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DNA Copy Number Selection Using Robust
Structured Sparsity-Inducing Norms

Vangelis Metsis, Fillia Makedon, Dinggang Shen, and Heng Huang

Abstract —Array comparative genomic hybridization (aCGH) is a newly introduced method for the detection of copy number
abnormalities associated with human diseases with special focus on cancer. Specific patterns in DNA copy number variations (CNVs)
can be associated with certain disease types and can facilitate prognosis and progress monitoring of the disease. Machine learning
techniques have been used to model the problem of tissue typing as a classification problem. Feature selection is an important part
of the classification process, because many biological features are not related to the diseases and confuse the classification tasks.
Multiple feature selection methods have been proposed in the different domains where classification has been applied. In this work, we
will present a new feature selection method based on structured sparsity-inducing norms to identify the informative aCGH biomarkers
which can help us classify different disease subtypes. To validate the performance of the proposed method, we experimentally compare
it with existing feature selection methods on four publicly available aCGH datasets. In all empirical results, the proposed sparse learning
based feature selection method consistently outperforms other related approaches. More important, we carefully investigate the aCGH
biomarkers selected by our method, and the biological evidences in literature strongly support our results.

Index Terms —Feature evaluation and selection, biomarker detection, aCGH, DNA copy number variations, cancer classification.

✦

1 INTRODUCTION

CHROMOSOMAL aberrations occur in many diseases.
For example, in cancer, increases or decreases in

DNA copy number can alter the expression levels of
tumor suppressor genes and oncogenes resulting in
tumor genesis. Array comparative genomic hybridiza-
tion (aCGH) is a recently introduced technique for
identifying chromosomal aberrations in human diseases
throughout the human genome. aCGH can be used for
detection and mapping of copy number abnormalities
which can be associated with certain disease phenotypes.
This, in turn, can facilitate the localization of critical
genes related to specific diseases which can be used
as biomarkers for disease diagnosis, prognosis and re-
sponse to therapy [18], [30].
Machine Learning techniques can be used to discover

patterns in DNA copy number variations associated
with certain diseases. A set of chromosomal aberrations
occurring consistently when a certain disease is observed
can indicate that there is correlation between those aber-
rations and the observed disease. Such patterns have
been utilized by researchers [1], [7], [9], [12], [17], [18],
[28], [29], [31] for cancer detection and typing. In the
general case, the task to accomplish is the classification
of tissue samples as cancerous or non-cancerous, and
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extensively their classification to a specific cancer type.
In the setting of supervised learning, the copy number

changes of particular locations (probes) of the genome
are used as features for training and classification. In
general, the number of probes of a high-resolution CGH
can span from hundreds to thousands. On the contrary,
only a few genes are associated with most diseases.
Moreover, the number of available samples to be used
for training is usually only a few dozens. To reduce
noise and avoid over-fitting a feature selection step is
necessary before training and classification. An extra
advantage of the feature selection process is that the
majority of the irrelevant features are discarded and the
few remaining can be indicators of possible biomarkers
related to the observed disease.
Feature selection has already been shown to signifi-

cantly benefit the classification accuracy of aCGH data
[9], [12], [22]. Thus, it is important to design effective
feature selection method for identifying the DNA copy
number biomarkers. Previous works have shown the
superior performance of sparsity regularization in di-
mensionality reduction and feature selection [4], [24].
The ℓ1-norm based sparse regularization term was used
with regression or SVM models to perform feature se-
lection by shrinking the coefficients of the irrelevant
features to zero [34]. Such sparsity norms impose flat
sparsity to shrink the coefficients without using struc-
ture information. Later the structured group sparsity
was introduced to select group-wise features [45]. The
sparse group Lasso model was proposed to combine
both group ℓ1-norm regularization and ℓ1-norm regu-
larization [11]. Both later methods [11], [45] group the
features/variables using specific structures. Considering
the multi-task or multi-class structures, the structured
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sparsity-inducing norm ℓ2,1-norm was proposed for fea-
ture selection by [2], [26]. Later Nie et. al. [25] proposed
the use of joint ℓ2,1-norm minimization on both loss
function and regularization. As a mixed norm, the ℓ2,1-
norm couples feature selection across tasks, i.e. group the
coefficients of the same feature cross all tasks/classes
and impose the ℓ1-norm between all features. Thus,
the ℓ2,1-norm is performed to select features across all
tasks/classes with joint sparsity. That means that each
feature has small scores for all or has large scores over all
tasks/classes. This is different to group Lasso and sparse
group Lasso, which group different features using ℓ2-
norm. If we reduce the ℓ2,1-norm from matrix format to
vector format, it becomes the flat ℓ1-norm. In this work,
we introduce our newly developed feature selection
method based on structured sparse regularization that
produces higher accuracy compared to the methods that
have been previously tested on aCGH data. Our method
was inspired by the ℓ2,1-norm based multi-task learning
and feature selection [2], [26].
To effectively select the DNA copy number biomark-

ers, we propose a hybrid regularization method which
uses two separate regularization terms involving ℓ2,1-
norm and ℓ1-norm. This is particularly important in
multi-class classification problems which contain a big
number of classes because a feature, for example, that is
important for one class but not important for all others
get a low total score (coefficient) to be lost in the feature
selection process. Our method ensures that such features
will at least get a high coefficient value for the classes
that they are important to and have more chances to
be included in the final set of selected features. Each
regularization term is assigned a different weight accord-
ing to the specifics of the dataset. More important, we
introduce a new efficient optimization algorithm to solve
the proposed objective with rigorously proved global
convergence.
To test the performance of our proposed method we

conducted experiments on four different, publicly avail-
able aCGH datasets. We compare with other methods
that have been recently proposed for feature selection on
aCGH biomarkers and present the classification accuracy
results using SVM [8] and Logistic Regression [5], [16] as
classifiers. In all empirical results, our hybrid structured
sparse learning model consistently outperforms other
related feature selection approaches. More important, we
carefully investigate the aCGH biomarkers selected by
our method, and the biological evidences in literature
strongly support our results.
The remainder of this article is organized as follows.

