
IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 1 April 2013; revised 25 June 2013; accepted 29 June 2013. Date of publication 18 July 2013;
date of current version 20 September 2013.

Digital Object Identifier 10.1109/TETC.2013.2273888

Performance Guaranteed Routing Protocols
for Asymmetric Sensor Networks
XIAO CHEN1, ZANXUN DAI1, WENZHONG LI2, AND HONGCHI SHI1

1Department of Computer Science, Texas State University, San Marcos, TX 78666, USA
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

CORRESPONDING AUTHOR: X. CHEN (xc10@txstate.edu)

ABSTRACT In this paper, we propose performance guaranteed routing protocols in asymmetric sensor
networks (ASNs) where two end nodes may not use the same path to communicate with each other. ASNs
can be caused by hardware devices or environment. Different from most of the existing routing protocols in
symmetric sensor networks, because of asymmetry, achieving desired routing performance in ASNs poses
significant research challenges. To address these challenges, we first propose a general framework protocol
called reverse path (RP) to deal with asymmetric links and then present two efficient routing algorithms
LayHet and EgyHet built on RP to satisfy performance requirements. LayHet is a performance guaranteed
layer-based routing protocol that embeds the shortest path information and saves energy by minimizing the
number of broadcasts and the probability of forwarding. EgyHet is its energy-upgraded version that considers
nodes’ remaining energy. Simulation results comparing the proposed and existing protocols show that LayHet
and EgyHet can reach the desired delivery rate earlier than the existing one and outperform it in terms of
average hops, average packet replication overhead, and average control message overhead. In addition, as
sensor energy reduces, the performance of LayHet and EgyHet eventually degrades more slowly than that of
the existing one.

INDEX TERMS Asymmetric sensor networks, energy efficient, performance guarantee, reverse path,
routing.

I. INTRODUCTION
Wireless sensor network (WSN), a typical application of
Cyber-Physical Systems (CPS), is projected to have a signif-
icant impact on our daily lives, with usages in target track-
ing [2], intelligent homes [12], environment monitoring [17],
disaster rescuing [20], self-touring systems [24], and home
health care [26].

We address in this paper a FUNDAMENTAL problem in
WSNs where two end nodes may not use the same path to
communicate with each other. We refer to the WSNs that
exhibit this kind of asymmetric communication as asym-
metric sensor networks (ASNs). ASNs can be the result of:
Noise sources near a device affecting packet reception at that
device [13]; Nodes powering down to conserve energy [16];
Devices transmitting with different powers explicitly causing
unidirectional links [18]; And intractable factors such as bar-
riers and environmental conditions affecting signal propaga-
tion [25].

Most of the existing routing algorithms are designed for
symmetric communication networks where two nodes use

the same path to communicate back and forth. Even those
discussing heterogeneous networks assume that the links
between nodes are symmetric [7], [10], [27], [28]. To the best
of our knowledge, Ramasubramanian and Mosse [25] were
the first to provide a framework solution for asymmetric links.
But they did not address the issue of network performance
guarantee.
The performance of routing algorithms in ASNs can be

measured by various metrics, such as delivery rate, through-
put, latency, overhead and so on. Although they have dif-
ferent importance to different applications, we find that the
key and influential metric is the delivery rate in ASNs. For
example, ASNs can function as the networking foundation
for the notification systems [1] that are widely used in battle-
fields, financial institutions, emergency services, information
technology, weather, government, education, sports, health
care and so on. The delivery rate determines the effective-
ness of these applications. It also affects other metrics like
throughput, latency, overhead, and energy, because they are
counted based on the delivered packets. Therefore, in this

VOLUME 1, NO. 1, JUNE 2013 2168-6750
 2013 IEEE 111

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Performance Guaranteed Routing Protocols

paper, we will study new routing protocols that can guaran-
tee the desired delivery rate with a high probability using
minimum energy consumption for ASNs that have lossy
links.

