
Under consideration for publication in Knowledge and Information
Systems

Boosted Ranking Models: A Unifying
Framework for Ranking Predictions

Kevin Dela Rosa 1, Vangelis Metsis 2, and Vassilis Athitsos 2

1 Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
2 Computer Science and Engineering Department, University of Texas at Arlington,

Arlington TX, USA

Abstract. Ranking is an important functionality in a diverse array of applications,
including web search, similarity-based multimedia retrieval, nearest neighbor classifi-
cation, and recommendation systems. In this paper we propose a new method, called
Boosted Ranking Model(BRM), for learning how to rank from training data. An impor-
tant feature of the proposed method is that it is domain-independent, and can thus be
applied to a wide range of ranking domains. The main contribution of the new method
is that it reduces the problem of learning how to rank to the much more simple, and
well-studied, problem of constructing an optimized binary classifier from simple, weak
classifiers. Using that reduction, our method constructs an optimized ranking model us-
ing multiple simple, easy-to-define ranking models as building blocks. The new method
is a unifying framework that includes, as special cases, specific methods that we have
proposed in earlier publications for specific ranking applications, such as nearest neigh-
bor retrieval and classification. In this paper we reformulate those earlier methods as
special cases of the proposed BRM method, and we also illustrate a novel application
of BRM, on the problem of making movie recommendations to individual users.

Keywords: Ranking models, learning, boosting, recommendation systems

1. Introduction

Ranking systems are used to automatically rank a set of items, according to spec-
ified criteria. Ranking is an integral part of a diverse array of applications, includ-
ing web search, similarity-based multimedia retrieval, nearest neighbor classifica-
tion, and recommendation systems for movies, books, and other shopping items.
Consequently, automated methods that can learn ranking models from training

Received Jun 08, 2010
Revised Nov 04, 2010
Accepted Jan 30, 2011

2 K. Dela Rosa et al

data are of interest to several research communities, and can lead to benefits
for the large numbers of computer users that use automated ranking systems
(such as Google search, Netflix movie recommendations, or Amazon shopping
recommendations) on a daily basis.

In some cases, the ranking criteria are absolute, and known in advance to
the designers of the ranking system. For example, we may want to identify the
most “important” web pages or the “strongest” football teams according to some
strict, quantitative definitions of “important” and “strong.” At the same time, in
many cases, the ranking criteria are not fixed, and are not known to the designer
of the ranking system in advance. This is the case, for example, for similarity-
based multimedia retrieval, where the ranking of the retrieved items depends on
the similarity to the query item. Another example is a movie recommendation
system, that needs to provide recommendations catered specifically for each user.

In this paper we propose a novel method, called Boosted Ranking Model
(BRM), for learning ranking models from training data. We address the general
case where the ranking criteria are not fixed and are not known a priori. At the
core of our method lies a reduction of the problem of learning how to rank to the
more simple and well-studied boosting problem, i.e., the problem of combining
weak binary classifiers into a strong binary classifier. The advantage of that
reduction is that it allows us to use well-developed existing boosting algorithms
for learning ranking models.

Following the boosting paradigm, the proposed BRM method combines multi-
ple simple, easy-to-define “weak” models into a single, optimized model. Defining
such “weak” models is a domain-specific task. However, after such weak models
have been defined, our method can be applied in a domain-independent way, to
construct an optimized combination of the weak models.

The proposed BRM method is a unifying framework that encapsulates, as
special cases, previous methods that we have proposed in earlier work for special-
purpose ranking problems such as nearest neighbor retrieval (Athitsos, Alon,
Sclaroff and Kollios, 2008; Athitsos, Hadjieleftheriou, Kollios and Sclaroff, 2007)
and nearest neighbor classification (Athitsos and Sclaroff, 2005). In this paper we
show how those prior methods can be readily derived as instances of the BRM
method. In addition, we describe a novel application of BRM, to the problem
of making movie recommendations for users using the Netflix dataset (Bennett,
Elkan, Liu, Smyth and Tikk, 2007).

The remainder of the paper is organized as follows: Section 2 goes over re-
lated work. Section 3 formally defines the problem we address in this paper.
Section 4 describes the reduction of the problem of learning how to rank to a
classical boosting problem, and describes how to adapt the AdaBoost algorithm
(Schapire and Singer, 1999) to the problem of learning a ranking model. Section
5 describes a somewhat more complicated variation of our method, that allows
for the construction of more informative ranking models. Section 6 shows how to
derive, as special cases of the proposed framework, some earlier methods that we
have proposed for nearest neighbor retrieval and classification. Section 7 shows
how to apply the proposed framework to the problem of making movie recom-
mendations. In Section 8 we provide results obtained by applying the proposed
method on the Netflix dataset (Bennett et al., 2007).

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 3

2. Related Work

As ranking problems appear in a variety of research areas and applications, a
large body of work is related to the topic of constructing ranking models. A popu-
lar application area for ranking methods is the area of recommendation systems,
i.e., systems that make recommendations for the most appropriate actions/items
for a specific user or situation. Recommendation systems can be used to recom-
mend to users a diverse range of items, including movies (Koren, 2008), commer-
cial products (Bridge, 2001), useful customer reviews (Zhang and Tran, 2010),
images (Kim, Lee, Cho and Kim, 2004), or music (Chen and Chen, 2005).

Collaborative filtering approaches (Goldberg, Nichols, Oki and Terry, 1992)
make recommendations based on previous user behavior patterns, i.e., based
on ratings/rankings that users have previously assigned to various items. Col-
laborative filtering for recommendation systems is a topic that has attracted
significant attention in recent years. Surveys of existing methods can be found in
(Adomavicius and Tuzhilin, 2005; Schafer, Frankowski, Herlocker and Sen, 2007).

One common approach for collaborative filtering is neighborhood models
(Bell, Koren and Volinsky, 2007; Bezerra and Carvalho, 2010; Toescher, Jahrer
and Legenstein, 2008; Vucetic and Obradovic, 2005), where recommendations
are based on choices made by users similar to a specific user, or choices made
by people who used, rated, or purchased a specific item (Linden, Smith and
York, 2003; Sarwar, Karypis, Konstan and Riedl, 2001). In (Koren, 2009), the
neighborhood model is expanded to include temporal dynamics, that model how
movie ratings change over time. Another common approach is the use of SVD-
based or SVD-inspired factorization models (Gantner, Drumond, Freudenthaler,
Rendle and Schmidt-Thieme, 2010; Paterek, 2007; Wu, 2009; Zhou, Wilkinson,
Schreiber and Pan, 2008). In factorization models, each user and each item is
assigned a low-dimensional vector, and the rating of a user on an item is ap-
proximated by the dot product of the vectors assigned to the user and the item.
Hybrid methods have also been proposed, that combine neighborhood models
and factorization models (Koren, 2008; Takács, Pilászy, Németh and Tikk, 2009).
Neural networks have also been used for collaborative filtering, in the form of
Restricted Boltzmann Machines (Salakhutdinov, Mnih and Hinton, 2007). Ex-
tensions of collaborative filtering algorithms have been proposed for distributed
systems (Becchetti, Colesanti, Marchetti-Spaccamela and Vitaletti, 2010).

The Netflix prize (Bennett et al., 2007) has motivated a significant amount of
novel research in collaborative filtering for recommendation systems, e.g., (Bell
and Koren, 2007; Paterek, 2007; Toescher et al., 2008). An important difference
between the problem definition in the Netflix prize and the problem we are
addressing in this paper is that in the Netflix contest the goal is to predict ratings,
whereas in this paper our goal is to predict rankings. Predicting rankings is a
relaxed version of the rating problem: while ratings specify rankings, rankings
do not specify ratings. The relaxation of the rating estimation problem into a
ranking estimation problem allows us to develop a relatively simple optimization
method based on boosting binary classifiers.

A key feature of the winning entry for the Netflix prize was the utilization
of multiple models, including neighborhood models, factorization models, and
Restricted Boltzmann Machines (Bell and Koren, 2007), based on the realiza-
tion that each of those methods has its own strengths and weaknesses, and that
combined together these methods can complement each other and lead to im-
proved accuracy. The proposed BRM method is designed exactly to facilitate

4 K. Dela Rosa et al

the task of combining multiple domain-specific methods. Our training algorithm
takes as input different, previously constructed models, and combines them into
an optimized hybrid model. An attractive feature of the algorithm is that it is
oblivious to the structure and assumptions underlying each of the input models,
thus making it easy to combine heterogeneous models together.

Another area where ranking is an important functionality is the area of
similarity-based indexing, and in particular nearest neighbor retrieval. In near-
est neighbor retrieval, we are typically given a database of objects and a specific
distance measure for comparing two objects. At runtime, given the query ob-
ject, the goal is to retrieve the most similar database objects. There are two
important aspects of the nearest neighbor retrieval problem that differentiate
it from the recommendation system problem. One such aspect is that, in near-
est neighbor retrieval, the system can always compute the ground truth using
brute-force search, i.e., by simply measuring the distance between the query ob-
ject and each database object. The goal of indexing methods is to efficiently
identify the nearest neighbors for each query, so as to spend significantly less
time than brute-force search would require.

A second differentiating aspect of the nearest neighbor retrieval problem is
the availability, in many cases, of geometric structure that can be exploited for
efficient indexing. Most existing indexing methods do not view nearest neighbor
indexing as a learning problem, but instead use geometric properties to speed up
retrieval. Reviews of literature on geometry-based indexing methods can be found
at (Böhm, Berchtold and Keim, 2001; Hjaltason and Samet, 2003b; Hjaltason
and Samet, 2003a; White and Jain, 1996). In particular, indexing methods can
explicitly exploit properties of Euclidean and Lp spaces, e.g., (Andoni and Indyk,
2006; Chen, Liu, Furuse, Yu and Ohbo, 2010; Gionis, Indyk and Motwani, 1999;
Kanth, Agrawal and Singh, 1998; Kim, Chung, Lee and Kim, 2010; Li, Chang,
Garcia-Molina and Wiederhold, 2002; Sakurai, Yoshikawa, Uemura and Kojima,
2000; Tuncel, Ferhatosmanoglu and Rose, 2002; Weber and Böhm, 2000; Weber,
Schek and Blott, 1998), or the triangle inequality, e.g., (Aronovich and Spiegler,

2010; Bozkaya and Özsoyoglu, 1999; Ciaccia, Patella and Zezula, 1997; Hjaltason
and Samet, 2003a; Traina, Traina, Seeger and Faloutsos, 2000; Uhlman, 1991;
Yianilos, 1993; Zhang and Alhajj, 2010).