Section 2 introduces the theory behind the proposed
feature selection method. In section 3 we describe the
datasets we used in our experiments. Our experimental
results are presented in Section 4. Finally, Section 5 gives
the conclusions of our findings.
Notations: We summarize the notations and the defini-
tion of norms used in this paper. Matrices are written as
uppercase letters and vectors are written as lowercase

letters. For matrix W = {wij}, its i-th row, j-th column
are denoted as wi, wj , respectively. The ℓp-norm of the

vector v ∈ R
n is defined as ‖v‖p = (

n
∑

i=1

|vi|p)
1
p for

p > 0. The Frobenius norm of the matrix W ∈ ℜd×m is

defined as ‖W‖F =

√

d
∑

i=1

m
∑

j=1

w2
ij =

√

d
∑

i=1

‖wi‖22. The ℓ2,1-

norm of matrix W is defined as ||W ||2,1 =
d
∑

i=1

||wi||2 (in

other related papers, people also used the notation ℓ1/ℓ2-
norm). ℓ1,1-norm of matrix W is defined as ||W ||1,1 =
d
∑

i=1

m
∑

j=1

|wij |. The ℓr,p-norm of the matrix W ∈ ℜn×m is

defined as

‖W‖r,p =







n
∑

i=1





m
∑

j=1

|Wij |r




p

r







1
p

=

(

n
∑

i=1

∥

∥wi
∥

∥

p

r

)
1
p

.

(1)
At last, Tr(W ) means the trace operation for matrix W .

2 FEATURE SELECTION VIA ROBUST STRUC-
TURED SPARSITY-INDUCING NORMS

2.1 Hybrid Structured Sparsity Regularization

Feature selection methods can be divided into filter
method [22], [27], [41], [43], wrapper method [19], and
embedded method [2], [34], [37], [45]. Wrapper methods
utilize the learning machine of interest as a black box to
select the subset of features that give the best predictive
accuracy, and usually have good performance but high
computational cost. Filter methods select features based
on discriminant criteria that rely on the characteristics of
data, independent of any classification algorithm. Filter
methods are limited in scoring the predictive power
of combined features, and thus have shown to be less
powerful in predictive accuracy as compared to wrapper
methods, whereas wrapper methods are much slower
and cannot be efficiently applied to large datasets. Em-
bedded methods perform feature selection as part of
the training process and are usually specific to given
learning machines [14]. The embedded methods combine
the advantages of both wrapper and filter methods, i.e.
good performance and low computational cost.
In this work, to effectively identify the aCGH biomark-

ers, we will introduce an embedded feature selection
method based on least square regression with ℓ2-norm
minimization on the loss function and hybrid structured
sparsity-inducing norms ℓ2,1-norm and ℓ1-norm regu-
larization terms. The least square regression has been
widely used for learning tasks, due to its simple loss
function and fast optimization procedure. Because we
are targeting to biomarkers selection, not final classi-
fication accuracy, it is efficient to use the least square
regression as loss function.
Given n training data X = [x1, x2, . . . , xn] ∈ ℜd×n

with d features and the associated class labels Y =
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[y1, y2, . . . , yc] = [z1, z2, . . . , zn]
T ∈ ℜn×c (zi is the class

label vector for data point xi), traditional least square
regression solves the following optimization problem to
obtain the projection matrix W ∈ ℜd×c and the bias
vector b ∈ ℜc:

min
W,b

n
∑

i=1

‖WTxi + b− zi‖22. (2)

For simplicity, the bias b can be absorbed into W when
the constant value 1 is added as an additional dimension
for each data point xi, (1 ≤ i ≤ n). Thus the problem
becomes:

min
W

n
∑

i=1

‖WTxi − zi‖22. (3)

To control variance and prevent overfitting, re-
searchers usually add one or more regularization terms
to the above equation as:

min
W

n
∑

i=1

‖WTxi − zi‖22 +R(W ), (4)

where R(W ) is the regularization term and has several
options, such as:

R1(W ) = ‖W‖2, R2(W ) =

c
∑

j=1

‖wj‖1,

R3(W ) =
d
∑

i=1

‖wi‖02, R4(W ) =
d
∑

i=1

‖wi‖2.

