
A Viewpoint-Independent Statistical Method for Fall Detection

Zhong Zhang, Weihua Liu, Vangelis Metsis, and Vassilis Athitsos

University of Texas At Arlington, Texas, United States

Abstract

The goal of a fall detection system is to automati-

cally detect cases where a human falls and may have

been injured. We propose a statistical method based on

Kinect depth cameras, that makes a decision based on

information about how the human moved during the last

few frames. Our method proposes novel features to be

used for fall detection, and combines those features us-

ing a Bayesian framework. Our experiments explicitly

evaluate the ability of our method to use training data

collected from one viewpoint, in order to recognize falls

from a different viewpoint. We obtain promising results,

on a challenging dataset, that we have made public,

and that contains, in addition to falls, several similar-

looking events such as sitting down, picking up objects

from under the bed, or tying shoelaces.

1. Introduction

In this paper, we propose a statistical method to de-

tect cases where a human falls and may have been in-

jured. Detection is based on depth video captured us-

ing Kinect cameras. Compared to existing vision-based

fall detection methods, what differentiates our method

is that it combines viewpoint invariance, simple system

setup, and statistical decision making (as opposed to us-

ing hardcoded thresholds).

Several approaches have been proposed for fall de-

tection, some recent reviews include [5, 13]. Several

existing methods use non-vision sensors, such as the ac-

celerometer [6, 7, 9], oftentimes combined with other

devices such as gyroscopes [9] and microphone [7].

However, these methods require subjects to actively co-

operate by wearing the sensors, which can be problem-

atic and possibly uncomfortable (e.g., wearing sensors

while sleeping, to detect falls during a night trip to the

restroom). Our method is less intrusive, as all informa-

tion is collected from cameras.

Several vision-based methods have been proposed

for fall detection. Multi-camera calibrated systems

[1, 2, 3] extract and use 3D features for fall detection.

However, those methods require time-consuming exter-

nal camera calibration. When a single camera is moved,

the system needs to be re-calibrated. Our method can

use a single camera, or multiple, uncalibrated cameras,

to cover more of the living space.

Some vision-based methods use 2D appearance-

based features to detect falls [10, 12, 14, 15]. Such

methods can be used with a single camera, but they are

viewpoint-dependent. Moving a camera to a different

viewpoint (especially a different height from the floor)

would require collecting new training data for that spe-

cific viewpoint. In our method, minimal effort is re-

quired to adjust the system to a new viewpoint.

Depth cameras provide 3D information without re-

quiring calibration of multiple cameras. Depth cam-

eras for fall detection are used in [4, 8, 11], and those

three methods are the most related to our method. How-

ever, those three methods only use two features, namely

distance from the floor and acceleration, and make a

decision by applying hardcoded thresholds to individ-

ual features. In our method, we propose three addi-

tional features that improve accuracy, and decisions are

made probabilistically, incorporating information from

all features before making a hard decision.

An additional contribution in this paper is our ex-

perimental protocol, whereby all training data are col-

lected from a specific viewpoint, and all the test data are

collected from another viewpoint, several meters away

from the training viewpoint. We believe that this new

evaluation protocol is a useful approach for measuring

the robustness of the system to displacements of the

camera. Furthermore, we have made our dataset avail-

able online, for use by other researchers.

2 Image and World Coordinates

In our experimental setup, two Kinect depth cameras

are set up at two corners of a simulated apartment. The

reason for using two Kinects is simply to cover more

of the living space, as the range of a Kinect is about

4m. Figure 1 shows our simulated home environment.



Figure 1: Our simulated apartment, seen from the two

viewpoints that we used to collect videos. For each

viewpoint we show a color image and a depth image.

Depth images are color-coded so that: white indicates

small depth values, and yellow, orange, red, green, blue

indicate progressively larger depth values. Black indi-

cates invalid depth.

A total of 12 sequences from six subjects and two views

were acquired with a resolution of 320 x 240 pixels

(31614 frames, about 3160 seconds of video).