While the majority of existing indexing methods explicitly exploit geomet-
ric properties, it is also possible to view nearest neighbor indexing as a learning
problem, where the system can learn how to produce approximate nearest neigh-
bor rankings for each query, using some information about the query. In prior
work we have proposed the BoostMap method (Athitsos et al., 2008; Athitsos
et al., 2007) as a learning method for constructing an indexing structure. In
(Athitsos and Sclaroff, 2005) we proposed a related ranking method, where the
goal was not to build an indexing structure, but to learn a distance measure so as
to optimize nearest neighbor classification accuracy. Compared to those earlier
methods, that explicitly targeted the problem of nearest neighbor rankings, the
BRM method described in this paper is a general, domain-independent frame-
work, that provides a unified approach for addressing disparate, special-purpose
ranking problems such as recommendation systems, nearest neighbor indexing,
and nearest neighbor classification.

We should note that our previous special-purpose ranking methods (Athitsos
et al., 2008; Athitsos et al., 2007; Athitsos and Sclaroff, 2005), which were de-
signed for nearest neighbor rankings, only addressed the special case where the

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 5

query is an object in some space and the database items are objects from the
same space. The BRM method described here is of significantly more general
scope. In BRM, the query is not constrained to be an object from the same
space as the database items. Instead, the query can be any arbitrary ranking
criterion, according to which database items should be ranked. For example, in
the Netflix dataset, the database items are movies, whereas each query (or, syn-
onymously, ranking criterion) corresponds to an individual user: given a specific
user, we want to rank movies in order of estimated preference by the user. Thus,
in the Netflix dataset, as in many other recommendation system applications,
queries and database items belong to clearly distinct spaces. The BRM method
can naturally handle such cases, whereas in those same cases our previous work
is not applicable.

A method closely related to the proposed BRM method is RankBoost (Freund,
Iyer, Schapire and Singer, 2003). In both RankBoost and BRM, boosting is used
to learn how to rank a set of items. An important difference between RankBoost
and BRM is that the RankBoost training algorithm learns a single ranking func-
tion, tailored to a specific set of ranking criteria. For example, consider a movie
recommendation system, where the ranking criterion is simply the identity of
the user for whom the system is making the recommendations. If we want to use
RankBoost to produce a customized ranking function for each individual user,
we would have to invoke the RankBoost training algorithm separately for each
individual user. Similarly, in a nearest neighbor retrieval system, where efficiency
is a key measure of performance, the RankBoost training algorithm would have
to be invoked online, for each individual query.

In contrast to RankBoost, the proposed BRM method does not learn a single
ranking function, but rather a global ranking model, which produces a cus-
tomized ranking function for any set of ranking criteria. For example, in a movie
recommendation system, after the global ranking model has been learned offline,
this ranking model can readily produce a customized ranking function for any
user, including users for who no data was available during training. Similarly, in
a nearest neighbor retrieval system, given a previously unseen query object, the
global ranking model can readily produce an approximate ranking of database
objects for that query. Consequently, whereas a RankBoost-based system needs
to perform training online, for every previously unseen query that is submitted to
the system, a BRM-based system can perform all training off-line, thus requiring
fewer computational resources during online operation.

Another method closely related to BRM is GBRank (Zheng, Chen, Sun and
Zha, 2007). GBRank has a problem formulation similar to ours: given a query Q,
the goal is to obtain accurate rankings of a set of database objects. At the same
time, GBRank and BRM have some important differences. GBRank assumes
that, given a query, each query-object pair can be represented as a vector, by
extracting some features from the pair. BRM makes the more general assump-
tion that some arbitrary scoring functions have been defined (which the BRM
method combines into an optimized scoring function), and those arbitrary scor-
ing functions do not have to rely on a vector representation of pairs of queries and
database objects. Thus, BRM is general enough to encompass problems such as
similarity-based indexing in non-vector spaces, as described in Sections 6.1 and
6.2, whereas GBRank is not applicable on such problems. Another difference is
that our formulation, as described in Section 5, includes a domain-independent
way to define query-sensitive strong classifiers, where the weight of each weak

6 K. Dela Rosa et al

classifier varies depending on the query. In GBRank, the strong classifier assigns
a fixed weight to each weak classifier.

3. Basic Definitions and Problem Formalization

The ranking problem can be described as follows: Let U be a finite set of items,
that in this paper we also call a database. Let Q be a (possibly infinite) set
of queries that can be submitted to the system. Every time we submit a query
Q ∈ Q, the response of the system is a ranking of all items in U according to the
query. A ranking model is defined to be a function R : Q×U → {1, 2, . . . , ‖U‖},
where ‖U‖ denotes the number of items in U. This ranking model specifies that
R(Q, U) is the rank of item U under query Q, and R(Q, U) is a number between
1 and ‖U‖. The highest rank (corresponding to the most relevant item) is 1,
and the lowest rank is ‖U‖.

As an example, consider a similarity-based image retrieval system (e.g., QBIC
(Flickner, Sawhney, Niblack, Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic,
Steele and Yanker, 1995)), where given an image as a query we want to rank
database images in order of similarity to the query. In that case, U is the set of
database images, and Q is the set of possible query images. As another exam-
ple, consider the Netflix domain (Bennett et al., 2007), where we want to rank
movies according to the preferences of a specific user. In that case, U is the set
of movies, and Q is the set of users.

We assume that there exists a single correct ranking model Rtrue, that spec-
ifies a “true” rank Rtrue(Q, U) for every database item U given any query Q.
Intuitively, our goal is to build a system whose rankings are as close as possible
to the rankings produced by Rtrue. We also assume that, at training time, we
have some partial information about Rtrue, in the following form: we are given
a training set of triples Ttrain = {(Q1, A1, B1), . . . , (Qt, At, Bt)} such that:

– Each Qi is a query sampled from Q.

– Each Ai and each Bi is an element of the set U whose items we want to rank.

– Rtrue(Qi, Ai) < Rtrue(Qi, Bi). That is, given query Qi, the “true” rank of Ai

is higher (Ai is ranked as more important) than the rank for Bi.

Using such training data, we want to learn a model R that approximates
Rtrue. To measure how well R approximates Rtrue, we evaluate the performance
of R on some test set Ttest of triples, with the constraint that if (Q, A, B) is a test
triple, then Q did not appear in any of the training triples. We consider that R
fails on triple (Q, A, B) if, given query Q, the relative ranking of A and B accord-
ing to R is different than the relative ranking of A and B according to Rtrue. In
other words, R fails on (Q, A, B) if either R(Q, A) > R(Q, B) and Rtrue(Q, A) <
Rtrue(Q, B), or R(Q, A) < R(Q, B) and Rtrue(Q, A) > Rtrue(Q, B). Then, the
error rate E(R) of the learned ranking model R is defined as a percentage of
test triples on which R fails.

Using mathematical notation, error rate E(R) can be defined as follows:

E(R, Q, A, B) =

1 if R(Q, A) > R(Q, B) and Rtrue(Q, A) < Rtrue(Q, B),
1 if R(Q, A) < R(Q, B) and Rtrue(Q, A) > Rtrue(Q, B),

0.5 if R(Q, A) = R(Q, B) and Rtrue(Q, A) < Rtrue(Q, B),
0.5 if R(Q, A) = R(Q, B) and Rtrue(Q, A) > Rtrue(Q, B),

0 otherwise.

(1)

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 7

E(R) =

∑

(Q,A,B)∈Ttest

E(R, Q, A, B)

‖Ttest‖
, (2)

where ‖Ttest‖ is the number of elements of Ttest.

In the above definitions we ignore ties in the true ranks, i.e., cases where
Rtrue(Q, A) = Rtrue(Q, B). We should note that, in some domains, it is fairly
common to encounter such cases. An example is the Netflix domain, where each
user rates each movie with an integer from 1 to 5, and thus many movies receive
the same rating. Ignoring ties in the definition of E(R) simply means that, when
Rtrue(Q, A) = Rtrue(Q, B), then we do not care how R ranks A and B relative
to each other for query Q. In our implementation, we exclude cases of ties both
when we select training triples, used to construct a ranking model, and when we
select test triples, used to evaluate a ranking model. While we ignore ties in the
true ranks, we do not ignore ties in the estimated ranks, and we assign a “half
error” to those cases.

The rating problem, or, synonymously, scoring problem, is closely related
to the ranking problem. In the scoring problem, the goal of the system is to
predict not rankings, but scores (ratings) corresponding to specific items given a
query. For example, in the Netflix domain, the rating problem is the problem of
predicting the rating of movies by users. Formally, a rating model or scoring
model is a function S : Q×U → R, where S(Q, U) is defined as the score/rating
of item U under query Q.

Clearly, any scoring model S defines an associated ranking model RS , whereby
items are ranked according to their scores. The opposite does not hold, as mul-
tiple (typically infinitely many) scoring models can produce the same ranking
model. In that sense, we may consider that the ranking prediction problem is a
relaxation of the scoring prediction problem.

An additional assumption that we make in our problem formulation is that
we are given as input a family of scoring models, which someone (or ourselves)
has already defined in a manner appropriate for the domain of interest. We use
the term weak scoring models to refer to models in that family. Weak scoring
models play in our formulation a role analogous to the role played by weak
classifiers in boosting methods (Friedman, Hastie and Tibshirani, 2000; Schapire
and Singer, 1999). Boosting methods assume that a family of weak classifiers has
already been defined for a specific binary problem. A boosting method combines
many such weak classifiers into an optimized classifier for the problem. Similarly,
the proposed BRM method uses weak scoring models as building blocks for the
construction of a ranking model Ropt, in a way that minimizes the error rate
E(Ropt). As is typical in boosting methods, our method does not propose any
domain-independent way of constructing a family of weak scoring models; that
task is left as an implementation choice. Examples of families of weak scoring
models for specific application domains are detailed in Sections 6 and 7.

Based on the above definitions, the problem we address in this paper can
be defined as follows: We want to design a training algorithm that, given as
input a training set of triples and a family of weak scoring models, constructs
as output a scoring model Sopt and its associated ranking model Ropt, in a way
that minimizes the error rate of Ropt. The next section describes our solution to
this problem.

8 K. Dela Rosa et al

4. Boosted Ranking Model

In our problem definition, the goal is to combine multiple scoring models Si into
an optimized ranking model Ropt, in a way that minimizes the error rate E(Ropt).
The main contribution of the proposed method is in reducing this problem to the
well-studied problem of combining multiple weak binary classifiers into a single
optimized binary classifier. The problem of binary classifier combination has
been well studied in the machine learning community, and several solutions have
been proposed following the “boosting” framework, such as AdaBoost (Schapire
and Singer, 1999), LogitBoost (Friedman et al., 2000), or FloatBoost (Li and
Zhang, 2004). In our implementation we have chosen to use AdaBoost, but this is
simply an implementation choice, as any other general-purpose boosting method
is also applicable.