Achieving desired delivery rate in ASNs poses significant
research challenges. First, the nodes’ relationships are more
complicated: Node A can directly transmit to B, but B may
not be able to transmit to A directly. Second, because of the
asymmetry, it is harder to get the feedback information such
as delivery probability from a neighbor. Third, the path to
send the message and the path to get the acknowledgement
back may not be the same.

To address these challenges, inspired by [25], we first pro-
pose a general framework protocol called RP (Reverse Path)
that finds reverse paths for asymmetric links to overcome the
difficulty caused by them, and then design routing algorithms
on the reverse paths to satisfy the performance requirements.
Different from the distance-vector-based [21] reverse path
protocol in [25], RP is a source-routing-based [9] protocol
to allow easier troubleshooting and network performance
management. Our first routing protocol built on RP that
guarantees performance requirements for ASNs is ProHet [4],
which is a probabilistic-based protocol for networks formed
by heterogeneous nodes with different transmission ranges.
It is a reactive algorithm suitable for large and more dynamic
networks. In this paper, we will study efficient proactive
routing protocols LayHet (a layer-based protocol) and its
upgraded version EgyHet (an energy-efficient protocol) for
less dynamic networks such as sensor networks. In its prepa-
ration part, LayHet identifies nodes’ layer numbers which
embed shortest path information for the sake of lossy links
to guide routing in the right direction. In its routing part,
to guarantee performance and save more energy, LayHet
only allows a message holder to broadcast enough times so
that at least one selected node will receive and forward the
message. To further reduce energy consumption, we upgrade
LayHet to EgyHet, where we consider the remaining energy
of nodes when selecting forwarders. This paper is an exten-
sion of our two protocols LayHet and EgyHet published in
conference proceedings [5], [6]. In this version, we make a
substantial change in the network scope and related works,
provide more detailed analysis and add more simulation
results.

The rest of the paper is organized as follows: Section II
references the related works; Section III presents the pre-
liminary; Section IV introduces the reverse path proto-
col; Sections V and VI propose the LayHet and EgyHet
protocols; Section VII is the analysis of the protocols;
Section VIII evaluates the performance of the two proto-
cols by simulations; And conclusion and future work are in
Section IX.

II. RELATED WORKS
Routing protocols are typically designed for symmetric com-
munication networks. Even in heterogeneous sensor networks
where sensors have different transmission ranges, researchers

assume that the links between nodes are symmetric [7], [10],
[27], [28]. The asymmetric links make most of the existing
protocols fail or operate with high overhead and low through-
put.
To overcome the difficulty caused by the asymmetric links,

some people use protocol-specific approaches. In proactive
link-state protocols such as OLSR [8], nodes maintain a
view of the network topology by communicating with their
neighbors.With a complete view, the protocols can find routes
in asymmetric networks. But partial views are used to reduce
the cost. Garcia-Luna-Aceves and Bao propose a link-state
protocol [3] with sufficient view to handle asymmetry. How-
ever, it incurs a high cost if views are larger. The proactive
distance-vector protocols such as DSDV [21]maintain at each
node a distance vector consisting of the length and the first-
hop neighbor of the shortest path to other nodes. They assume
symmetric links would fail in asymmetric networks. Prakash
proposes a modified protocol where a node’s distance vector
is broadcast over multiple hops so that it can reach the nodes
that have asymmetric links. However, the protocol increases
theworst-casemessage size fromO(n) toO(n2) [23]. Reactive
protocols such as AODV [22] and DSR [15] use route request
packet (RREQ) and route reply (RREP) to discover routes.
But in asymmetric networks, RREPs cannot be sent back
along the original path. So AODV avoids asymmetric links
in its path and DSR supports asymmetric links by sending
RREPs on a separate route, which requires an additional route
discovery.
In contrast to the above protocol-specific solutions for han-

