimum amount of data and

time constraints are agreed during the client-middleware

agreement negotiation. Because we are using ontologies, we

define the minimum amount of data in terms of the ontology

properties that will be used by the query. The way we define the

minimum amount of data is through the properties/predicates

involved in the query. Ontologies consist of different types of

properties, and when we query for them, we call them predicates.

Therefore, each query consists of a number of predicates.

The delay of the system's response depends on the cardinality of

the predicates to be processed, as they affect the amount of data.

Fig.3: A proposed QoS negotiation mechanism

We represent the amount of data as the variable x, and we use the

constant value c to represent the type of data for the property.

There are generally many types of properties, for the same

cardinality value, the processing of different property types will

take different amounts of time. We can define the problem of

providing QoS by using maximum system resource utilization as a

maximization problem as follows:

Cardinalities: X = {x1, x2,..., xn}, X Є V= {v1, v2,..., vk}

xi: cardinality value assigned to client i.

V: predefined set of allowed cardinality values.

Constants: C = {c1, c2,..., cn}

ci: constant describing the amount of resources used by the

middleware to serve client i using one unit of data. The value of

ci is related to each <client, query, predicate> triplet.

Time constraints: T = {t1, t2,..., tn}

ti: time constraint specified by the client i.

Maximize: c1x1+c2x2+…+cnxn

Subject to: time(ci,xi)≤ ti

Note: although we define the cardinality variables as variables

that can take discrete values vi, and thus our problem appears to

be an instance of Integer Programming, it is not intractable

because the number k of different possible values is finite and

relatively small.

Each client has been dedicated a specific amount of resources

depending only on the total number of clients that are being

served. Therefore the amount of time that the system needs to

respond to the client for each specific combination of queries and

predicates is affected only by the cardinality of the amount of data

that the client will be using.

The goal is to provide as better service as possible to the clients as

long as a minimum QoS is guaranteed for all the clients. In cases

where the number of clients is small and their requirements for a

minimum QoS is smaller than what the system can provide the

system can optionally offer an even better service by allowing

them to access more data. When new clients are added then the

system recalculates the amounts (cardinalities) of the data that can

be accessed by each client up to a point where a minimum amount

of data (according to the initial agreement) can be accessed by

each client and the time constraints are met. After that point the

middleware system rejects any requests for new client

subscriptions.

5.2 QoS Specification - An XML

representation of the client's QoS

requirements

In our architecture, client applications are required to send QoS

specification files when establishing an agreement for service.

These specification files consist of varied types of information,

that help the middleware calculate the application's requirements

and carry out the necessary multi-resource reservations.

We define the following concepts that will be used in the

specification file:

 A context-aware application consists of a series of tasks.

 Each task consists of a number of states and the

corresponding transitions.

 In each state, a specific set of queries will be executed.

 Transition between a task's states happens when a series

of query result values are satisfied.

 Each query has its own QoS requirements.

 A state's QoS requirements are satisfied when the QoS

requirements of all queries taking place in that state are

satisfied.

 Similarly, a task's QoS requirements are satisfied when

the transition between the states that this task involves

happens within a predefined amount of time, i.e. the

QoS of each state is satisfied.

 An application's QoS requirements are satisfied when

all the application's states' are met.

Thus, each application is described as consisting of Task nodes. In

our examples, these could map to for example an activity reminder

or a route organizer. Each task has its own independent behavior

and QoS constraints. Task behavior is described by a collection of

states, and each State consists of a series of queries with their QoS

constraints, (i.e. end-to-end delay). Typical application behavior

and query pattern change depending on its internal state. Our

interest is to capture and provide this information to the

middleware.

Generally speaking it is very hard for an application developer to

know exactly how big or small should the cardinalities be.

Initially, property cardinalities will be set according to some

predefined values, and then, based on statistical observations on

the data and usage patterns, these values will be adapted to

Fig.4: An example Xml QoS specification file

optimize performance.

Figure 4 illustrates how the QoS information is specified in an

XML file. We can observe the hierarchy relationships and we can

distinguish QoS requirements at the query level.

However, in order for a client application to be able to operate

effectively with a given cardinality constraint, it needs to be able

to determine how sensor data is mapped onto ontological data. For

this purpose, we present the concept of the Data Transformer.

5.3 The Data Transformer Architecture

Proposed research on ontology centered middleware focuses on

many issues, but puts little stress on how data generation affects

performance. The assumption is generally that all applications

share a big set of data that has been gathered by sensors, and then

transforms this data and distributes it to the client application

when needed. Our approach deviates tangentially from such

architectures, we consider that data generation is the key problem

to reasoning performance and thus we propose a completely

different mechanism on how data should be generated. In order to

do this we introduce in the QoS specification file a complex node

called the “Data Transformer” whose goal is to control the

creation, update, and deletion of statements from the data store.