In particular, the proposed Boosted Ranking Model (BRM) method for con-
structing an optimized ranking model Ropt from multiple scoring models Si con-
sists of the following steps:

1. Define, for each scoring model Si, a corresponding binary classifier S̃ that is
used to estimate, for any triple (Q, A, B), whether Rtrue(Q, A) < Rtrue(Q, B)
or Rtrue(Q, A) > Rtrue(Q, B).

2. Run AdaBoost, using the provided training set of triples, to combine binary
classifiers S̃ into an optimized binary classifier S̃opt.

3. Define, using S̃opt, a scoring model Sopt.

4. Define, using Sopt, the corresponding ranking model Ropt.

A key property in this process is the following: the error rate E(Ropt) on any
set T of triples, measured as defined in Equation 2, is equal to the error rate of
the classifier S̃opt constructed using AdaBoost on the same set T. Consequently,

by minimizing, using AdaBoost, the classification error of S̃opt, we minimize the
error rate E(Ropt), which is exactly the optimization criterion that we have set
out to minimize.

In the remainder of this section we describe how to perform each of the
above-mentioned steps.

4.1. From Scoring Models to Binary Classifiers

Let S be a scoring model mapping each (Q, U) pair of a query Q and an item
U to a real number. Without loss of generality, we follow the convention that
higher ratings indicate a stronger preference, and thus correspond to higher
rankings, i.e., lower values of Rtrue(Q, U). In the opposite case, where lower
scores correspond to higher rankings, the only adjustment we need to make is to
use the negation of those scores in our formulation, so that our convention still
holds.

Let T be a set of triples (Q, A, B), defined as in the previous section, i.e.,
with Q being a query, and A, B being items from U. We can define, using each
scoring model S, a corresponding binary classifier S̃, that estimates, for every
triple (Q, A, B) ∈ T whether Rtrue(Q, A) < Rtrue(Q, B) or not. This classifier is
defined as follows:

S̃(Q, A, B) = S(Q, A) − S(Q, B) . (3)

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 9

The output of binary classifier S̃ is interpreted as follows:

– If S̃(Q, A, B) > 0, then S̃ assigns class label 1 to the triple (Q, A, B). We define
class label 1 as the class label corresponding to the case where Rtrue(Q, A) <
Rtrue(Q, B), meaning that, for query Q, item A is more highly ranked than
item B.

– If S̃(Q, A, B) < 0, then S̃ assigns class label -1 to the triple (Q, A, B). We define
class label -1 as the class label corresponding to the case where Rtrue(Q, A) >
Rtrue(Q, B), meaning that, for query Q, item B is more highly ranked than
item A.

– If S̃(Q, A, B) = 0, then S̃ “predicts” that Rtrue(Q, A) = Rtrue(Q, B). This
output can also be interpreted as a “cannot decide” output, where the classifier
reports that it cannot decide whether A is ranked higher or B.

We note that these class label assignments that S̃ makes for triples (Q, A, B) are
not necessarily correct. As any kind of classifier in any type of pattern recognition
problem, a classifier of type S̃ is correct sometimes and incorrect other times.

We consider S̃ to be a binary classifier, because, as mentioned in Section 3,
we ignore triples (Q, A, B) such that Rtrue(Q, A) = Rtrue(Q, B). Intuitively, we
can consider that for such triples we do not care whether our system ranks A

higher than B or not. Mathematically, classifier S̃ has the form of a “confidence-
rated prediction” (Schapire and Singer, 1999), where the output class label is
determined by the sign of the classifier output, and the absolute value of the
output is an estimate of the confidence about the predicted class label. A higher
absolute value corresponds to higher confidence that the predicted class label is
correct.

As long as scoring model S contains some useful information about the scoring
patterns in our domain, we expect classifier S̃ to behave as a weak classifier,
meaning that even if the accuracy of S̃ is not very high, we still expect S̃ to be
more accurate than a random, entirely non-informative classifier. For example,
a simple scoring model Sterminator for the Netflix domain can produce estimates
Sterminator(Q, U) of how a user Q would rate a movie U , as follows:

1. Let C be the rating Strue(Q, Terminator) that user Q has given to the movie
“The Terminator”. Note that we can allow C to also take the value “unde-
fined”, if the user Q has not rated that particular movie.

2. Let D be the average rating that movie U received by all users who also rated
“The Terminator” with a score of C.

3. Define Sterminator(Q, U) to be D.

We use the term “weak scoring model” for a model such as Sterminator, based
on our intuition that such a scoring model would not be highly accurate. At
the same time, such a weak scoring model still captures some useful information
about the domain, and thus, if S̃ is the binary classifier corresponding to a weak
scoring model S, we do expect the accuracy of S̃ to be better than the expected
0.5 accuracy of a random classifier.

As described in the above paragraphs, we use weak scoring models S to
define weak binary classifiers S̃. Each such classifier S̃ predicts, for any triple
(Q, A, B), if Rtrue(Q, A) < Rtrue(Q, B) or not. The next step in our method

involves combining multiple such classifiers S̃i into a single, optimized classifier
S̃opt that is expected to be more accurate than the individual classifiers. Since

10 K. Dela Rosa et al

Algorithm 1: The AdaBoost algorithm. This description is largely copied
from (Schapire and Singer, 1999).

input : (o1, y1), . . . , (oβ , yβ); oi ∈ G, yi ∈ {−1, 1}.
output: Strong classifier H : G → R.
Initialize wi,1 = 1

β
, for i = 1, . . . , β.

for training round j = 1, . . . , J : do

1. Train weak learner using training weights wi,j , and obtain weak
classifier hj : G → R, and a corresponding weight αj ∈ R.

2. Set training weights wi,j+1 for the next round as follows:

wi,j+1 =
wi,j exp(−αjyihj(oi))

zj

. (4)

where zj is a normalization factor (chosen so that
∑β

i=1 wi,j+1 = 1).
end
Output the final classifier:

H(x) =

J
∑

j=1

αjhj(x). (5)

each individual S̃i is a weak binary classifier, our problem is an instance of the
boosting problem, and we can apply any boosting method to obtain S̃opt. In our
implementation we use the AdaBoost algorithm, as described next.

4.2. Applying AdaBoost

The AdaBoost algorithm is shown in Algorithm 1. The inputs to AdaBoost are a
set of training objects oi, together with their corresponding class labels yi, which
are equal either to −1 or to 1. The training algorithm that we use in our method
is an instance of the AdaBoost algorithm. In order to fully specify how we apply
AdaBoost in our method, we need to specify how the symbols of Algorithm 1
translate to our setting.

In our problem, each training object oi corresponds to a triple (Qi, Ai, Bi)
such that Qi is a sample query and Ai, Bi are database items. Each training
label yi is equal to 1 or -1, depending on whether Rtrue(Qi, Ai) < Rtrue(Qi, Bi)
or not. Consequently, the inputs to the training algorithm are the following:

– A set Ttrain of triples (Qi, Ai, Bi), where Qi is a query and Ai, Bi ∈ U.

– A set of labels yi that specify, for each triple (Qi, Ai, Bi), whether R(Qi, Ai) <
R(Qi, Bi) (in which case yi = 1) or R(Qi, Ai) > R(Qi, Bi) (in which case
yi = −1).

– A set S of scoring models. By applying Equation 3 to every scoring model in
S, we obtain a corresponding set S̃ of weak classifiers.

An important step in any AdaBoost implementation, that is left unspecified

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 11

in the AdaBoost algorithm, is how to choose weak classifier hj and weight αj at
training round j. In our method, at training round j, the simplest approach is to
evaluate all the classifiers in the family S̃ of weak classifiers given as input, and
to choose the best classifier and best weight for that classifier. If the family S̃ is
too large, to reduce training time, an alternative is to evaluate only a subset of
the classifiers in S̃ at each training round. In such cases, the subset of classifiers
to be evaluated at a certain training round is chosen randomly for that training
round, and a new subset is chosen at each training round.

As described in (Schapire and Singer, 1999), the function Zj(h, α) gives a
measure of how useful it would be to choose hj = h and αj = α at training
round j:

Zj(h, α) =

β
∑

i=1

(wi,j exp(−αyih(Qi, Ai, Bi))) . (6)

The full details of the significance of Zj can be found in (Schapire and Singer,

1999). Here it suffices to say that if Zj(F̃ , α) < 1 then choosing hj = h and
αj = α is overall beneficial, and is expected to reduce the classification error.

Overall, lower values of Zj(F̃ , α) are preferable to higher values.
Finding the optimal α for a given classifier h (following the algorithm specified

in (Schapire and Singer, 1999)) and computing the Zj value attained using that
optimal α are very common operations in our algorithm, so we define specific
notation:

αmin(h, j) = argminα∈RZj(h, α) . (7)

Zmin(h, j) = min
α∈R

Zj(h, α) . (8)

In the above equations j specifies the training round. Function αmin(h, j) returns
the weight α that minimizes Zj(h, α)

The number J of training rounds is a user-specified parameter. We typically
run AdaBoost multiple times, with increasing values of J , until the accuracy
of the resulting strong classifier stops improving. Note that if we have already
run AdaBoost with J = 50, and we want to run AdaBoost with J = 100, the
first 50 training rounds do not have to be performed again. If we have saved
the weak classifiers h1, . . . , h50, weights α1, . . . , α50, and training weights wi,51

calculated in the invocation of AdaBoost with J = 50, then we can resume
training whenever we want, so as to choose additional weak classifiers.

It is important to note that AdaBoost, and boosting methods in general,
are greedy optimization methods that produce only locally optimal solutions.
There is no guarantee (nor empirical evidence) that the obtained strong classi-
fiers are globally optimal. At the same time, there is ample empirical evidence
that the locally optimal classifiers constructed by AdaBoost offer competitive
performance in a variety of applications (Schapire and Singer, 1999; Viola and
Jones, 2001; Viola, Jones and Snow, 2003)

4.3. From Strong Classifiers to Ranking Models

The output of AdaBoost is a strong classifier H =
∑J

j=1 αjhj . Classifier H

has been trained to estimate, for triples of type (Q, A, B), if Rtrue(Q, A) <

12 K. Dela Rosa et al

Algorithm 2: The steps of the BRM training algorithm.