dling asymmetric links, the BRA protocol proposed by Rama-
subramanian and Mosse [25] has the advantage of making
the underlying asymmetry transparent to the above routing
protocols by building reverse paths for asymmetric links.
Prior to BRA, there were a few general-purpose frameworks
to handle asymmetric links as well. The IETF working group
on Unidirectional Link Routing (UDLR) proposes a proto-
col [11] that invokes tunneling and encapsulation to send
multi-hop acknowledgments at the link layer and Nesargi and
Prakash propose a similar tunneling-based protocol where
control packets are tunneled through multi-hop reverse routes
to the upstream nodes of unidirectional links [19]. However,
the protocols do not specify what routes are used for themulti-
hop tunnels.
Inspired by the idea in [25], we put forward a reverse path

protocol in [4] for asymmetric links. Different from their
distance-vector-based [21] reverse path algorithm, we explore
source-routing-based [9] reverse path protocol to allow easier
troubleshooting and network performance management. Fur-
thermore, in [4], we propose a routing protocol called ProHet
built on the reverse path protocol that can guarantee the
performance requirements which are not discussed in [25].
ProHet is a reactive algorithm which is suitable for large
and more dynamic networks. In this paper, we will focus on
designing proactive algorithms for ASNs in relatively static
environments such as sensor networks to realize efficient
delivery-centric routing.

112 VOLUME 1, NO. 1, JUNE 2013

Chen et al.: Performance Guaranteed Routing Protocols

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

III. PRELIMINARY
The following are the definitions we use in the paper.

A. DEFINITION OF NODES’ NEIGHBOR RELATIONSHIPS
An ASN can be represented by a directed graph G = {V ,E},
where V is the set of sensors (also called nodes), and E is the
set of links (also called edges) in the network. For example, if
sensor B is in the transmission range of sensor A, then there is
a directed link from A to B. We assume graph G generated
from the sensor network is a strongly-connected directed
graph. So the sensor network is also strongly-connected.

A B

A B

A B

(b)

A B

(a) A B

(c) A B (d) A B

A B

FIGURE 1. The neighbor relationships between two nodes
A and B. (a) A and B are each other’s in-out-neighbor; (b) A is
the in-neighbor of B and B is the out-neighbor of A; (c) B is the
in-neighbor of A and A is the out-neighbor of B; (d) A and B are
non-neighbors.

In ASNs, we categorize neighbor relationships of sensors
into four categories: (1) in-out-neighbor; (2) in-neighbor;
(3) out-neighbor; and (4) non-neighbor. For two nodes A and
B, as shown in Fig. 1, if A→ B and B→ A, then A and B are
in-out-neighbors of each other. If only A → B (or B → A),
then A (or B) is the in-neighbor of B (or A), and B (or A) is
the out-neighbor of A (or B). If neither A → B nor B → A,
they are non-neighbors of each other. Also note that if A
and B are each other’s in-out-neighbors, they are each other’s
in-neighbor and out-neighbor.

B. DEFINITION OF PACKET LOSS RATE OF A LINK
We assume data is transmitted through lossy links. The packet
loss rate of a link uv is defined as 1 minus the ratio of the
number of packets Nd which are successfully received by
node v and the total number of packets Ns sent by u. It can

be expressed as:

pv = 1− Nd/Ns. (1)

To obtain pv, sender umust know Nd and Ns. Ns is straight-
forward because whenever u forwards a packet, it increments
Ns by one and Nd is sent back as an acknowledgement from
the destination in later Algorithm 5. After knowing Nd and
Ns, u can calculate pv locally and timely.
Next, we first present the reverse path protocol RP and then

efficient routing protocols LayHet and EgyHet built on RP.

IV. REVERSE PATH PROTOCOL RP
Our idea of establishing the reverse path from a node to its
in-neighbor is to let the node broadcast a ‘‘Find’’ message
containing the source and destination IDs with an expiration
length of 3 hops. We have shown in [4] that if we trace
back three hops for each asymmetric link, the connectivity
of the network can be up to 90%. Therefore, setting the
maximum reverse routing path length to three is appropriate.
The details of finding the reverse paths are described in
Algorithm 1.