R1(W ) is the ridge regularization which suffers from the
existence of outliers in the dataset due to high variance.
Moreover, the ridge regularization was not designed for
feature selection, hence it is not suitable to be used for
biomarker selection. The three other regularization terms
are based on non-smooth sparsity-inducing norms.
R2(W ) is the LASSO regularization term which has

the desired property of giving different weights to a
feature across different classes c but produces very
sparse solutions, especially when the number of samples
is small. The ℓ1-norm regularization term imposes the
flat sparsity, and its optimization techniques include
LARS [10], linear gradient search [20], and proximal
methods [3]. R3(W ) is the ℓ2,0-norm regularization term,
and R4(W ) is the ℓ2,1-norm regularization term. They
impose structured sparsity by penalizing all c regression
coefficients corresponding to a single feature as a whole.
Thus, the important biomarkers will have large weights
in W for all/most classes, i.e. the important gene i will
have large value on ‖wi‖2.
There are some other similar structured sparsity reg-

ularization, such as group features/covariates detection
[26], [38], [39], [45], joint vector sparsity [33], hierarchi-
cal group features [46], etc. In other communities, the
structured sparsity is also called block sparsity [32]. The
structured sparsity learning problems can be efficiently
solved by methods in [21], [23], [25], [40].

Although the ℓ0-norm of R3(W ) is the most desirable
[23], it is an NP-hard problem. Thus, in this paper,
we use R4(W ) based regularization, which is a good
approximation of the ℓ2,0-norm regularization. The ℓ2,1-
norm regularization can help us select the important
biomarkers, which are discriminative to all/most classes.
However, some important biomarkers may only be dis-
criminative to a small number of classes, not all of them.
Such biomarkers may not be selected by the ℓ2,1-norm
regularization, because their weights are shrunk to small
values by the ℓ1 additions along the feature direction in
R4(W ) definition. To address this problem, we use the
hybrid sparsity-inducing norms with adding one more
ℓ1-norm regularization term, and the new objective is:

min
W

J(W ) =

n
∑

i=1

‖WTxi−zi‖2+γ1R2(W )+γ2R4(W ) , (5)

or

min
W

J(W ) = ‖XTW − Y ‖2 + γ1‖W‖1,1 + γ2‖W‖2,1 , (6)

where the ℓ2,1-norm regularization imposes the struc-
tured sparsity, and the ℓ1-norm regularization allows the
features to have large weights for some classes, not all
of them. Thus, the learned weights of features will more
precisely show their discriminative abilities.
Although solving this problem seems difficult as both

regularization terms are non-smooth, we will show in
the next section that our objective can be efficiently
solved. For short we will call this objective function
HSSL (Hybrid Structured Sparse Learning model). The
optimal value of the parameters γ1 and γ2 can be de-
termined experimentally from the dataset. The resulting
values in the projection matrix W will determine the
optimal coefficient values for each attribute xi. To select
the best k features we can just sort the features by
decreasing coefficient value and keep the top k of them.
Figure 1 shows a visualization of the coefficient table W
after the application of HSSL feature selection method on
aCGH dataset 3 (please see section 3). In the visualized
gray-scale heat-map, each row represents a class and
each column represents a feature. The gray-scale color
of each square represents the calculated coefficient value
of the feature for the corresponding class. Lighter color
means the coefficient has a positive value, darker color
means negative coefficient value, and gray color means
a value close to 0. Large absolute values for each square
indicate strong correlation for the corresponding feature-
class pair. The overall importance of each feature is
measured by calculating the sum of the absolute values
of the feature for all classes. In the figure, the features are
sorted from left to right by the total importance values.

2.2 An Efficient Algorithm to Solve HSSL Model

Although our objective function is convex, it is difficult
to be solved, because both regularization terms are non-
smooth. It was generally felt that the ℓ2,1-norm mini-
mization problem is much more difficult to solve than
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Fig. 1. Visualization of the coefficient table W after the
application of HSSL feature selection method on aCGH
dataset 3. Each row represents a class, each column
represents a feature. The grayscale color of each square
represents the final coefficient value of the feature for the
corresponding class. Lighter color means the coefficient
has a positive value, darker color means negative coeffi-
cient value, and gray color means a value close to 0. The
features are sorted from left to right by total importance
value.

the ℓ1-norm minimization problem. Existing algorithms
usually reformulate it as a second-order cone program-
ming (SOCP) or semidefinite programming (SDP) prob-
lem, which can be solved by interior point method or the
bundle method. However, solving SOCP or SDP is com-
putationally expensive, which limits their use in practice.
Here, we propose an efficient iterative algorithm to solve
our objective function in Eq. (6).
The Eq. (6) can be written as:

min
W

Tr(XTW −Y )T (XTW −Y )+γ1 ‖W‖1,1+γ2 ‖W‖2,1 .
(7)

Taking the derivative w.r.t wi (1 ≤ i ≤ c), and setting it
to zero, we have

XXTwi −Xyi + γ1Diwi + γ2D̃wi = 0, (8)

where Di(1 ≤ i ≤ c) is a diagonal matrix with the k-th
diagonal element as 1

2|wki|
:

Di =







1
2|w1i|

· · · 0
...

...
...

0 · · · 1
2|wdi|






, (9)

and D̃ is a diagonal matrix with the k-th diagonal
element as 1

2‖wk‖2
:

D̃ =







1
2‖w1‖2

· · · 0
...

...
...