1 Initialize training weights wi,1 ←
1

β
, for i = 1, . . . , β.

2 Define classifier H0 = 0 (i.e., H0(Q, A, B) = 0 for all (Q, A, B)).
3 for training round j = 1, . . . , J: do
4 hj ← argmin

h∈S̃
Zmin(h, j).

5 αj ← αmin(hj , j).
6 if Zj(hj , αj) ≥ 1 then
7 return Hj−1

8 end
9 zj ← Zj(hj , αj).

10 Define classifier Hj =
Pj

i=1
αihi (in other words, Hj = Hj−1 + αjhj .)

11 Set weights wi,j+1 for training round j + 1 using Eq. 4.
12 end

Rtrue(Q, B) or not. However, our final goal is to construct not such a binary
classifier, but a ranking model Ropt. We construct this ranking model by defin-
ing, using H , a scoring model Sopt, such that Ropt is the unique ranking model
corresponding to Sopt.

As discussed in Section 4.2, each weak classifier hj chosen during training

is one of the classifiers S̃ in S̃. In other words, each hj is obtained by applying
Equation 3 to some scoring model S. Let’s use notation Sj for the scoring model
that was used in defining hj. In other words, Sj is the scoring model whose

associated binary classifier S̃j is equal to hj . Then, we can define our optimized
scoring model Sopt : Q × U → R as follows:

Sopt(Q, U) =

J
∑

j=1

(αjSj(Q, U)) . (9)

In other words, the optimized scoring model is simply the weighted sum of the
individual scoring model corresponding to weak classifiers hj, and the weights
are the αj ’s that were chosen by the AdaBoost algorithm.

The final product of our method, i.e., the optimized ranking model Ropt,
is simply the ranking model that is defined based on Sopt. In other words, given a
query Q, Ropt ranks items U ∈ U in descending order of their scores Sopt(Q, U).

As stated in our problem formulation in Section 3, our goal is to design a
method that constructs Ropt in a way that minimizes the error rate E(Ropt). We
need to establish that the training algorithm we have described in this section
indeed minimizes E(Ropt). We observe that our training algorithm is an appli-
cation of AdaBoost, and thus minimizes the error rate of the constructed strong
classifier H . Consequently, it suffices to demonstrate that classifier H and Ropt

have the same error rate, so that minimizing the error rate of H is equivalent to
minimizing the error rate of Ropt.

Given a set of test triples Ttest, the error rate of binary classifier H is mea-
sured as follows:

E(H, Q, A, B) =

1 if H(Q, A, B) < 0 and Rtrue(Q, A) < Rtrue(Q, B),
1 if H(Q, A, B) > 0 and Rtrue(Q, A) > Rtrue(Q, B),

0.5 if H(Q, A, B) = 0 and Rtrue(Q, A) < Rtrue(Q, B),
0.5 if H(Q, A, B) = 0 and Rtrue(Q, A) > Rtrue(Q, B),

0 otherwise.

(10)

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 13

E(H) =

∑

(Q,A,B)∈Ttest

E(H, Q, A, B)

‖Ttest‖
(11)

Clearly, the definition of the error rate of H is analogous to the definition of the
error rate E(Ropt) in Equation 2. In order to show that H and Ropt have the
same error rate we will actually prove a stronger statement: that H and Ropt

make errors on the same set of triples.

Proposition 1. For any triple (Q, A, B), such that Q is a query object and
A, B are database items, it holds that E(H, Q, A, B) = E(R, Q, A, B). In words,
it holds that H classifies correctly, misclassifies, or makes a “half error” on triple
(Q, A, B) if and only if R also respectively classifies correctly, misclassifies, or
makes a “half error” on that triple.

Proof: We recall that Ropt is defined based on scoring model Sopt, defined as
in Equation 9. First, we show that H(Q, A, B) = Sopt(Q, A) − Sopt(Q, B):

H(Q, A, B) =

J
∑

j=1

(αjhj(Q, A, B))

=

J
∑

j=1

(αj S̃j(Q, A, B))

=

J
∑

j=1

(αj(Sj(Q, A) − Sj(Q, B)))

=

J
∑

j=1

(αjSj(Q, A)) −

J
∑

j=1

(αjSj(Q, B))

= Sopt(Q, A) − Sopt(Q, B)

In the above derivation, we made use of the following definitions and facts:

– We defined Sj as the scoring model such that S̃j = hj .

– Following Equation 3, S̃j(Q, A, B) = Sj(Q, A) − Sj(Q, B).

– Following Equation 9, Sopt(Q, U) =
∑J

j=1(αjSj(Q, U)).

We now proceed by showing that H(Q, A, B) always agrees with the relative
rankings Ropt(Q, A) and Ropt(Q, B). In other words, we must show that:

– H(Q, A, B) > 0 ⇔ Ropt(Q, A) < Ropt(Q, B).

– H(Q, A, B) = 0 ⇔ Ropt(Q, A) = Ropt(Q, B).

– H(Q, A, B) < 0 ⇔ Ropt(Q, A) > Ropt(Q, B).

We can prove each of the above three cases separately, using the already
proven fact that H(Q, A, B) = Sopt(Q, A)−Sopt(Q, B). As a reminder, we should
bear in mind our convention that higher scores correspond to higher rankings,
i.e., to lower values of Rtrue, and rank 1 is defined as the highest rank. Then, for
the case where H(Q, A, B) > 0, we have:

H(Q, A, B) > 0 ⇔ Sopt(Q, A) − Sopt(Q, B) > 0

⇔ Sopt(Q, A) > Sopt(Q, B)

14 K. Dela Rosa et al

⇔ Ropt(Q, A) < Ropt(Q, B)

The cases where H(Q, A, B) = 0 and H(Q, A, B) < 0 can be handled exactly
the same way.

Consequently, we have shown that the predictions of H and Ropt on the
relative rankings of any two items A and B under any query Q are equivalent.
It readily follows that H makes an error (or a “half error”) on a triple (Q, A, B)
if and only if Ropt also makes an error (or a “half error”, respectively) on that
triple.

�

We conclude that, if AdaBoost has been successful in constructing a highly
accurate classifier H , then Ropt inherits that accuracy. It is interesting to note
that, in the theoretically ideal (and not likely to be encountered in practice) case
where AdaBoost constructed a perfect classifier H with 100% accuracy, it follows
that Ropt = Rtrue.

4.4. Choosing a Set of Training Triples

As mentioned in Section 4.2, one of the inputs to the training algorithm is a set
Ttrain of training triples (Qi, Ai, Bi). In this section we discuss the topic of how
to form a set of training triples. Overall, the manner of selecting training triples
is an implementation choice. One obvious alternative is to choose those triples
entirely randomly, as long as we have enough information to evaluate whether
Rtrue(Qi, Ai) < Rtrue(Qi, Bi) or not. At the same time, while randomly chosen
triples can be a reasonable starting method, other, more selective approaches may
lead to more meaningful choices, given domain-specific measures of accuracy.

As an example, consider the problem of estimating K-nearest neighbor rank-
ings, where K is a domain-specific parameter. In that case, given a query object,
our goal is to identify the K nearest neighbors of the query in the database.
Typically, a database can contain a large number of objects (ranging in the
thousands, or millions), whereas the number of nearest neighbors we are inter-
ested in identifying is typically orders of magnitude smaller (oftentimes K ≤ 10).
In such a case, if let’s say K = 9, we really do not mind if the estimated ranking
reverses the relative order between, for example, the 50,000-th nearest neighbor
and the 60,000-th nearest neighbor. However, we would mind if the estimated
ranking reverses the relative order between the 50,000-th nearest neighbor and
the 7-th nearest neighbor.

A similar scenario can be encountered in recommendation systems. Users
usually have a vast array of choices (e.g., movies, or books), and they tend to be
interested in only a small fraction of those choices, that represents the few best
choices. Users use recommendation systems to identify, for example, a movie or
book they will really enjoy, and thus users are typically interested in the items
that the scoring model rates as the best. Under that scenario, the most important
rankings are rankings where either the true or the estimated ranks are very high.
The kind of mistake that a user would object to the most is rating a mediocre
or bad choice as a good choice (which may cause the user to choose an item that
turns out to be unsatisfactory), or rating a good choice too low (which may cause
the user to not choose an item that would have turned out to be satisfactory).

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 15

Under both those scenarios (nearest neighbor retrieval and movie/book/product
recommendation), if we choose training triples entirely randomly, then for most
triples (Qi, Ai, Bi), neither Ai nor Bi will be among the highest rated items for
Qi. In that case, the error rate on that set of triples will not truly capture our
intuitive measure of accuracy, which only depends on whether the highest-rated
items have been identified successfully. If we are only interested in identifying,
let’s say, the K best items for each query (or K nearest neighbors for the nearest
neighbor problem), then we can explicitly choose training triples (Qi, Ai, Bi) so
that one among Ai and Bi is indeed one of the K highest-rated items for Qi, and
the other one among Ai and Bi is outside those K highest-rated items for Qi.
In that case, the training algorithm will optimize an error rate that captures the
fact that the highest-rated items are what we are truly interested in identifying.

We note that, in a training set of ‖U‖ items, the total number of triples that
can be defined is O(‖U‖3). The constraint that Ai or Bi should be one of the K
highest-rated items for Qi reduces the number of triples that can be defined to
O(K‖U‖2), where typically K ≪ ‖U‖. Still, for training sets containing thou-
sands of items or more, K‖U‖2 can still be too large a number. This presents
the implementer with a dilemma: a larger set of training triples, that may lead
to better accuracy, can require too much training time.

In (Athitsos et al., 2007), where we describe a special case of the proposed
BRM method, we have proposed a solution that allows using large numbers of
training triples (e.g., tens of millions of training triples) while keeping training
time manageable. In a straightforward implementation of the training algorithm,
most of the training time is spent in computing, at each training round, for each
candidate weak classifier h, quantities αmin(h, j) and Zmin(h, j) as described
in Equations 7 and 8. Quantities αmin(h, j) and Zmin(h, j) are simply used to
identify the best weak classifier (and associated weight) for that round, and
computing those quantities takes time linear to the number of triples. However,
quantities αmin(h, j) and Zmin(h, j) can be computed approximately, with satis-
factory precision, using only a random sample of training triples at each training
round. In (Athitsos et al., 2007) we demonstrated that using a random sample of
30,000 training triples at each round, out of a total of 10 million training triples,
made the training algorithm run over 300 times faster, without loss in accuracy
for the resulting strong classifier, as long as a new random sample is chosen at
each training round.