Algorithm 1 RP: Finding Reverse Paths for Asymmetric
Links

1: Initialization
a) Every node in the network broadcasts a ‘‘Hello’’

message.
b) If two nodes A and B can receive each other’s

‘‘Hello’’ message and the corresponding ‘‘Ack’’
of the ‘‘Hello’’ message, then each adds the other
to its in-out-neighbor list.

c) If A receives B’s ‘‘Hello’’ message, but not the
‘‘Ack’’ to its own ‘‘Hello’’ message, then A knows
that B is its in-neighbor and adds it to its in-
neighbor list. Then, A will perform the next step
to find a reverse routing path to B.

2: Node A tries to find a reverse routing path to each of
its in-neighbors by broadcasting a ‘‘Find’’ message
containing the source ID (‘‘A’’), the destination ID
(the ID of the in-neighbor to which it wants to find
a reverse path (e.g. ‘‘B’’)), and an expiration length
of 3 hops.

3: If some node C receives a ‘‘Find’’ message,
1) if it is the destination listed in the message, it will

a) add the source node to its out-neighbor list;
b) send the identified reverse routing path to the

source node by a ‘‘Path’’ message containing
the reverse route.

2) if it is not the destination node and the expiration
length is greater than 0, it will rebroadcast the
message after the following modifications:
a) decrement the expiration length by one;
b) append its own ID to the message.

3) in all other cases, it will drop the message.

VOLUME 1, NO. 1, JUNE 2013 113

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Performance Guaranteed Routing Protocols

BA

DC Find(A,B,C,2)
Find(A,B,C,D,1)

Path(A,B,C,D)

Find(A,B,3)

FIGURE 2. An example of finding a reverse path.

We use the example in Fig. 2 to explain the algorithm 1.
There are four sensors A, B, C and D in the graph. Take sen-
sors A and B as an example. If sensor A receives B’s ‘‘Hello’’
message, but not the ‘‘Ack’’ to its own ‘‘Hello’’ message,
then A knows that B is its in-neighbor and adds it to its in-
neighbor list. Then, sensor A wants to find a reverse path to
B. Sensor A broadcasts a message ‘‘Find(A,B,3)’’ containing
the source ID, the destination ID and an expiration length of
3 hops. This message is received by sensor C , since C is not
the destination node, it decrements the expiration length by 1,
appends its own ID to themessage and broadcasts the changed
message ‘‘Find(A,B,C,2)’’. Then sensor D gets the message.
Since it is not the destination either, it does the same thing as
C and broadcasts the changed message ‘‘Find(A,B,C,D,1)’’.
When the destination sensor B gets the message, it adds
the source node A to its out-neighbor list and sends the
identified reverse routing path to A by the ‘‘Path(A,B,C,D)’’
message.

Next, we present two routing protocols LayHet and EgyHet
built on RP for ASNs.

V. LAYHET ROUTING PROTOCOL
In this section, we propose the LayHet protocol that is
built on RP. The protocol has two parts: The preparation
part which includes assigning layer numbers to the nodes
and adjusting layer numbers periodically; And the routing
part which includes the sender broadcasting H times and
the receivers forwarding messages with probabilities esti-
mated from link states with neighbors. The details are as
follows:

A. PREPARATION
1) DECIDING INITIAL LAYER NUMBERS
This part is done by Algorithm 2 where each node finds its
layer number which represents its shortest hop count to the
sink. A node u broadcasts an exploration packet EP con-
taining a hop-count 0 and its ID to the sink. On the way,
the hop-count is incremented and the path is recorded. After
the sink receives EP, it waits for a while for more copies of
EP to arrive as a result of broadcast. Then it picks the EP
with the smallest hop-count. The sink increments the smallest
hop-count by 1. That becomes the hop-count c from u to
the sink. Then the sink sends back an Ack of EP containing
c to u via all the forwarding nodes on the path. Because
of the asymmetric links, the reverse paths may be used.
When u receives c, it knows that its layer number to the sink