0 · · · 1
2‖wd‖2






. (10)

Thus, we can get wi as:

wi = (XXT + γ1Di + γ2D̃)−1Xyi. (11)

Note thatDi and D̃ depend onW , and are also unknown
variables. Therefore, we can iteratively solve them. First,
we randomly initialize W . Second, we calculate Di and
D̃. Third, we compute wi by Eq. (11). We will repeat
the Second and Third steps till the result converges. Our
algorithm is described in Algorithm 1.
When |wki| = 0 or ‖wi‖2 = 0, Eq. (6) is not dif-

ferentiable. Following [13], we can introduce a small
perturbation to regularize the k-th diagonal element of
Di as 1

2
√

w2
ki

+ζ
. Similarly, when ‖wi‖2 = 0, the i-th

diagonal element of D̃ can be regularized as 1

2
√

‖wi‖2
2+ζ

.

Then it can be verified that the derived algorithm min-
imizes the following problem:

∑n

i=1 ‖WTxi − yi‖2 +

γ1
∑c

i=1

∑d

k=1

√

w2
ki + ζ + γ2

∑d

i=1

√

‖wi‖22 + ζ, which is
apparently reduced to problem Eq. (6) when ζ → 0.

Algorithm 1: Algorithm

Input: X , Y
Initialize W (1) ∈ ℜd×c, t = 1 ;
while not converge do

1. Calculate the diagonal matrices D
(t)
i (1 ≤ i ≤ c)

and D̃(t), where the k-th diagonal element of

D
(t)
i is 1

2|w
(t)
ki

|
as Eq. (9), and the k-th diagonal

element of D̃(t) is 1
2‖(w(t))k‖2

as Eq. (10) ;

2. For each i (1 ≤ i ≤ c),

w
(t+1)
i = (XXT + γ1D

(t)
i + γ2D̃

(t))−1Xyi ;
3. t = t+ 1 ;

Output: W (t) ∈ ℜd×c.

2.3 Algorithm Analysis

We will prove that the above algorithm converges to the
global optimum.

Lemma 1: ‖w‖2 −
‖w‖2

2

2‖w0‖2
≤ ‖w0‖2 −

‖w0‖
2
2

2‖w0‖2

Proof: Obviously, −(‖w‖2−‖w0‖2)2 ≤ 0, thus we have

−(‖w‖2 − ‖w0‖2)2 ≤ 0 (12)

⇒ 2 ‖w‖2 ‖w0‖2 − ‖w‖22 ≤ ‖w0‖22 (13)

⇒ ‖w‖2 −
‖w‖22

2 ‖w0‖2
≤ ‖w0‖2 −

‖w0‖22
2 ‖w0‖2

(14)

which completes the proof.
�

Theorem 1: The Algorithm 1 decreases the objective
value in each iteration till converges.
Proof: To prove this theorem, we will compare the

object function values in the iterations t + 1 and t.
According to Step 2 in the algorithm, we have

W (t+1) =

min
W

Tr(XTW − Y )T (XTW − Y )

+ γ1

c
∑

i=1

wT
i D

(t)
i wi + γ2Tr(W

T D̃(t)W ),

(15)

therefore we have:

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

c
∑

i=1

(w
(t+1)
i )TD

(t)
i w

(t+1)
i + γ2Tr(W

(t+1))T D̃tW (t+1)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

c
∑

i=1

(w
(t)
i )TD

(t)
i w

(t)
i + γ2Tr(W

(t))T D̃(t)W (t)
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Based on the definitions of W , Di, and D̃, we can re-
write the above inequality as:

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

(w
(t+1)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

+ γ2

d
∑

k=1

∥

∥(w(t+1))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

(w
(t)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

+ γ2

d
∑

k=1

∥

∥(w(t))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

We further re-write the inequality as:

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

d
∑

i=1

c
∑

j=1





(w
(t+1)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

−
∣

∣

∣
w

(t+1)
ij

∣

∣

∣
+
∣

∣

∣
w

(t+1)
ij

∣

∣

∣



+

γ2

d
∑

k=1

(
∥

∥(w(t+1))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

−
∥

∥

∥
(w(t+1))k

∥

∥

∥

2
+
∥

∥

∥
(w(t+1))k

∥

∥

∥

2

)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

d
∑

i=1

c
∑

j=1





∣

∣

∣w
(t)
ij

∣

∣

∣+
(w

(t)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

−
∣

∣

∣w
(t)
ij

∣

∣

∣



+

γ2

d
∑

k=1

(

∥

∥

∥(w(t))k
∥

∥

∥

2
+

∥

∥(w(t))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

−
∥

∥

∥(w(t))k
∥

∥

∥

2

)

,

and

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

(∣

∣

∣
w

(t+1)
ij

∣

∣

∣

)

+ γ2

d
∑

k=1

(∥

∥

∥
(w(t+1))k

∥

∥

∥

2

)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

(∣

∣

∣w
(t)
ij

∣

∣

∣

)

+ γ2

d
∑

k=1

(∥

∥

∥(w(t))k
∥

∥

∥

2

)

+

γ1

d
∑

i=1

c
∑

j=1









(w
(t)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

−
∣

∣

∣
w

(t)
ij

∣

∣

∣



 −





(w
(t+1)
ij )2

2
∣

∣

∣w
(t)
ij

∣

∣

∣

−
∣

∣

∣
w

(t+1)
ij

∣

∣

∣







+

γ2

d
∑

k=1

((
∥

∥(w(t))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

−
∥

∥

∥
(w(t))k

∥

∥

∥

2

)

−
(
∥

∥(w(t+1))k
∥

∥

2

2

2
∥

∥(w(t))k
∥

∥

2

−
∥

∥

∥(w(t+1))k
∥

∥

∥

2

))

(16)

Applying the Lemma 1 to the above inequality, the
last two items on the right hand side are less than zero.