4.4.1. Cases of Ties in Ranking

As mentioned in Section 3, when we choose training and test triples for our
algorithm, we exclude triples (Qi, Ai, Bi) where, for query Qi, the true ranks
of Ai and Bi are equal. Our choice corresponds to an optimization criterion in
which, when the true ranks of Ai and Bi given Qi are equal, we do not care how
the estimated ranks of Ai and Bi compare to each other.

An alternative, that we have not experimented with, but that may be de-
sirable in certain cases, is to include ties in the training set, and modify the
optimization criterion so that if Rtrue(Qi, Ai) = Rtrue(Qi, Bi), we penalize for
any differences in value between Sopt(Qi, Ai) and Sopt(Qi, Bi). One such possible
modification is to replace Equation 6 with the following alternative:

Zj(h, α) =

{
∑β

i=1(wi,je
−αyih(Qi,Ai,Bi)) if Rtrue(Qi, Ai) 6= Rtrue(Qi, Bi),

∑β

i=1(wi,je
α|h(Qi,Ai,Bi)|) if Rtrue(Qi, Ai) = Rtrue(Qi, Bi).

(12)

16 K. Dela Rosa et al

In this modified definition of Zj(h, α), the contribution of training triples
where there is no tie is exactly the same as in Equation 6. If S is the scoring
model such that h = S̃, then a training triple with a tie contributes to Zj(h, α)
a loss exponential to the absolute difference between S(Qi, Ai) and S(Qi, Bi).
This way, the final scoring model Sopt would be rewarded for trying to make
S(Qi, Ai) and S(Qi, Bi) as similar as possible.

5. An Interesting Special Case: Query-Sensitive Weak

Scoring Models

In the training algorithm described in Section 4, the optimized scoring model
Sopt is constructed as a weighted linear combination of individual scoring models
Sj . Consequently, the importance of each one of those individual scoring models
is fixed in a global way, and is equal for all queries. However, a richer model
would allow us to assign query-specific weights to each of the individual scoring
models, so as to capture the fact that some individual scoring models may be
predictably more accurate for certain queries and less accurate for other queries.

In this section we describe a special case of the proposed method that allows
us to construct such a richer model. Let S be any individual scoring model,
mapping query-item pairs to scores. Let W ⊂ Q be a subset of the set of queries.
Suppose we want a scoring model SW that imitates S on queries from W, and
gives neutral outputs for all other queries. We use the term query-sensitive
scoring model for such a scoring model SW, and we define SW as follows:

SW(Q, A) =

{

S(Q, A) if Q ∈ W,
0 otherwise.

(13)

We call W the area of influence for query-sensitive scoring model SW.
We note that SW(Q, A) is a legitimate scoring model, mapping query-item

pairs to scores. Consequently, we can include such query-sensitive scoring mod-
els in the family of weak scoring models that is given as input to the training
algorithm. If the output scoring model Sopt, defined in Equation 9, includes only

query-sensitive scoring models SWi

i in its definition, with weights αi, then Sopt

has the following behavior: given any query Q and item A, the score Sopt(Q, A)
is obtained by the following two steps:

1. Finding all scoring models SWi

i ’s appearing in the definition of Sopt such that
Q ∈ Wi, i.e., such that Q belongs to the area of influence for scoring model
SWi

i .

2. Computing the linear combination (with weights αi) of the outputs Si(Q, A)
of the scoring models identified in the previous step.

In other words, the output Sopt(Q, A) can be interpreted in two mathematically
equivalent ways. We can say that Sopt(Q, A) is computed by simply taking the

linear combination of the query-sensitive weak scoring models SWi

i constituting
Sopt. Alternatively, we can say that Sopt(Q, A) is a linear combination of query-
insensitive weak scoring models Si, in which some of those weak models (the ones
such that Q does not belong to their area of influence) are ignored. Consequently,
using query-sensitive weak scoring models gives the training algorithm the ability
to decide that, for some queries, some weak scoring models should be ignored.

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 17

Intuitively, an advantage of query-sensitive weak classifiers is that they pro-
vide us with a richer model, and more parameters to optimize. At the same time,
a possible pitfall with using query-sensitive weak classifiers is overfitting, as we
have more parameters to optimize. However, if we have access to a sufficiently
large training set, the richer model that query-sensitive classifiers provide is more
likely to lead to more accurate results. The experimental evaluation illustrates
cases were query-sensitive weak classifiers lead to improved performance.

6. Derivation of Existing Methods as Instances of the

BRM Method

In the previous sections we have described the training algorithm for constructing
boosted ranking models (BRMs). Each BRM is constructed as a weighted sum of
individual weak scoring models. So far, we have not specified how to obtain such
individual models. Defining individual weak scoring models is an implementation
choice, and the formulation of the training algorithm is oblivious as to how this
choice is made. In this section, we reformulate some ranking methods we have
previously published, to demonstrate that those methods can be readily obtained
as instances of the BRM method. In the process, we specify the problem that
each of those ranking methods addresses, and the weak scoring models that were
used for each of those methods.

6.1. BoostMap

In the BoostMap method (Athitsos et al., 2008), the setup is as follows: database
objects and query objects belong to the same space X. We are given a distance
measure D that can be used to evaluate the distance between any two objects
in X. Given a query object Q, our goal is to identify the nearest neighbors
of Q accurately and efficiently. Furthermore, we assume that the underlying
distance measure D is computationally expensive. Examples of computationally
expensive distance measures include the edit distance (Levenshtein, 1966) for
strings, dynamic time warping (Kruskal and Liberman, 1983) for time series, or
shape context matching (Belongie, Malik and Puzicha, 2002) for edge images.

In that setting, the true rank Rtrue(Q, U) of a database object U given a
query object Q can be computed by measuring the exact distance D between Q
and every single database object. However, the time it takes to measure all those
distances can become a system bottleneck. The goal of BoostMap is to produce
an indexing structure, so as to speed up the process of identifying the nearest
neighbors of any query Q. Essentially, the goal is to produce an approximate
ranking model Ropt, that is as close as possible to the true ranking model Rtrue,
while at the same time the approximate rankings defined by Ropt should be
computable significantly faster than the exact rankings defined by Rtrue.

A weak scoring model SR for this problem can be defined by choosing any
database object R, and defining the scoring model as:

SR(Q, U) = −|D(Q, R) − D(U, R)| . (14)

The intuition behind the definition is that any two objects Q and U that are close
to each other tend to have similar distances to any third object R. Note that,
in the equation, the minus sign preceding the absolute value symbol enforces

18 K. Dela Rosa et al

our convention that higher scores correspond to higher rankings. The object R
that is used to define the weak scoring model is called a reference object. We
note that, given a query Q, producing approximate nearest neighbor rankings
according to scoring model SR requires computing the exact distance D only
between Q and the reference object R, assuming that distances from R to ev-
ery single database object have been precomputed off-line. Therefore, producing
approximate rankings according to SR is typically several orders of magnitude
more efficient than computing the exact distance D between Q and every single
database object.

By choosing thousands of different reference objects we can define thousands
of different weak scoring models. Then, the BRM training algorithm can be
used to build an optimized ranking model Ropt using those weak scoring models
as building blocks. The BoostMap method (Athitsos et al., 2008) can thus be
specified as an instance of the BRM method, where the goal is to estimate nearest
neighbor rankings, and the weak scoring models that are used in the training
algorithm are of the form SR, as defined in Equation 14.

6.2. Query-Sensitive Embeddings

Query-sensitive embeddings (QSE) were described in (Athitsos et al., 2007).
QSE can be seen as an improvement of the BoostMap method described above:
in both QSE and BoostMap, the goal is to estimate nearest neighbor rankings.
Using the BRM framework described in this paper, what differentiates QSE
from BoostMap is that in QSE the weak scoring models that are used are query-
sensitive. In particular, given a reference object R, a query-sensitive weak scoring
model can be defined as follows:

SW

R (Q, U) =

{

−|D(Q, R) − D(U, R)| if Q ∈ W,
0 otherwise.

(15)

The area of influence W can be any interval of the positive real numbers R+,
or any complement of such an interval. In other words, an area of influence can
be of the form [a, b] where a and b are real numbers, or it can be of the form
[0, a) ∪ (b,∞).

6.3. Boost-NN

The Boost-NN method (Athitsos and Sclaroff, 2005) aims at constructing a dis-
tance measure that is optimized for nearest neighbor classification. As in Boost-
Map and query-sensitive embeddings (QSE), query objects and database objects
belong to the same space. However, in BoostMap and QSE we are given a dis-
tance measure and the goal is to approximate the distance measure, whereas in
Boost-NN we are not given a distance measure to use. Instead, in Boost-NN the
goal is to construct such a distance measure, in a way that maximizes nearest
neighbor classification accuracy.

In nearest neighbor classification, a query object is classified based on the
class labels of its nearest neighbors. If we use Rtrue to denote the ranking model
that describes the desired nearest neighbor rankings, then we would like the
following to hold: Rtrue(Q, A) < Rtrue(Q, B) if Q and A belong to the same class
and B belong to a different class. In other words, we would like the database

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 19

objects of the same class as Q to be the nearest neighbors of Q, and we would
like all objects belonging to a different class than Q to be ranked lower than
that.

In the implementation of Boost-NN described in (Athitsos and Sclaroff, 2005),
each test object and each database object is a d-dimensional vector. If we use
notation X = (X1, X2, . . . , Xd) to denote the values of the individual dimensions
of an object X , then a weak scoring model for this domain can be defined as:

Si(Q, X) = −|Qi − Xi| . (16)

In other words, Si simply considers the absolute difference between Q and X
in the i-th dimension. Using this definition, Boost-NN can be seen simply as an
application of the BRM method that uses the weak scoring models of the form
Si defined in the above equation.

7. Application to Movie Recommendations

In addition to reformulating our previously published ranking methods as in-
stances of the proposed BRM method, we have also applied BRM to the prob-
lem of ranking movie preferences of individual users. Our experimental domain
is the Netflix dataset (Bennett et al., 2007). In that dataset, users rate movies
that they have watched with an integer between 1 and 5, where rating 1 is the
worst rating and rating 5 is the best rating. We denote by Strue(Q, U) the rating
that user Q gives to movie U .

The typical user only rates a relatively small fraction of the tens of thousands
of movies in the dataset. The goal in the Netflix contest is to predict ratings for
movies that a user has not yet seen, so as to be able to make useful recommen-
dations to the user. The goal of our method is related, but not identical, to the
goal in the Netflix contest: in our method we are not interested in predicting
ratings, but rather in predicting rankings. In other words, we do not mind if our
constructed scoring model Sopt does not agree numerically with user ratings, but
we do mind if the ranking model Ropt ranks, for any user Q, any pair of movies
U1, U2 in a way that conflicts with the ratings that the user gave on those movies.