The data transformers are provided by the client and act as

“drivers”. Once the client application has queried the middleware

for sensor types, it identifies from the list of data transformers if it

knows how to manipulate the sensors available so as to generate

the desired ontology statements. If this is possible, it will then

send these Data Transformer nodes in its QoS Specification, else,

application developers are responsible for obtaining and possibly

developing these “drivers” from sensor descriptor files. The Data

Transformer node consists of the following elements, first, it

contains a list of all the ontologies that will be used to map raw

data to statements. For each ontology, it will retrieve from the

middleware the established cardinality constraints and use these to

determine how it should create/update/delete ontological data.

We present a mechanism by which for example, the two

previously discussed applications could have different

cardinalities for LocationEvent data, one requiring there to be at

least 500 instances, and another requiring at least 5000 instances,

where instance here refers to when an object is created out of an

ontology and corresponds to data entries. Clearly, if both

applications where to share the same data, this would present a

conflict, since the data does not map as well for both applications

and will create processing delays that might be acceptable by one

application and not by the other one. The purpose of the data

transformer is to be able to isolate both uses of the same property

LocationEvent, in such a way that we do not need to make

distinctions, so as to be able for both to use the same ontologies,

yet at the same time to have both applications use a different data

set for this property. We accomplish this by using a schema-aware

database in which tables are generated for every RDF <Subject,

Predicate> combination. Additionally, different tables are created

for the same <Subject, Predicate> combination when this

predicate has multiple cardinalities.

First, the Data Transformer is registered for a given type of sensor

data. Upon collecting such data, the middleware runs the data

transformer. The transformer is thus responsible for converting

the raw data into statements. Then, at the point where persistent

storage is going to be carried out, the data transformer uses its

configuration to select the appropriate table under which the data

will be stored. For example, the first application could use for its

inference the table <Employee, hasLocationEnvet#500> while

the second application will store it in a table called <Employee,

hasLocationEvent#5000>.

The advantages of having two different data transformers on the

same type of data is that both of them have full access and rights

on the creation/deletion/update of the data without having to

overlap or cause conflicts. The disadvantage is that the overall

amount of data we store is much greater and that we sacrifice

some unity in the way data is stored for a given ontology. This is

required though, as it is not possible to expect all applications to

have same purposes for the same data. Nonetheless, any other

approach in which there would be an interest in distinguishing the

data between these two applications would eventually require

more statements and therefore more data. So we believe this is a

trade off that will always be necessary.

5.4 Prototype Experiment

We develop a prototype experiment to study the proposed

framework. We imagine a scenario in which there are hundreds of

employees, all of which have PDAs running a context-aware

Activity Reminder program. We've built a simple QoS-aware

Activity Reminder application that requires a response time of 2s

from the middleware. The application can operate in three

different modes, each of which takes advantage of a specific data

transformer. The data transformers generate and handle activity

statements, the first one handles up to 1000 statements (Mode 1),

the second one 500 statements (Mode 2), and the third one 100

statements (Mode 3). We allow an increasing number of instances

of the Activity Reminder application to run on the framework,

from 50 instances up to 400. Each instance represents a different

employee's application. The middleware is in charge of adjusting

the operation mode of the instances to maintain QoS

requirements. A chart of the middleware's adjustment on the

applications is presented in the figure bellow

Fig. 5: Snapshot of Activity Reminder instances vs Operation

mode.

Clearly, as the load on the system increases, the middleware relies

on the availability of the application to operate at different modes

with different amounts of data to reduce overall load and maintain

QoS constraints. Evaluating the quality of the recommendations

produced by the Activity Reminder under decreased amounts of

data can be accomplished through user feedback. Alternatively,

we intend as future work to study the optimality of allowing

applications to prioritize the data sources and running these

through the data maximization algorithm proposed.

6. CONCLUSION
In this paper, we have examined the problem of providing QoS in

smart environments which are built using an ontology centered

middleware architecture. According to our view, the best way to

ensure QoS in such environments is that the middleware system

should be able control the amount of data that processes and

distributes to each client application. We believe providing

differentiated services, where a client application can participate

in the decision of how data is to be generated and can negotiate its

requirements in terms of QoS is the key to enabling prediction of

system's behavior and response times. For that reason we propose

a framework that uses a negotiation mechanism between the client

applications and the middleware system which ensures that all

applications that have been grated service will have at least a

minimum QoS. Furthermore, when the minimum QoS for each

application has been met but the system has not consumed the

total amount of available resources we suggest a method to

distribute those resources to the client applications in a way that

maximizes the system's utilization and provides an improved

service to the clients. Finally, we give an example for the

formulation of the negotiation method between the client

applications and the middleware system and we explain how the

client applications can participate in the data transformation from

the initial raw formats to ontological representations in order to

improve efficiency.