Before processing the video collected from a cam-

era, we need to compute three internal calibration pa-

rameters of the camera: x0, y0, and m. Parameters x0

and y0 are respectively the horizontal and vertical pixel

coordinates of the principal point (also known as im-

age center). Parameter m is a scaling factor mapping

lengths measured in pixel units to lengths measured in

another unit, such as millimeters. We note that precom-

puting x0, y0,m only needs to be once per camera, and

those three parameters do not change when the camera

moves.

Let xi = [xi, yi, zi] denote a pixel on the depth im-

age, with location [xi, yi] and depth value zi. Using

the three parameters, m,x0 and y0 discussed above,

we can compute camera-centered 3D coordinates xk =
[xk, yk, zk] for xi, as:

xk = (xi − x0) ∗ m ∗ zi (1)

yk = (yi − y0) ∗ m ∗ zi (2)

zk = zi (3)

The above equations map pixels to locations in a

camera-centered 3D coordinate system, whose origin is

the camera pinhole and whose axes are defined based

on the Kinect’s 3D orientation: the x and y axes are the

same as for the image, and the z axis is perpendicular

to the image plane. Those Kinect-centered coordinates

can easily be mapped to conventional 3D world coordi-

nates, where the y axis corresponds to height. To do this

mapping, we only need the user to click on two points

of a vertical line on the image. If the camera moves

(which we do not expect to happen on a daily basis),

then the user simply needs to click again on two points,

to reinitialize the system.

After we compute the height for every pixel in the

image, the floor level can be easily computed, using the

lowest value of heights observed in the image. To re-

duce influence by outliers, we use the 2.5-th percentile

of heights as the floor level. Figure 2 shows an example

of floor level detection.

3 Person Detection and Feature Extrac-

tion

We identify where the person is by performing back-

ground subtraction. The background depth map B(x, y)
is reinitialized every time the system observes a few

frames without any motion, and thus can easily adapt to

changes in the apartment setup. Let Dj(x, y) denote the



Figure 2: Result of floor level detection. Top: a back-

ground depth image. Bottom: the same image as on the

top, with an orange color superimposed on pixels with

the lowest 5% values in height. Note: as we only show

the pixels with the lowest 5% values in height, and the

floor is expected to contain more than 5% of the pixels

in the image, we do not expect to see the entire floor

detected. The goal of floor detection is NOT to detect

the entire floor, but to reliably detect a part of the floor,

without the detection including non-floor parts.

Figure 3: Result of person detection using background

subtraction.

depth of pixel (x, y) at the j-th frame. We define a bi-

nary mask Mj(x, y) that identifies regions with motion,

by simply checking whether Dj(x, y) and B(x, y) are

different by more than a threshold T , where the value

of T is chosen using training data.

Once binary image Mj has been computed, we iden-

tify the largest connected component of Mj . That com-

ponent is used by our system as the location of the per-

son. Figure 3 shows an example output of this person

detection method, which in general works near flaw-

lessly in our dataset.

From the pixels identified by binary mask Mj , we

identify the top 5% pixels with largest values in the y-

coordinate, and we use the median of those values as

an estimate of the height of the person’s head. Since we

have already computed the level of the floor, we express

the height of the head in terms of distance from the floor.

Our fall detection system runs in real-time. When

observing the j-th frame, the system evaluates whether

a fall has just concluded at that frame. To do that,

the system evaluates a range of frames Rj = {j −
dmax, . . . , j − dmin} as possible start frames for the

fall. Values dmin and dmax are determined using train-

ing data.

For every i ∈ Rj , features are extracted from the

video sequence between frame i and frame j, and our

classifier determines whether those features correspond

to a fall event. Let the sequence of head positions in

every frame be denoted as [hi, ..., hj ]. The five features

that we extract are the following:

Duration. The duration of a fall in frames, denoted

as f1, is defined simply as: f1 = j − i + 1.

Total head drop. This is the total change of head

height during the fall, denoted as f2, and defined as:

f2 = hi − hj .

Maximum speed. This is the largest drop in head

height, from one frame to the next, denoted as f3, and

defined as: f3 = maxm∈{i+1,...,j}(hm−1 − hm).
Smallest head height. Denoted as f4, this is defined

simply as f4 = min(hi, ..., hj).
Fraction of frames where head drops. Denoted as

f5, this is simply the percentage of frames, between i+1
and j, where the head has a smaller height than in the

previous frame.