Algorithm 2 DILN: Deciding Initial Layer Numbers
1: Node u broadcasts an exploration packet EP containing a

hop-count c = 0 and the source ID.
2: if a node v receives EP then
3: if it is the sink node then
4: it waits for a while for more copies of EP to arrive.

Then it picks an EP with the smallest hop count.
It increments the hop count by 1 and generates an
acknowledgement EPack containing the value of the
current hop count c and the path involving all the
forwarding nodes on the path back to the source u.
The later arrived copies of EP are dropped.

5: When an intermediate node m on the path receives
EPack , it adjusts its own layer number according to
hop count c and its location on the path.

6: if m’s previous node t is its in-out-neighbor then
7: it sends EPack directly to t;
8: else if m has a reverse path to t then
9: m sends EPack to t via the reverse path of the

asymmetric link t → m;
10: else
11: m simply drops EPack
12: end if
13: else
14: it increments the hop count by 1, appends its ID to

EP and rebroadcasts EP
15: end if
16: end if
17: After u receives EPack , it knows its layer number to the

sink is c.

is c. A good point of the algorithm 2 is that each node may
have multiple chances to adjust its initial layer number: Once
by the Ack from the sink addressing itself, others by the Acks
from the sink addressing other nodes if it is the relay node
on the paths. Multiple adjustments are necessary because of
the lossy links. The closer the node is to the sink, the more
accurate its layer number can be because it is more likely to
be a relay node and thus has more chances to adjust its layer
number. The accuracy of the layer numbers for lower layer
nodes is more important than that for the higher layer nodes
since lower layer nodes are more likely to relay messages for
others.

2) ADJUSTING LAYER NUMBERS
Due to the lossy links, some nodes may not be put into
the right layers initially. So the layer numbers of nodes
need to be adjusted. To reduce the overhead, the adjust-
ment of layer numbers can be embedded in Algorithm 5 in
Section V-B. When a node u communicates with its out-
neighbor v to find out the packet loss rate of link uv, the out-
neighbor also sends back its layer number. If u’s layer number
is at least 2 more than v’s layer number, u will adjust its layer
number to v′s layer number plus 1.

114 VOLUME 1, NO. 1, JUNE 2013

Chen et al.: Performance Guaranteed Routing Protocols

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Algorithm 3 BRD-H: BRoaDcasting H Times
1: Except at the beginning when the packet loss rates are

generated randomly, source node u finds out the packet
loss rates p1, p2, . . . , pK with its K lower layer out-
neighbors using Algorithm 5.

2: Node u calculates the number of timesH it should broad-
cast using Formula (4) in Section VII.

3: Node u broadcasts the message plus its link packet loss
rates p1, p2, . . . , pK H times.

Algorithm 4 FWD-M: ForWarDing Messages
1: repeat
2: If a node v receives a message from a higher layer

neighbor u along with the packet loss rates of u’s
links, it uses Formula (5) in Section VII to decide its
probability 0 to forward the message.

3: If it forwards, it becomes the new source and applies
the algorithm 3.

4: If it does not forward, it will simply drop the message.
5: until the message reaches the sink.