Thus, we have:

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

∣

∣

∣w
(t+1)
ij

∣

∣

∣+ γ2

d
∑

k=1

∥

∥

∥(w(t+1))k
∥

∥

∥

2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

d
∑

i=1

c
∑

j=1

∣

∣

∣w
(t)
ij

∣

∣

∣+ γ2

d
∑

k=1

∥

∥

∥(w(t))k
∥

∥

∥

2
(17)

We can write the results into matrix formulations as:

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y ) +

γ1

∥

∥

∥W (t+1)
∥

∥

∥

1,1
+ γ2

∥

∥

∥W (t+1)
∥

∥

∥

2,1

≤ Tr(XTW (t) − Y )T (XTW (t) − Y ) +

γ1

∥

∥

∥
W (t)

∥

∥

∥

1,1
+ γ2

∥

∥

∥
W (t)

∥

∥

∥

2,1
. (18)

Therefore, the algorithm decreases the objective value
in each iteration.

�

In the convergence, W (t), D
(t)
i (1 ≤ i ≤ c) and D̃(t)

will satisfy the Eq. (8). As the problem (7) is a convex
problem, satisfying the Eq. (8) indicates that W is a
global optimum solution to the problem (7). Therefore,
the Algorithm 1 will converge to the global optimum of
the problem (7). Because we have closed form solution
in each iteration, our algorithm converges very fast.

3 DATA DESCRIPTIONS

In order to assess the performance of our proposed
method for feature selection in aCGH data, we con-
ducted extensive classification experiments where we
compared our method with other state-of-the-art feature
selection methods that have been recently proposed for
aCGH feature selection. For our experiments we used 4
different publicly available aCGH datasets.
Dataset 1: The first dataset contains a total of 75

samples coming from subjects with oral squamous cell
carcinoma (SCC) (14 TP53 mutant samples) and healthy
subjects (61 wildtype samples). The dataset is available
as part of the supplementary material of the publication
[42]. Each CGH sample consists of 1979 probes.
Dataset 2: The second dataset has been collected by

the authors of [44] to investigate the biological basis
between aging and sporadic breast cancer incidence and
prognosis. DNA samples from matched ER+ invasive
breast cancers diagnosed in either young (<45) or old
(>70) women were analyzed with aCGH. The datasets
consists of 71 samples, 27 of them coming from young
women and 44 from old women.
Dataset 3: Our third dataset, consists of 98 samples of

aCGH profiles coming from 3 different types of primary
colorectal cancer: metastasis-free, liver and peritoneal
metastasis. 36 samples come from patients who de-
veloped liver metastasis, 37 come from patients who
developed peritoneal metastasis and 25 from patients
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(a) Full male human genome.

(b) Original data. Chromosome numbers are given on top and bottom of the image. Log-ratios are indicated by both
the y-axis and the color (green indicates regions of chromosomal loss and red indicates regions of chromosomal gain).

(c) Summary data (Pointwise averaging of all computed profiles).

(d) CNV Heatmap. The first line is the heatmap of the original log-ratios; the last is the heatmap of the averaged profile
(pointwise averaging across the outputs of all algorithms); and the lines in the middle are the heatmaps corresponding
to the data discretized and smoothed by different algorithms (CBS [36], CGHseg [28] and cghFLasso [35]).

Fig. 2. The images above visualize the CNVs of a sample of colorectal cancer with liver metastasis coming from our
third dataset. To visualize the data we used the CGHweb tool (http://compbio.med.harvard.edu/CGHweb/).

who remained metastasis-free. The dataset can be found
in NCBI GEO database with the code name "GSE20496".

Dataset 4: The forth dataset consists of 101 samples
coming from 5 different breast cancer subtypes (basal-
like - 23 samples, luminal A - 43 samples, luminal B -
14 samples, ERBB2 - 15 samples, and normal breast-like
- 6 samples). Each CGH sample consists of 2149 probes.
The dataset can be found in the supplementary data of
[7].

Figure 2 visualizes a sample coming from our third

aCGH dataset. That is a cancerous sample which con-
tains colorectal cancer with liver metastasis. In 2b we
can see the original log-ratios of the DNA copy number
variations throughout the chromosome. In 2c we can
see the pointwise averaging of all computed profiles
after the sample has been segmented. During segmen-
tation, each single-sample signal is divided into regions
of constant copy number, called segments [9], [42]. In
this work we do not apply segmentation before feature
selection since we want to test our method at the probe
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level and also evaluate its ability to identify consecutive
important probes that may belong to the same segment.
Finally, 2d shows 4 different heatmaps obtained from
the same sample. The first line is the heatmap of the
original log-ratios; the last is the heatmap of the av-
eraged profile (pointwise averaging across the outputs
of all algorithms); and the lines in the middle are the
heatmaps corresponding to the data discretized and
smoothed by different algorithms (CBS [36], CGHseg
[28] and cghFLasso [35]).