7. REFERENCES
[1] Alessandra Agostini, Claudio Bettini, and Daniele Riboni.

Loosely coupling ontological reasoning with an efficient

middleware for context-awareness. In MOBIQUITOUS '05:

Proceedings of the The Second Annual International Conference

on Mobile and Ubiquitous Systems: Networking and Services,

pages 175–182, Washington, DC, USA, 2005. IEEE Computer

Society.

[2] T. Berners-Lee, J. Hendler, O. Lassila, et al. The Semantic

Web. Scientific American, 284(5):28–37, 2001.

[3] Jeremy J. Carroll and Dave Reynolds. Jena: Implementing the

semantic web recommendations. pages 74–83, 2004.

[4] G. Chen and D. Kotz. A Survey of Context-Aware Mobile

Computing Research, 2000.

[5] Harry Chen, Tim Finin, and Anupam Joshi. An Ontology for

Context-Aware Pervasive Computing Environments. Special Issue

on Ontologies for Distributed Systems, Knowledge Engineering

Review, 18(3):197–207, May 2004.

[6] Lorcan Coyle, Steve Neely, Graeme Stevenson, Mark

Sullivan, Simon Dobson, and Paddy Nixon. Sensor fusion-based

middleware for smart homes. International Journal of Assistive

Robotics and Mechatronics (IJARM), 8(2):53–60, 06/2007 2007.

[7] T.R. Gruber. Toward principles for the design of ontologies

used for knowledge sharing. INTERNATIONAL JOURNAL OF

HUMAN COMPUTER STUDIES, 43:907–928, 1995.

[8] Tao Gu, Hung Keng Pung, and Daqing Zhang. A semantic

p2p framework for building context-aware applications in

multiple smart spaces. In EUC, pages 553–564, 2007.

[9] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing

Zhang. An ontology-based context model in intelligent

environments. In In Proceedings of Communication Networks and

Distributed Systems Modeling and Simulation Conference, pages

270–275, 2004.

[10] X. Gu and K. Nahrstedt. An event-driven, user-centric, QoS-

aware middleware framework for ubiquitous multimedia

applications. In Proceedings of the 2001 international workshop

on Multimedia middleware, pages 64–67. ACM New York, NY,

USA, 2001.

[11] R. Guerin. Specification of guaranteed quality of service. In

Integrated Services WG Internet Draft (work in progress, 1997.

[12] V. Haarslev and R. Mφller. Racer: A Core Inference Engine

for the Semantic Web. In Proceedings of the 2nd International

Workshop on Evaluation of Ontology-based Tools, pages 27–36,

2003.

[13] J. Jin and K. Nahrstedt. QoS Specification Languages for

Distributed Multimedia Applications: A Survey and Taxonomy.

IEEE MULTIMEDIA, pages 74–87, 2004.

[14] O. Lassila, R.R. Swick, et al. Resource Description

Framework (RDF) Model and Syntax Specification. 1999.

[15] D.L. McGuinness, F. van Harmelen, et al. OWL Web

Ontology Language Overview. W3C Recommendation, 10:2004–

03, 2004.

[16] E. Prud’Hommeaux, A. Seaborne, et al. SPARQL Query

Language for RDF. W3C Working Draft, 20, 2006.

[17] Anand Ranganathan and Roy Campbell. A middleware for

context-aware agents in ubiquitous computing environments. page

998. 2003.

[18] E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. In

2004 International Workshop on Description Logics.

[19] Y. Theoharis, V. Christophides, and G. Karvounarakis.

Benchmarking Database Representations of RDF/S Stores.

LECTURE NOTES IN COMPUTER SCIENCE, 3729:685, 2005.

[20] S. Vinoski and I.T. Inc. CORBA: integrating diverse

applications within distributed heterogeneous environments.

Communications Magazine, IEEE, 35(2):46–55, 1997.

[21] Z. Wang and J. Crowcroft. Quality-of-service routing for

supporting multimedia applications. Selected Areas in

Communications, IEEE Journal on, 14(7):1228–1234, 1996.

[22] M. Weiser. Some computer science issues in ubiquitous

computing. ACM SIGMOBILE Mobile Computing and

Communications Review, 3(3), 1999.

[23] D. Xu and B. Li. QoS-Aware Middleware for Ubiquitous and

Heterogeneous Environments. IEEE Communications Magazine,

page 2, 2001.