B. ROUTING
In this section, we present the routing part of LayHet to
achieve the desired delivery rate using local information.
Our routing protocol contains three phases: Broadcasting H
times, Forwarding messages, and Updating packet loss rate
periodically which are presented in Algorithms 3, 4 and 5,
respectively. The desired delivery rate is preset to 1. Before
the routing in the network begins, the packet loss rates of the
links between a node u and its K lower layer out-neighbors
are generated randomly because the network does not have
any routing history. Later, the packet loss rates are updated
by Algorithm 5 periodically so that the next routing can be
guided by more accurate information in the network. After
u knows the packet loss rates of the links, it broadcasts the
message it wants to send to the sinkH times so that at least one
of its K lower layer out-neighbors can receive the message
in order to achieve the desired delivery rate 1. Next, in the
algorithm 4, a receiving node v will forward the message
at a probability of 0 to avoid flooding the network with
unnecessary messages to save energy. The calculation of H
and 0 is presented in Section VII.
We use the wireless sensor network in Fig. 3 to explain

the LayHet protocol. In the figure, each black dot represents
a sensor, which is responsible for collecting data. The right
most node is the sink, which is responsible for processing data
after collection. All the other nodes will send the collected
data to the sink. In the initialization of the layer numbers,
each node applies Algorithm 2 to determine its layer number
to the sink. After the initialization, the nodes are put into
different layers relative to the sink. Because of the lossy
links in the network, some nodes may not be put in the right
layers initially. But the node layer numbers can be adjusted
by Algorithm 5 later.

Algorithm 5 UPR-P: Updating Packet Loss Rate Periodi-
cally
1: Each node uwill update the packet loss rate of each of its

links with its out-neighbors every T time period.
2: Suppose node u sends out Ns messages to node v during
T time period. At the end of T , node u sends a message
to v asking ‘‘How many messages out of Ns have you
received?’’.

3: After v receives the inquiry, it replies directly or through
the reverse path with the answer ‘‘Nd ’’. Also it attaches
to the message its layer number for u to adjust its layer
number.

4: After u receives the answer, it updates the packet loss rate
of link uv to 1− Nd

Ns
. Also if u’s layer number is at least 2

more than v’s layer number, u adjusts its layer number to
v’s layer number +1.

L0

L1

L2

L3L4

L5

Sink

P1

P3

PK

P2

u

FIGURE 3. A data forwarding scenario.

After the preparation, routing is carried out. Suppose a
source node u in Layer L5 wants to send a message to the
sink. It has K out-neighbors in the lower one-hop, two-
hop and three-hop layers. A node may have a one-hop out-
neighbor in the lower two or three-hop layers because we
consider opportunistic communications exploiting the nature
of broadcast. Based on the packet loss rates of the links
to these out-neighbors, u broadcasts the message H times
calculated by Formula (4) in Section VII. This guarantees that
at least one of these neighbors will receive the message with
a high probability. Then each of these receivers will decide
the probability 0 to forward the message by Formula (5) in
Section VII. The purpose of the forwarding probability is
to reduce the number of replicated packets in the network.
If a node chooses to forward, it becomes the new source and
reapplies the routing protocol. Then hop by hop, the message

VOLUME 1, NO. 1, JUNE 2013 115

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Performance Guaranteed Routing Protocols

will be relayed to the sink. Every T period of time, a sender
will update the packet loss rate of each of its links to its out-
neighbors so that the calculations of H and 0 can be more
accurate next time.

Algorithm 6 CAL-H: CALculating H Value and Selecting
Forwarders
1: Order node u’s K lower layer out-neighbors in non-

increasing order according to their remaining energy
levels. Here we use a node’s remaining energy level
to represent the node. Suppose the sequence E =

{E1,E2, . . . ,EK }.
2: S = {E1}, i = 0.
3: Calculate H based on sequence S using Formula (4) in

Section VII.
4: repeat
5: Hpre = H , i = i+ 1.
6: if i == K + 1 then
7: return H and S
8: end if
9: S = S ∪ {Ei}.

10: Calculate H based on sequence S using Formula (4) in
Section VII.

11: until H == H_pre
12: return H and S = S − {Ei}.