A simple scoring model that can be used in predicting movie ratings is the
“average” score Savg:

Savg(Q, U) = average rating of U among all users who have rated U. (17)

Note that the user Q is not used in defining the value of Savg(Q, U), which
always gives the same score for U , regardless of the user. We have confirmed in
our experiments that Savg is a fairly informative scoring model, that can be a
useful building block for constructing BRMs.

A family of scoring models can be defined using what we call “reference
movies”. Let’s pick a specific movie M . We define Q(M, n) to be the set of users
who have rated M with rating n. Then, if we use M as a reference movie, we
can define a scoring model SM as follows:

SM (Q, U) =

{

0, if the user has not rated M,
mean rating of U by users in Q(M, Strue(Q, M)), otherwise.

(18)

In more detail, to compute SM (Q, U) we perform the following steps:

– If user Q has not rated the reference movie M , then SM (Q, U) = 0. Note that,

20 K. Dela Rosa et al

in this case, scoring model SM does not give us any useful information for user
Q, and assigns a score of 0 to all movies.

– If user Q has rated reference movie M with some score n = Strue(Q, M), then
we find the set Q(M, n) of all users who agreed with user Q on the rating of
M . Then, we find all users in Q(M, n) who have rated movie U , and we return
the average of those ratings.

Finally, another family of scoring models can be obtained by applying an
SVD-like factorization process (Paterek, 2007; Zhou et al., 2008). In those meth-
ods, given a desired dimensionality, every user Q is assigned a d-dimensional
vector V (Q), and every movie is assigned a d-dimensional vector V (U). These
vector assignments are optimized so as to minimize the error of using the dot
product between V (Q) and V (U) as an approximation for Strue(Q, U). In our im-
plementation we used Simon Funk’s psuedo-SVD algorithm, FunkSVD, to assign
a vector to each query and each user (Funk, 2006).

We can also define query-sensitive versions of the weak scoring models de-
scribed above. One way of defining regions of influence for the query-sensitive
weak models is to do k-means clustering on the set of queries. We should note
here that k-means clustering is applicable on sets of vectors, where the “mean”
operation is applicable. In the Netflix dataset, we vectorize all queries by apply-
ing the FunkSVD factorization process (Funk, 2006). Then, given a new query
Q that we have not seen before, Q can be assigned to the cluster of its nearest
mean, among the selected k means. This way, we define k regions of influence,
such that the i-th region corresponds to the set of queries that are closer to the
i-th mean than to any of the other means. If, using k-means clustering, or any
other approach, we define k possible regions of influence, then every weak scoring
model S can be used to define k different query-sensitive weak scoring models.

8. Experimental Evaluation

The proposed BRM method is a general framework for learning ranking models.
As explained in Section 6, several methods we have previously designed for near-
est neighbor retrieval and classification can be re-derived as special cases of this
unifying framework. In that sense, a large body of experimental results that we
have previously published for BoostMap (Athitsos et al., 2008), query-sensitive
embeddings (Athitsos et al., 2007), and Boost-NN (Athitsos and Sclaroff, 2005)
can serve as experimental validation for the BRM method, and highlight the
competitive results that can be obtained using BRM. In this paper we provide
some additional experiments, in which the BRM method is applied on the prob-
lem of making movie recommendations. The experimental evaluation presented
here serves two goals:

– To present a new application of the BRM method, on the problem of making
movie recommendations, so as to illustrate the generality of the BRM method,
and its ability to treat in a domain-independent manner rather disparate rank-
ing problems such as nearest neighbor retrieval and movie recommendations.

– To illustrate some of the common behaviors, and also some of the possible
pitfalls of the BRM method.

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 21

Diff Best Individual Accuracy of BRM
Setting Accuracy Average Score Accuracy

Diff1 62.91% 68.11% 70.40%

Diff2 66.70% 73.93% 77.28%

Diff3 67.95% 76.39% 80.65%

Diff4 68.27% 76.52% 81.45%

Table 1. For each Diff setting, this table shows: the accuracy of the best individual weak
scoring model, the accuracy of the average of all weak scoring models, and the accuracy of
the BRM result. The results shown for BRM are obtained using the query-sensitive version of
BRM.

8.1. Data, Parameters, and Implementation Choices

Our experimental domain in this evaluation is the Netflix dataset (Bennett
et al., 2007). That dataset contains a total of 100,480,507 ratings (each rat-
ing corresponding to a user/movie pair), from a total of 480,189 users and for
a total of 17,770 movies. From this dataset, we chose a training set of 80,425
users. For all training triples (Q, A, B) used in our training algorithm, Q was
constrained to belong to this training set of users, whereas A and B could be
chosen among the entire set of movies. To measure the error rate of the con-
structed ranking models, we used a test set of 80,425 users, meaning that for
every triple (Q, A, B) used in evaluating the error rate of ranking model, Q was
constrained to belong to the set of test users. We explicitly enforced that the
set of training users and the set of test users be disjoint from each other. In
each invocation of our training algorithm, we used 200,000 training triples. To
evaluate the accuracy of each constructed ranking model, we used 200,000 test
triples.

In order to obtain a more detailed quantitative evaluation, every method
and variation that we have tested has been evaluated in four different settings,
each of which used a different set of training and test triples. In particular,
in choosing training and test triples (Q, A, B), we enforced the constraint that
|Strue(Q, A) − Strue(Q, B)| ≥ n. We used four different values for n: n = 1, 2, 3,
or 4. Each of those four cases is denoted respectively as Diff1, Diff2, Diff3, and
Diff4. The Diff1 setting was the least constrained, as it could include any triple
(Q, A, B) as long as user Q did not give the same rating to both A and B. The
Diff1 setting was also the hardest to classify correctly. The Diff4 setting was the
most constrained, as it only included triples (Q, A, B) where user Q rated one of
the two movies with a 1 and the other one with a 5. The Diff4 setting was the
easiest to classify correctly.

For every experiment conducted with a particular family of weak scoring
models, we also conducted a parallel experiment using query-sensitive versions
of the same scoring models. In all such cases, the regions of influence Wj were
chosen by applying k-means clustering, with k = 10, on the set of training users.
To obtain a vector representation of each user, each user was mapped to a 128-
dimensional vector, comprised of a user’s weights in the decomposed user feature
matrix produced by FunkSVD (Funk, 2006).

22 K. Dela Rosa et al

0 10 20 30 40 50 60 70 80 90 100
52

54

56

58

60

62

64

66

68

70

percentage of weak scoring models

ac
cu

ra
cy

 p
er

ce
nt

ag
e)

Diff1
Diff2
Diff4

Fig. 1. Accuracy of individual weak scoring models for the Diff1, Diff2, and Diff4 settings. A
point (x, y) on the plot means that x% of the weak scoring models attained an accuracy of at
least y%. The plot for the Diff3 setting was very similar to that of the Diff2 and Diff4 settings,
and was omitted to avoid cluttering the figure.

8.2. Experimental Results

In our first set of experiments, we applied the proposed training algorithm to
construct a ranking model using individual weak scoring models defined based on
reference movies, as specified in Equation 18 . We used a total of 500 candidate
reference movies, which were selected as the 500 movies in the Netflix dataset
that were rated by the most users. This means that the set S of weak scoring
models, which was passed as input to the training algorithm, contained 500
scoring models.

Figure 1 shows the accuracy of the individual weak scoring models, as mea-
sured on test triples of type Diff1, Diff2, and Diff4 (the Diff3 plot was very similar
to the plots for Diff2 and Diff4, and was omitted to improve the readability of
the figure). We note that the accuracies of the individual weak scoring models
range between 53.22% and 62.91% for Diff1, between 54.12% and 66.70% for
Diff2, between 54.36% and 67.95% for Diff3, and between 54.04% and 68.27%
for Diff4.

Table 1 displays the results of this set of experiments. In this table, we com-
pare the results obtained using BRM with the results obtained using two alter-
natives: the first alternative is to simply use the best individual weak scoring
model. The second alternative is to combine all scoring models by simply aver-
aging them. We note that both the average of all scoring models and the boosted
ranking model are linear combinations of individual weak scoring models. The
key difference is that the average is an unweighted linear combination, whereas
the boosted ranking model is a weighted linear combination where the weights
have been explicitly chosen by the training algorithm so as to maximize accuracy.

The results in Table 1 are an example of a case where we consider our method
to be successful. First of all, in all settings, the resulting boosted ranking model
obtains clearly better accuracy compared to any of its individual components,
and also compared to the average of all scoring models. We should note that the
experimental results for BoostMap (Athitsos et al., 2008) demonstrated similar
behavior for boosted ranking models used for efficient nearest neighbor retrieval:

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 23

5-dim 32-dim 64-dim 96-dim 128-dim

Diff1 73.68% 80.60% 83.42% 85.25% 86.37%

Diff2 81.46% 89.57% 92.35% 93.98% 94.88%

Diff3 85.74% 94.05% 96.32% 97.40% 97.91%

Diff4 87.42% 95.90% 97.85% 98.68% 98.94%

Table 2. Accuracy of each of the individual SVD-based scoring models for each of the four
Diff settings.

Diff Best Individual BRM
Setting Accuracy (128-dim SVD) Accuracy

Diff1 86.37% 86.90%

Diff2 94.88% 95.01%

Diff3 97.91% 98.19%

Diff4 98.94% 99.06%

Table 3. For each Diff setting, this table shows results obtained using, as a family of weak
scoring models, a set comprising all the various SVD-based scoring models, the average of the
reference movie-based scoring models, and individual reference movie-based scoring models
selected from the top 500 popular movies. The middle column shows the accuracy obtained
using the best among all individual weak scoring models (which, in all settings, was the scoring
model based on the 128-dimensional SVD representation). The right column shows the accuracy
obtained using the BRM method. The results shown for BRM are obtained using the query-
sensitive version of BRM.

better accuracy both compared to each individual weak scoring model, and com-
pared to the average of all scoring models.

In a second set of experiments, we included in our pool of weak scoring
models, in addition to the 500 reference movie-based scoring models, the average
Savg of all reference movie-based scoring models, and five scoring models obtained
by using FunkSVD (Funk, 2006), with an individual scoring model corresponding
to each of the following dimensionalities of the SVD representation: 5, 32, 64, 96
and 128. Table 2 shows the accuracy achieved by each of the individual SVD-
based scoring models. Table 3 shows the results we obtained with the boosted
ranking model.