4 EXPERIMENTAL RESULTS AND DISCUS-
SIONS

We performed our hybrid structured sparse learning
model (shortly HSSL) on aCGH biomarker selection
studies. To evaluate the performance of our proposed
feature selection method we conducted experiments on
4 aCGH datasets, where we used and compared to five
other feature selection methods (which are popularly
used in bioinformatics research), including Maximum
Influence Feature Selection (MIFS) [22], Relief-F [41], In-
formation Gain (IG) and χ2-statistic (chi-squared) [43] as
implemented in Weka [15], and Minimum Redundancy
Maximum Relevance (mRMR) found in [27].
In our experiments we measured the performance of

each of the above methods using SVMs [8] and Logistic
Regression (LR) [5] for classification. For the needs of our
experiments we used the LIBSVM [6] implementation
of SVM with RBF kernel and the implementation of
Logistic Regression found in Weka [15]. We evaluated
the performance of each of the different feature selection
methods on a range of different number of selected fea-
tures (from 5 to 100). To assess the classification accuracy
we performed 10-Fold cross validation (CV) applying
each of the feature selection methods on the same data
subsets and using the same SVM parameters, which
have been determined in advance as appropriate for the
target dataset, throughout the experiments. Furthermore,
to eliminate the effect of randomness, we repeated each
10-Fold CV round 10 times, with different sample dis-
tributions every time, and we took the average accu-
racy. The classification accuracy results of all different
feature selection and classification method combinations
are shown in Figure 3. Figures 4 and 5 give a more in-
depth view of the classification behavior of each method
by visualizing the confusion matrices of the classification
results for all feature selection and classification method
combinations, using the top 50 features. The number
50 was selected based on the fact that in most of the
experiments, selection of a bigger number of features
does not yield a significant increase in classification
accuracy. Figure 4 shows the original distribution of
values where the sum of all numbers in each row is equal
to the number of instances corresponding to that class.
Figure 5 shows normalized percentage values. For each
row i corresponding to an actual class, the normalized
percentage values are calculated as Normalized_mij =

(mij/
∑n

j=1 mij)× 100, where n is the number of classes
in the dataset. The normalized confusion matrices have
been included to help the reader better understand the
percentage accuracies in the confusion matrices.

4.1 Classification Results Using Selected Biomark-
ers

The first dataset contains samples from only 2 different
classes (oral squamous cell carcinoma vs. healthy tissue),
thus forming a binary classification problem. In this
dataset HSSL shows superior performance compared to
the other feature selection methods for both SVM and
Logistic Regression classifiers, especially when using be-
tween 30 and 50 features. The sample number imbalance
between the two classes (14 versus 61 samples) appears
to severely affect the classification accuracy (especially
for SVM classifier), however, as it can been observed
from the confusion matrices displayed (Fgures 4 and
5), the features selected by HSSL mitigate the problem
compared to the other feature selection methods. ReliefF
seems to consistently have the overall poorest perfor-
mance in this dataset. The rest of the feature selection
methods display similar behavior negatively affected by
the class imbalance.
The second dataset is again a binary dataset (breast

cancers diagnosed in either young (<45) or old (>70)
women). In this dataset, when using SVM classifier,
HSSL and MIFS compete for the first place, whereas
the other feature selection methods lag far behind. With
Logistic Regression as classifier, the overall performance
of all methods is lower at smaller number of features and
only when using 65 features and above, HSSL shows a
clear advantage. As it appears, this is inherently a dif-
ficult dataset as there might not be enough biormarkers
to differentiate between breast cancers in younger and
older women. That leads to a low overall classification
accuracy for all feature selection and classification meth-
ods.
The third dataset is the first multi-class dataset, con-

taining samples from 3 different types of primary col-
orectal cancer. The number of samples in each class of
this dataset is balanced and the overall classification
accuracy for all methods is relatively high. However,
HSSL is a clear winner, showing significantly higher
performance compared to all other feature selection
methods for both SVM and LR classifiers.
Finally, the forth dataset contains samples from 5

different classes, thus forming another multiclass clas-
sification problem. In this dataset, again, HSSL shows
superior performance for both SVM and Logistic Regres-
sion classifiers compared to the other feature selection
methods, although as one can see, HSSL is a clear
winner when using Logistic Regression classifier. The
number of samples in this dataset is again not very well
balanced among the different classes, since the second
class (luminal A type cancer) contains 43 of 101 total
samples, whereas the fifth class contains only 6 samples.
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(a) Dataset 1 - SVM
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(b) Dataset 1 - Logistic Regression.
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(c) Dataset 2 - SVM
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(d) Dataset 2 - Logistic Regression.
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(e) Dataset 3 - SVM
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(f) Dataset 3 - Logistic Regression.
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(g) Dataset 4 - SVM
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(h) Dataset 4 - Logistic Regression.

Fig. 3. Classification accuracy results for all 4 different datasets comparing our proposed method (HSSL) with 5
existing feature selection methods using SVM and Logistic Regression classifiers.
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Fig. 4. Confusion Matrices of the classification results for SVM and Logistic Regression (LR) using the different feature
selection methods. Each column of the matrix represents the instances in a predicted class, while each row represents
the instances in an actual class. The numbers within a row of a matrix show the distribution of predicted class for the
instances belonging to that actual class. Note that each number is the average of 10 different runs of the classification
experiment. For readability purposes the numbers have been rounded to the closest integer. This introduces some
rounding error, e.g. an original value of 0.3 appears as 0 in the confusion matrix. Gray-scale intensities corresponding
to the distribution of values within a row have been used to enhance readability.
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Out of all the feature selection methods evaluated, MIFS
appears to be the most easily affected by class imbalance
(as we also saw in dataset 1), whereas HSSL is the least
affected method.
In total, we see that HSSL shows top performance in

all different datasets and classification methods used. Es-
pecially when we are dealing with multi-class problems,
such as in datasets 3 and 4, we see that HSSL has a
clear advantage compared to existing feature selection
methods due to its ability to identify features that may
be important for one class but insignificant for the rest
of them.