4 Classifier Training and Application

The training process is both user-independent and

viewpoint-independent. Our training videos have been

recorded from two Kinects, placed at two different

viewpoints, and recording at different times (i.e., there

is no video captured simultaneously from both Kinects).

Six subjects appear in the videos collected from each



0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

number of true positives (out of 26 falls)

n
u
m

b
e
r 

o
f 
fa

ls
e
 p

o
s
it
iv

e
s

 

 

Proposed Method

Depth Images, Pixel Coordinates 

Color Images, Pixel Coordinates

Figure 4: Results of the proposed method, as well as

results using two variations: a variation where height

is measured in pixel coordinates (as opposed to vertical

distance from floor level), and a variation where color

images instead of depth images are used.

viewpoint. To train the classifier that will be used for a

specific subject and viewpoint, we use as training data

only videos of other subjects from the other viewpoint.

Thus, to classify a subject’s actions as seen from a spe-

cific viewpoint, the system does not use training data

neither from the same subject nor from the same view-

point.

As described in Section 3, any frame j is a candidate

end frame for a fall, with candidate start frames ranging

from j − dmin to j − dmax. The correct start and end

frames of real falls are manually annotated, and define

the positive training data. All candidate start/end frame

combinations that do not overlap more than 30% with a

real fall are used as negative training data.

We assume that the five features of a candidate event

are conditionally independent, given the class of the

event (fall or non-fall). For the positive examples, we

model each feature distribution as a Gaussian, as we

have very few positive samples (10 to 14 training sam-

ples for each test video, since we exclude data from the

same viewpoint or same subject as in the test video).

For the negative examples, we model each feature distri-

bution nonparametrically as a histogram, since we have

tens of thousands of negative examples, a number that

is quite adequate for estimating a nonparametric one-

dimensional distribution.

At runtime, given current frame j, and a pos-

sible start frame i, we compute the five features

[f1, f2, f3, f4, f5]. Using the positive and negative dis-

tributions that we have computed at training, we com-

pute the probability of a fall event using a straightfor-

ward application of Bayes rule. We compare that prob-

ability with a threshold θ to make a final decision as to

whether the event is fall or non-fall. Setting different

values of θ we get different rates of true positives and

false positives, as shown in the experiments.

5 Experiments

There are 10,400 frames and 12 real falls in videos

from the first viewpoint, and 21,214 frames and 14 real

falls in videos from the second viewpoint. Our subjects

also performed a total of 61 actions that tend to produce

features similar to those of a fall event, namely: 23 ex-

amples of picking up something from the floor, 12 cases

of sitting on the floor, 10 examples of tying shoelaces,

9 examples of lying down on the bed, 5 examples of

opening/closing a drawer at floor level, 1 example of

jumping on the bed, and 1 example of lying on the floor.

Figures 5 and 6 show respectively an example of a per-

son lying down on the floor, on an air mattress, and a

person jumping on the bed. Our entire dataset and an-

notations are publicly available at:

http://vlm1.uta.edu/˜zhangzhong/fall_detection/

As mentioned in Section 4, our experiments are

both user-independent (to recognize the actions of the

user, no training data from that same user is used) and

viewpoint-independent (to recognize actions observed

from a specific viewpoint, no training data from the

same viewpoint is used). Also, because the fall action is

a continuous process, if two detected fall events overlap

by more than 30%, the system rejects the detection with

the lower score.

Figure 4 shows the results. For comparison, we also

include the results of two variations: In the first varia-

tion, the height of the head is simply the y pixel coor-

dinate, as opposed to actual vertical distance from floor

level. The second variation is the method we described

in [14], and uses color images, as opposed to depth im-

ages, while height is again measured using the y pixel

coordinate. We note that moving from color to depth

images significantly improves accuracy (because back-

ground subtraction is much more accurate), and measur-

ing the actual vertical distance from the head to the floor

also improves accuracy. The proposed method identi-

fies all 26 fall events with only 2 false alarms.

The two false alarms are shown on Figures 5 and 6.