As Table 3 indicates, in all Diff settings the BRM method obtained accuracies
that were slightly better than those of the 128-dimension SVD-based scoring
model, which was in all cases the most accurate weak scoring model. At the
same time, the results for the Diff1 and Diff2 settings represent cases where the
BRM method does not work as well, in the sense that the performance gains
are not significant, compared to not using BRM and just using the best weak
scoring model.

Comparing the Diff1 and Diff2 results shown in Table 3 with the Diff1 and
Diff2 results shown in Table 1, we notice some differences that may help explain
the difference in accuracy gains obtained by BRM. In the first set of experiments
(Table 1), the family of weak scoring models included multiple complementary
models, and no individual model was significantly better than every single other
model. On the other hand, in the second set of experiments (Table 3), for the Diff1

24 K. Dela Rosa et al

Reference Movie-Based Reference Movie-Based + Avg.
Weak Models + SVD Weak Models

Diff Non-Query- Query- Non-Query- Query-
Setting Sensitive Sensitive Sensitive Sensitive

Diff1 69.98% 70.40% 85.86% 86.90%

Diff2 76.72% 77.28% 94.85% 95.01%

Diff3 80.03% 80.65% 98.09% 98.20%

Diff4 80.80% 81.45% 98.79% 99.06%

Table 4. Comparing the non-query-sensitive and the query-sensitive versions of the BRM
method, as applied to two families of weak scoring models. The first family contained 500
reference movie-based scoring models. The second family was a superset of the first family,
that also included the average of all movie-based scoring models, and FunkSVD-based scoring
models.

and Diff2 settings, the family of weak scoring models contained a few individual
models (the ones based on 64, 96, and 128-dimensional SVD representations)
that were largely similar to each other as well as significantly more accurate
than any other model. In that case, the training algorithm did not manage to
identify a way to use the remaining 503 scoring models in a way that significantly
complements the best individual model.

On a more positive note, for the Diff3, and Diff4 settings, the accuracy gains
may seem small in absolute terms, but they represent significant reductions in
the frequency of misclassified triples. In general, it is well known that accuracy
gains are much harder to attain when the baseline accuracy is already high. For
example, for the Diff3 setting, the accuracy gain from the 97.91% accuracy of
the 128-dimensional SVD model to the 98.19% accuracy for the BRM model,
although numerically small, can be considered significant: out of 200,000 test
triples, 3,620 test triples were misclassified by the BRM model, which was 13.4%
fewer than the 4,180 test triples misclassified by the 128-dimensional SVD model.
Similarly, for the Diff4 setting, the number of test triples misclassified by the
BRM model was 11.3% smaller than the number test triples misclassified by the
128-dimensional SVD model.

Furthermore, these improvements attained by BRM for the Diff3 and Diff4
settings were attained despite the fact that these learning problems presented
the same challenge that was also present for the Diff1 and Diff2 settings: i.e.,
three weak scoring models that are very similar to each other and significantly
better than the vast majority of the remaining weak scoring models. The learn-
ing algorithm still managed to combine these very accurate models with other,
significantly less accurate models, so as to achieve a measurable decrease in the
frequency of misclassified triples.

In a third set of experiments, we have evaluated the difference in accuracy be-
tween query-sensitive BRM models and non-query-sensitive BRM models. Table
4 shows the results obtained using each of the two weak scoring model families
that we used in the previous experiments: the family of 500 reference movie-
based models, and the extended family where, in addition to those 500 models,
we include the unweighted average of all reference movie-based models, and the
five scoring models obtained using Funk-SVD with respective dimensionalities of

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 25

5, 32, 64, 96, and 128. We note that, for both families of weak scoring models,
and in all Diff settings, the query-sensitive models are somewhat more accurate
than the non-query-sensitive models. The accuracy gains were not dramatic in
any case, the gain being always less than 1%. At the same time, the accuracy
increase from 98.79% to 99.06% for the extended weak scoring model family and
the Diff4 setting can be seen as significant, as it was measured on 200, 000 test
triples, and it represents a 22% decrease in the number of test triples that were
misclassified. With respect to previously published results on instances of the
BRM method, we should note that query-sensitive BRM models were shown to
lead to significant accuracy gains on the problem of nearest neighbor indexing
(Athitsos et al., 2007).

In summary, our experimental results illustrate the ability of our method to
improve ranking accuracy, sometimes significantly, compared to the individual
weak scoring models given as input. The results also illustrate the potential pitfall
whereby some individual scoring models are both similar to each other and at
the same time significantly more accurate than all other models. In that case,
our method may not offer significant accuracy gains compared to the alternative
of simply using the best weak model. Finally, the results demonstrate that using
the query-sensitive variation of the BRM method led in all cases to gains, albeit
modest, in accuracy.

9. Discussion and Conclusions

In this paper we have addressed the problem of learning a ranking model from
training data. We have assumed that we are given as input a large family of
weak scoring models, which may or may not be very accurate by themselves. The
main contribution of the proposed BRM method is that it reduces the problem
of learning a ranking model (i.e., learning a function mapping query/item pairs
to an integer rank) to the significantly more simple problem of learning a binary
classifier (i.e., mapping a pattern to a 0/1 label). More specifically, we have
shown how to convert the problem of learning a ranking model to the well-
studied boosting problem of combining multiple weak binary classifiers into a
single, optimized classifier.

The reduction of the ranking problem into the binary-classifier boosting prob-
lem allows us to formulate a training algorithm that is simply an instance of the
AdaBoost training algorithm. An important feature of this reduction, and the
resulting training algorithm, is that they are formulated in domain-independent
terms, and can readily be applied to a variety of ranking problems, such as near-
est neighbor retrieval and classification, or recommendation systems. We have
shown how to derive some already existing methods addressing specific ranking
problems, such as BoostMap (Athitsos et al., 2008), query-sensitive embeddings
(Athitsos et al., 2007), and Boost-NN (Athitsos and Sclaroff, 2005), as instances
of the general framework proposed in this paper. We have also applied this new
framework to the problem of movie recommendations.

Like any boosting method, our method does not guarantee that it will actu-
ally indeed improve performance in any particular domain. At the same time,
we have seen in our experiments cases where our method led to significant im-
provements in classification accuracy compared to the individual scoring models
that it used as building blocks. Additional evidence for the usefulness of the
proposed method can be obtained from prior publications, where individual in-

26 K. Dela Rosa et al

stances of the BRM method were evaluated (Athitsos and Sclaroff, 2005; Athitsos
et al., 2008; Athitsos et al., 2007). These results, and the domain-independent na-
ture of our formulation, underscore the potential of the BRM method to improve
performance in a variety of ranking applications.

Acknlowledgements

The research reported here has been partially funded by grants from the National
Science Foundation: IIS-0705749, IIS-0812601, CNS-0923494. This research has
also been supported by a UTA startup grant to Professor Athitsos, and UTA
STARS awards to Professors Chris Ding and Fillia Makedon.

References

Adomavicius, G. and Tuzhilin, A. (2005), ‘Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions’, IEEE Transactions on Knowledge
and Data Engineering (TKDE) 17(6), 734–749.

Andoni, A. and Indyk, P. (2006), Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions, in ‘IEEE Symposium on Foundations of Computer Science
(FOCS)’, pp. 459–468.

Aronovich, L. and Spiegler, I. (2010), ‘Bulk construction of dynamic clustered metric trees’,
Knowledge and Information Systems (KAIS) 22(2), 211–244.

Athitsos, V., Alon, J., Sclaroff, S. and Kollios, G. (2008), ‘Boostmap: An embedding method for
efficient nearest neighbor retrieval’, IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI) 30(1), 89–104.

Athitsos, V., Hadjieleftheriou, M., Kollios, G. and Sclaroff, S. (2007), ‘Query-sensitive embed-
dings’, ACM Transactions on Database Systems (TODS) 32(2).

Athitsos, V. and Sclaroff, S. (2005), Boosting nearest neighbor classifiers for multiclass recog-
nition, in ‘IEEE Workshop on Learning in Computer Vision and Pattern Recognition’.

Becchetti, L., Colesanti, U., Marchetti-Spaccamela, A. and Vitaletti, A. (2010), ‘Recommend-
ing items in pervasive scenarios: models and experimental analysis’, Knowledge and Infor-
mation Systems (KAIS) (published online).
URL: http://dx.doi.org/10.1007/s10115-010-0338-4

Bell, R. and Koren, Y. (2007), ‘Lessons from the Netflix prize challenge’, SIGKDD Explorations
9(2), 75–79.

Bell, R., Koren, Y. and Volinsky, C. (2007), Modeling relationships at multiple scales to improve
accuracy of large recommender systems, in ‘ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining’, pp. 95–104.

Belongie, S., Malik, J. and Puzicha, J. (2002), ‘Shape matching and object recognition using
shape contexts’, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
24(4), 509–522.

Bennett, J., Elkan, C., Liu, B., Smyth, P. and Tikk, D. (2007), ‘Kdd cup and workshop 2007’,
SIGKDD Explorations 9(2), 51–52.

Bezerra, B. L. D. and Carvalho, F. A. T. (2010), ‘Symbolic data analysis tools for recommen-
dation systems’, Knowledge and Information Systems (KAIS) (published online).
URL: http://dx.doi.org/10.1007/s10115-009-0282-3

Böhm, C., Berchtold, S. and Keim, D. A. (2001), ‘Searching in high-dimensional spaces: In-
dex structures for improving the performance of multimedia databases’, ACM Computing
Surveys 33(3), 322–373.

Bozkaya, T. and Özsoyoglu, Z. (1999), ‘Indexing large metric spaces for similarity search
queries’, ACM Transactions on Database Systems (TODS) 24(3), 361–404.

Bridge, D. (2001), Product recommendation systems: A new direction, in ‘Proceedings of the
Workshop Programme at the Fourth International Conference on Case-Based Reasoning’,
pp. 79–86.

Chen, H.-C. and Chen, A. L. P. (2005), ‘A music recommendation system based on music and
user grouping’, Journal of Intelligent Information Systems 24(2), 113–132.

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 27

Chen, H., Liu, J., Furuse, K., Yu, J. and Ohbo, N. (2010), ‘Indexing expensive functions for
efficient multi-dimensional similarity search’, Knowledge and Information Systems (KAIS)
(published online).
URL: http://dx.doi.org/10.1007/s10115-010-0303-2

Ciaccia, P., Patella, M. and Zezula, P. (1997), M-tree: An efficient access method for similarity
search in metric spaces, in ‘International Conference on Very Large Databases (VLDB)’,
pp. 426–435.

Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner,
J., Lee, D., Petkovic, D., Steele, D. and Yanker, P. (1995), ‘Query by image and video
content: The QBIC system’, IEEE Computer 28(9).

Freund, Y., Iyer, R., Schapire, R. E. and Singer, Y. (2003), ‘An efficient boosting algorithm
for combining preferences’, Journal of Machine Learning Research (JMLR) 4, 933–969.

Friedman, J., Hastie, T. and Tibshirani, R. (2000), ‘Additive logistic regression: a statistical
view of boosting’, Annals of Statistics 28(2), 337–374.

Funk, S. (2006), ‘Netflix update: Try this at home’, http://sifter.org/ si-
mon/journal/20061211.html.

Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S. and Schmidt-Thieme, L. (2010), Learn-
ing attribute-to-feature mappings for cold-start recommendations, in ‘IEEE International
Conference on Data Mining (ICDM)’.

Gionis, A., Indyk, P. and Motwani, R. (1999), Similarity search in high dimensions via hashing,
in ‘International Conference on Very Large Databases (VLDB)’, pp. 518–529.

Goldberg, D., Nichols, D., Oki, B. and Terry, D. (1992), ‘Using collaborative filtering to weave
an information tapestry’, Communications of the ACM 35(12), 61–70.

Hjaltason, G. R. and Samet, H. (2003a), ‘Index-driven similarity search in metric spaces’, ACM
Transactions on Database Systems (TODS) 28(4), 517–580.

Hjaltason, G. and Samet, H. (2003b), ‘Properties of embedding methods for similarity search-
ing in metric spaces’, IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 25(5), 530–549.

Kanth, K. V. R., Agrawal, D. and Singh, A. (1998), Dimensionality reduction for similarity
searching in dynamic databases, in ‘ACM International Conference on Management of Data
(SIGMOD)’, pp. 166–176.

Kim, C. Y., Lee, J. K., Cho, Y. H. and Kim, D. H. (2004), ‘VISCORS: A visual-content
recommender for the mobile web’, IEEE Intelligent Systems 19, 32–39.

Kim, Y., Chung, C.-W., Lee, S.-L. and Kim, D.-H. (2010), ‘Distance approximation techniques
to reduce the dimensionality for multimedia databases’, Knowledge and Information Sys-
tems (KAIS) (published online).
URL: http://dx.doi.org/10.1007/s10115-010-0322-z

Koren, Y. (2008), Factorization meets the neighborhood: a multifaceted collaborative filtering
model, in ‘ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining’, pp. 426–434.

Koren, Y. (2009), Collaborative filtering with temporal dynamics, in ‘ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining’, pp. 447–456.

Kruskal, J. B. and Liberman, M. (1983), The symmetric time warping algorithm: From con-
tinuous to discrete, in ‘Time Warps’, Addison-Wesley.

Levenshtein, V. I. (1966), ‘Binary codes capable of correcting deletions, insertions, and rever-
sals’, Soviet Physics 10(8), 707–710.

Li, C., Chang, E., Garcia-Molina, H. and Wiederhold, G. (2002), ‘Clustering for approximate
similarity search in high-dimensional spaces’, IEEE Transactions on Knowledge and Data
Engineering (TKDE) 14(4), 792–808.

Li, S. Z. and Zhang, Z. Q. (2004), ‘FloatBoost learning and statistical face detection’, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(9), 1112–1123.

Linden, G., Smith, B. and York, J. (2003), ‘Amazon.com recommendations: Item-to-item col-
laborative filtering’, IEEE Internet Computing 7(1), 76–80.

Paterek, A. (2007), Improving regularized singular value decomposition for collaborative filter-
ing, in ‘Proceedings of KDD Cup and Workshop’.

Sakurai, Y., Yoshikawa, M., Uemura, S. and Kojima, H. (2000), The A-tree: An index structure
for high-dimensional spaces using relative approximation, in ‘International Conference on
Very Large Databases (VLDB)’, pp. 516–526.

Salakhutdinov, R., Mnih, A. and Hinton, G. E. (2007), Restricted Boltzmann machines for
collaborative filtering, in ‘International Conference on Machine Learning (ICML)’, pp. 791–
798.

28 K. Dela Rosa et al

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001), Item-based collaborative filter-
ing recommendation algorithms, in ‘International World Wide Web Conference (WWW)’,
pp. 285–295.

Schafer, J. B., Frankowski, D., Herlocker, J. L. and Sen, S. (2007), Collaborative filtering
recommender systems, in P. Brusilovsky, A. Kobsa and W. Nejdl, eds, ‘The Adaptive Web:
Methods and Strategies of Web Personalization’, Springer, pp. 291–324.

Schapire, R. and Singer, Y. (1999), ‘Improved boosting algorithms using confidence-rated pre-
dictions’, Machine Learning 37(3), 297–336.

Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2009), ‘Scalable collaborative filtering ap-
proaches for large recommender systems’, Journal of Machine Learning Research (JMLR)
10, 623–656.

Toescher, A., Jahrer, M. and Legenstein, R. (2008), Improved neighborhood-based algorithms
for large-scale recommender systems, in ‘Proceedings of KDD Cup and Workshop’.

Traina, Jr., C., Traina, A., Seeger, B. and Faloutsos, C. (2000), Slim-trees: High performance
metric trees minimizing overlap between nodes, in ‘7th International Conference on Ex-
tending Database Technology (EDBT)’, pp. 51–65.

Tuncel, E., Ferhatosmanoglu, H. and Rose, K. (2002), VQ-index: An index structure for simi-
larity searching in multimedia databases, in ‘Proc. of ACM Multimedia’, pp. 543–552.

Uhlman, J. (1991), ‘Satisfying general proximity/similarity queries with metric trees’, Infor-
mation Processing Letters 40(4), 175–179.

Viola, P. A., Jones, M. J. and Snow, D. (2003), Detecting pedestrians using patterns of motion
and appearance., in ‘IEEE International Conference on Computer Vision (ICCV)’, pp. 734–
741.

Viola, P. and Jones, M. (2001), Rapid object detection using a boosted cascade of simple
features, in ‘IEEE Conference on Computer Vision and Pattern Recognition (CVPR)’,
Vol. 1, pp. 511–518.

Vucetic, S. and Obradovic, Z. (2005), ‘Collaborative filtering using a regression-based ap-
proach’, Knowledge and Information Systems (KAIS) 7(1), 1–22.

Weber, R. and Böhm, K. (2000), Trading quality for time with nearest-neighbor search, in
‘International Conference on Extending Database Technology: Advances in Database Tech-
nology’, pp. 21–35.

Weber, R., Schek, H.-J. and Blott, S. (1998), A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces, in ‘International Conference on
Very Large Databases (VLDB)’, pp. 194–205.

White, D. A. and Jain, R. (1996), Similarity indexing: Algorithms and performance, in ‘Storage
and Retrieval for Image and Video Databases (SPIE)’, pp. 62–73.

Wu, J. (2009), Binomial matrix factorization for discrete collaborative filtering, in ‘IEEE In-
ternational Conference on Data Mining (ICDM)’, pp. 1046–1051.

Yianilos, P. (1993), Data structures and algorithms for nearest neighbor search in general
metric spaces, in ‘ACM-SIAM Symposium on Discrete Algorithms’, pp. 311–321.

Zhang, M. and Alhajj, R. (2010), ‘Effectiveness of NAQ-tree as index structure for similarity
search in high-dimensional metric space’, Knowledge and Information Systems (KAIS)
22(1), 1–26.

Zhang, R. and Tran, T. (2010), ‘An information gain-based approach for recommending useful
product reviews’, Knowledge and Information Systems (KAIS) (published online).
URL: http://dx.doi.org/10.1007/s10115-010-0287-y

Zheng, Z., Chen, K., Sun, G. and Zha, H. (2007), A regression framework for learning ranking
functions using relative relevance judgments, in ‘ACM SIGIR Conference on Research and
Development in Information (SIGIR)’, pp. 287–294.

Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R. (2008), Large-scale parallel collaborative
filtering for the Netflix prize, in ‘Algorithmic Aspects in Information and Management
(AAIM)’, pp. 337–348.

Boosted Ranking Models: A Unifying Framework for Ranking Predictions 29

Author Biographies

Kevin Dela Rosa is currently pursing a Computer Science Masters
degree at Carnegie Mellon Universitys Language Technologies Insti-
tute. He received his Bachelors degree in Software Engineering and
Physics from the University of Texas at Arlington. In the past, Mr.
Dela Rosa has worked at the National Institute of Standards and
Technology (NIST) and Space and Naval Warfare Systems Command
(SPAWAR), and has conducted research in the domains of machine
learning, natural language processing, software engineering, computer
assisted language learning, and astrophysics. Mr. Dela Rosa’s current
research interests include applied machine learning, social media, in-
formation retrieval, and question answering.

Vangelis Metsis is currently a Ph.D. student at the Department of
Computer Science and Engineering of the University of Texas at Ar-
lington (UTA). He received his Computer Science B.Sc. degree from
the Department of Informatics of Athens University of Economics and
Business in 2005. During 2006- 2007 he worked as a research associate
at the National Center for Scientific Research Demokritos in Athens,
Greece before joining the Heracleia Human-Centered Computing Lab-
oratory at UTA to work as a research assistant towards his Ph.D.
degree. His research interests include Machine Learning, Bioinformat-
ics and Pervasive Computing. Mr. Metsis has co-authored several peer
reviewed papers published in technical conferences and journals and
has served as a committee member and reviewer in many others. Mr.
Metsis is currently a member of Upsilon Pi Epsilon Texas Gamma
Chapter, and Golden Key honor societies.

Vassilis Athitsos received the BS degree in mathematics from the
University of Chicago in 1995, the MS degree in computer science from
the University of Chicago in 1997, and the PhD degree in computer
science from Boston University in 2006. In 2005-2006 he worked as
a researcher at Siemens Corporate Research, developing methods for
database-guided medical image analysis. In 2006-2007 he was a post-
doctoral research associate at the Computer Science department at
Boston University. Since August 2007 he is an assistant professor at
the Computer Science and Engineering department at the University
of Texas at Arlington. His research interests include computer vision,
machine learning, and data mining. His recent work has focused on ef-
ficient similarity-based retrieval, gesture recognition, shape modeling
and detection, and medical image analysis.

Correspondence and offprint requests to: Vassilis Athitsos, Computer Science and Engineering

Department, University of Texas at Arlington, Arlington, Texas 76019, USA. Email: athit-

sos@uta.edu