4.2 Biomarker Analysis

Apart from classifying the tumor tissue samples based
on their aCGH analysis, it is of great importance to
identify what genetic abnormalities cause the disease
itself. In other words we are interested in identifying
the biomarkers that may connect certain properties of
the genotype with their corresponding effects on the
phenotype. Those connections are already known for
some disease types. For example, in Figure 6 we can
see the connection between certain genes and diseases
as listed in Entrez Genome NCBI Database1. The vi-
sualizations are made using the on-line Entrez Map
Viewer Software2. However, for many disease types,
their connection to certain genomic functionalities is yet
to be discovered. The BAC/PAC clones used to form the
aCGH datasets can help towards this direction. BAC (F-
factor-based Bacterial Artificial Chromosome) and PAC
(P1-derived Artificial Chromosome) are cloning systems
specifically designed at cloning DNA fragments in excess
of 100 - 300 kb. In aCGH analysis, BAC/PAC clones
are used to measure areas of the genome with increased
or decreased DNA copy numbers compared to the nor-
mal/control levels. Each clone region can contain one
or more genes. Over- or under-expression of such genes
can lead to cell abnormalities such as tumor genesis.
Therefore, CNVs that occur consistently for a certain
disease in the genomic area covered by a specific clone
can be an indication that the associated genes existing in
that area could be related to the disease itself.
Our feature selection method allows us to automati-

cally analyze aCGH data and find clones who’s CNVs
are related to specific cancer types. The clones are ranked
in order of importance based on their predictive power
with regard to the examined cancer classes of each
dataset. For example, in dataset 3, the clone RP11-47L3
is ranked as the most important with regard to its
ability to differentiate between the three different cancer

1. Entrez Genome NCBI Database organizes information on
genomes including maps, chromosomes, assemblies, and annotations
(http://www.ncbi.nlm.nih.gov/sites/genome).

2. The Map Viewer provides special browsing capabilities for a
subset of organisms in Entrez Genomes. Map Viewer allows you to
view and search an organism’s complete genome, display chromosome
maps, and zoom into progressively greater levels of detail, down to
the sequence data for a region of interest.

Dataset 1
Clones Genes

1 RP11-43B19 LPAL2
2 RP11-42A17 GABRG1
3 GS1-174H8 BBS9
4 CTB-1O12 FHIT
5 RP11-110I16 RP11-110I16
6 RP11-59E12 LAMA3
7 RP11-52B21 LRCH1, ESD
8 RP11-14I14 JMJD1C
9 RP11-130N6 N/A
10 RP11-283M20 RPS15A, ARL6IP1, SMG1
11 RP11-109D4 RP11-109D4, ARL6IP1, SMG1
12 RP11-119N7 LOC645481
13 RP11-70F16 N/A
14 RP11-221G13 MAMLD1
15 RP11-34J24 VOPP1
16 RP11-162F2 RPS27AP11
17 RP11-88B16 EFCAB5
18 RP11-160L9 CDK2AP2, CABP2, GSTP1, LOC100505621,

NDUFV1, LOC390213, NUDT8, TBX10,
ACY3

19 RP11-94J8 IL13RA2, LOC100419790, YAP1P2
20 RP11-97P11 LANCL2, VOPP1

TABLE 1
The 20 most important BAC/PAC clones of Dataset 1

and the corresponding genes found in the genomic area
covered by each clone.

types of the dataset. Increased copy number of the clone
shows a strong correlation with colorectal cancer type
1 (liver metastasis), whereas decreased copy number
shows strong correlation with colorectal cancer type 2
(peritoneal metastasis). The CNVs of the clone does not
show strong correlation with class type 3 (metastasis-free
colorectal cancer), (see Figure 1). The RP11-47L3 comes
from locus AC022706 of Homo Sapiens chromosome 17
(see Figure 7). In the same region lies the gene SLFN5
(schlafen family member 5) which encodes a protein
believed to have a role in hematopoeitic cell differentia-
tion. Therefore, this gene and the corresponding encoded
protein may be related to the metastasis type developed
by the examined patients. Tables 1, 2, 3 and 4 list the top
20 clones of each dataset and the corresponding genes
found in the genomic area covered by each clone. Where
"N/A" appears instead of a gene, it means that there is
no known gene in the covered area according to NCBI
Genome Entrez Database.

5 CONCLUSIONS

In this paper we introduced an efficient embedded fea-
ture selection method and compared its performance
with existing state-of-the-art feature selection methods.
The proposed method, which utilizes hybrid structured
sparsity-inducing norms to determine the optimal coeffi-
cients for the initial set of features, consistently showed
superior performance compared to other feature selec-
tion methods when used for feature selection in aCGH
data. Especially in multi-class problems our method
manages to significantly outperform the competitive fea-
ture selection methods. Our method is independent of
the algorithm to be used during the classification process
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Fig. 6. Genotype-Phenotype mapping of well known genes and diseases on Chromosome 17, extracted from Entrez
Genome NCBI Database.