In Figure 5, the person lies down on the floor. In Figure

6, the person jumps to the bed, and the lowest head ver-

tical coordinate is almost the same as in a real fall. In

future work, we hope to further improve accuracy, using

additional training data (especially positive examples),

and identifying additional features.



Figure 5: Example frames from a false alarm, showing

a person lying on the floor.

Figure 6: Example frames from a false alarm, showing

a person jumping on the bed.

Acknowledgments

This work was partially supported by NSF grants

IIS-0812601, IIS-1055062, CNS-1059235, ECCS-

1128296, CNS-0923494, and CNS-1035913.

References

[1] D. Anderson, R. H. Luke, J. M. Keller, M. Skubic,

M. Rantz, and M. Aud. Linguistic summarization of

video for fall detection using voxel person and fuzzy

logic. Computer Vision and Image Understanding,

113:80–89, January 2009.

[2] E. Auvinet, F. Multon, A. St-Arnaud, J. Rousseau,

and J. Meunier. Fall detection with multiple cam-

eras: An occlusion-resistant method based on 3-d sil-

houette vertical distribution. Information Technology in

Biomedicine, 15:290–300, 2011.

[3] R. Cucchiara, A. Prati, and R. Vezzani. A multi-camera

vision system for fall detection and alarm generation.

Expert Systems, 24:334–345, 2007.

[4] G. Diraco, A. Leone, and P. Siciliano. An active vi-

sion system for fall detection and posture recognition

in elderly healthcare. In Design, Automation & Test in

Europe Conference & Exhibition, March 2010.

[5] M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and

T. Jamsa. Comparison of low-complexity fall detection
algorithms for body attached accelerometers. Gait &

Posture, 28:285–291, 2008.

[6] C.-F. Lai, S.-Y. Chang, H.-C. Chao, and Y.-M. Huang.

Detection of cognitive injured body region using mul-

tiple triaxial accelerometers for elderly falling. IEEE

Sensors Journal, 11:763–770, 2011.

[7] A. Leone, G. Diraco, C. Distance, P. Siciliano, M. Mal-

fatti, L. Gonzo, M. Grassi, A. Lombardi, G. Rescio,

P. Malcovati, V. Libal, J. Huang, and G. Potamianos. A

multi-sensor approach for people fall detection in home

environment. In IEEE Workshop on European Con-

ference Computer Vision for Multi-camera and Multi-

modal Sensor Fusioin Algorithms and Applications,

2008.

[8] A. Leone, G. Diraco, and P. Siciliano. Detecting falls

with 3d range camera in ambient assisted living appli-

cations: A preliminary study. Medical Engineering &

Physics, 33:770–781, 2011.

[9] Q. Li, J. A. Stankovic, M. A. Hanson, T. Barth, J. Lach,

and G. Zhou. Accurate, fast fall detection using gyro-

scopes and accelerometer-derived posture information.

In Werable and Implantable Body Sensor Networks,

2009.

[10] F. Nater, H. Grabner, T. Jaeggli, and L. V. Gool. Tracker

trees for unusual event detection. In ICCV Workshop on

Visual Surveillance, 2009.

[11] C. Rougier, E. Auvinet, J. Rousseau, M. Mignotte, and

J. Meunier. Fall detection from depth map video se-

quences. In International Conference on Smart Homes

and Health Telematics, 2011.

[12] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau.

Robust video surveillance for fall detection based on hu-

man shape deformation. IEEE Transactions on Circuits

and Systems for Video Technology, 21:611–622, 2011.

[13] T. Shany, S. J. Redmond, M. R. Narayanan, and N. H.

Lovell. Sensors-based werable systems for monitoring

of human movement and falls. IEEE Sensors Journal,

pp:1–13, 2011.

[14] Z. Zhang, E. Becker, R. Arora, and V. Athitsos. Exper-

iments with computer vision methods for fall detection.

In Conference on Pervasive Technologies Related to As-

sistive Environments (PETRA), 2010.

[15] A. Zweng, S. Zambanini, and M. Kampel. Introducing a

statistical behavior model into camera-based fall detec-

tion. In Proceedings of the 6th international conference

on Advances in visual computing - Volume Part I, 2010.