Dataset 2
Clones Genes

1 RP11-145B20 SLC1A2
2 RP11-568F15 OR10V1, OR10Y1P, OR10V3P, OR10V2P,

STX3, FABP5L7, MRPL16, GIF, TCN1
3 RP11-49D19 ZBTB3, POLR2G, TAF6L, TMEM179B,

TMEM223, NXF1, STX5, WDR74, RNU2-2,
SNHG1, SNORD22, SNORD25-SNORD31,
SLC3A2, CHRM1

4 RP11-729B4 MS4A14, MS4A5, MS4A1, MS4A12, MS4A13
5 RP11-77M17 SERPING1, MIR130A, LOC100507106,

YPEL4, CLP1, ZDHHC5, MED19,
LOC100507231, TMX2, C11orf31, BTBD18

6 RP11-129G17 VN1R55P, RNLS
7 RP11-45L17 C10orf68, ITGB1, LOC100288319
8 RP11-35F11 HRASLS5, LGALS12, TMSL5,

RARRES3, HRASLS2
9 RP11-181I11 N/A
10 RP11-61G7 SPAG8, HINT2
11 RP11-40G3 DLG2
12 RP11-48K2 BOD1
13 RP11-206I1 RP11-206I1, LOC100507338, LOC100419850
14 RP11-287G20 CCDC147
15 GS1-54J22 C1GALT1, LOC100505904
16 RP11-39C2 GPR116, GPR110
17 RP11-160A13 PAQR9, LOC100289361, SR140
18 RP11-1L22 GPR39
19 RP11-215H8 ODZ4
20 RP11-39I6 CLTA

TABLE 2
The 20 most important BAC/PAC clones of Dataset 2

and the corresponding genes found in the genomic area
covered by each clone.

Dataset 3
Clones Genes

1 RP11-47L3 SLFN5
2 RP11-202L1 N/A
3 RP11-213G21 N/A
4 RP11-339F13 EGFR, LOC100507500, LOC100130121,

CALM1P2
5 RP11-338H14 N/A
6 CTC-263A14 LOC100131520
7 RP11-359H18 LOC100131479, RPS27P29, VN1R93P,

ZNF675, VN1R94P, ZNF681
8 RP11-219A15 LOC266619, LOC353194, LOC400578,

LOC147228, LOC339186, CLPSMCR,
TBC1D27

9 RP4-552K20 MAGEC3, LOC100420249, MAGEC1
10 RP11-447J13 CADM2, LOC100422711
11 RP11-767J14 N/A
12 RP11-164K24 LOC100506669, LOC283710
13 RP11-125I23 GTF3A, MTIF3
14 RP11-122N14 DMD
15 RP11-326G21 PDE4DIP, LOC100505971
16 RP11-27C22 RP1-27C22
17 RP11-67F24 IL12A, LOC730109, BRD7P2
18 RP11-187L3 CRYL1
19 RP11-426J23 EPHB6, TRPV6, TRPV5, C7orf34
20 RP11-182H20 TTTY8, TTTY7B, TTTY21, TTTY2, TTTY1

TABLE 3
The 20 most important BAC/PAC clones of Dataset 3

and the corresponding genes found in the genomic area
covered by each clone.
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Dataset 4
Clones Genes

1 RP11-48I18 ZNF423, MRPS21P7, MRPS21P8
2 RP11-58M3 MARVELD3, PHLPP2, SNORA70D,

SNORD71
3 CTA-799F10 SHANK3
4 RP11-52K17 RPL5P26, COL13A1
5 RP11-14G23 TDRG1, LRFN2, LOC100505697
6 RP11-105E14 LIX1L, RBM8A, GNRHR2, PEX11B,

ITGA10, ANKRD35, PIAS3, NUDT17,
POLR3C, RNF115

7 RP11-204D12 PCSK1
8 RP11-44N11 LOC392265, LOC100507001, ZHX2
9 RP11-15L8 LRFN4, PC, RNU7-23P, MIR3163, C11orf86,

SYT12
10 RP11-116F9 RPL5P22, PNOC, ZNF395
11 RP11-249H15 CDK18
12 RP11-16A21 LOC100131036, SPIRE1
13 RP11-141N1 LOC100132126
14 CTB-23D20 TAX1BP1, JAZF1
15 RP11-208E21 VPS13B, LETM1P3
16 RP11-33J8 SFMBT2
17 RP11-35I11 N/A
18 RP11-125O21 LOC100131849, KCNS2, STK3
19 RP11-177M14 EYA4
20 RP11-45B19 ZFAT, ZFATAS

TABLE 4
The 20 most important BAC/PAC clones of Dataset 4

and the corresponding genes found in the genomic area
covered by each clone.

Fig. 7. Clone-Gene mapping in the region 33,080K-
34,650K bp of Chromosome 17. In the genomic area
covered by the examined clone (RP11-47L3) we find the
gene SLFN5.

which makes it ideal for use in combination with differ-
ent classification methods. Experimenting with four pub-
licly available datasets, containing samples of different
cancer types, we showed how our method can be user
for biomarker detection and we also presented the top
20 biomarker genes found to be the most related with
the examined cancer types for each dataset. Although in
this work we examine the performance of our proposed
method on aCGH data, it can be also applied to a variety
of different data types where feature selection is useful.
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