VI. EGYHET ROUTING PROTOCOL
LayHet can be more energy-efficient if the remaining energy
of nodes is considered. We upgrade LayHet to EgyHet by
making the following changes: Algorithm 3 calls Algorithm 6
to select only a subset of K lower layer out-neighbors accord-
ing to their remaining energy as forwarders to satisfy the
desired delivery rate. In Algorithm 6, S represents the selected
forwarding nodes with the highest remaining energy. First,
the K lower layer out-neighbors of node u are ordered in
non-increasing order based on their remaining energy lev-
els. Then starting from the node with the highest remaining
energy, we add node one by one to S. After adding a new
node, we use Formula (4) in Section VII to calculate H .
The H value may be reduced with the increase of the node
number in S. The algorithm stops if the newly added node
does not reduce H any more or if all of the K nodes are
added. After the H value is known, u broadcasts the mes-
sage containing the packet it wants to send to the sink, the
selected forwarding nodes in S and its link loss rates to the
forwarding nodes H times so that at least one of the lower
layer out-neighbors can receive the message with a high
probability in order to achieve the desired delivery rate 1.
In Algorithm 4, only the selected nodes will decide their
probabilities to forward. The unselected oneswill simply drop
the message.

VII. ANALYSIS
In this section, we first give the upper-bound of the desired
delivery rate that a network can achieve, then show that our

algorithms can guarantee the performance if H and 0 are
properly calculated.

A. UPPER-BOUND OF DESIRED DELIVERY RATE
Obviously, if the delivery rate 1 is set too high, the delivery
probabilities of nodes in the network are too low, or the
network is too sparse, the desired delivery rate cannot be
achieved. So we need to find the upper-bound of 1 to make
it achievable.
Assume node u has a total of K lower layer out-neighbors

to select fromwhose delivery probabilities are p1, p2, . . . , pK .
To achieve the desired delivery rate, the following relation
must be satisfied:

1− (1− p1)(1− p2) · · · (1− pK) ≥ 1− (1− pmin)K

≥ 1− (1− pmin)out-dmin ≥ 1 (2)

In the formula, pmin is the minimum delivery probability
of nodes in the whole network. The value out-dmin represents
the minimum K in the whole network. So K ≥ out-dmin.
The values of pmin and out-dmin can be obtained after a
network has been set up and several rounds of packet delivery
have been conducted. So 1 is upper-bounded by

1 ≤ 1− (1− pmin)out-dmin (3)

The inequality indicates that the achievable deliver rate 1
depends on and is bounded by the nodes’ delivery probabil-
ities and the network density. In this paper, when we set the
desired delivery rate 1, we make sure that Condition (3) is
satisfied.

B. PERFORMANCE GUARANTEE
Next, we provide an analysis of our routing algorithms Lay-
Het and EgyHet to show that ifH and 0 are properly selected,
there is a high chance that the routing can achieve the desired
delivery rate 1 and reduce the number of replicated mes-
sages in the network. Since EgyHet considers more network
parameters than LayHet, the analysis will follow EgyHet.
The analysis for LayHet is exactly the same by involving
all the K lower layer out-neighbors without considering their
remaining energy. To show the analysis more clearly, we do
it reversely, that is: Given the desired delivery rate 1, decide
the number of broadcasts H and the forwarding probability
0 to meet the desired delivery rate and reduce the number of
replicated messages. We assume a node u knows the packet
loss rates p1, p2, . . . , pK of all of its links toK lower layer out-
neighbors and the remaining energy of these out-neighbors
through initial random setting or periodic message exchanges
in Algorithm 5.

Assume node u at layer i (see Fig. 3) has a total of K
lower layer out-neighbors. It wants to broadcast a message
to k (k ≤ K) selected lower layer forwarding nodes based
on their remaining energy. In the LayHet protocol, k = K .
In EgyHet, k can be less than K if H remains unchanged if
adding one more node. Because of lossy links, it may need
to broadcast multiple times to make sure that at least one

116 VOLUME 1, NO. 1, JUNE 2013

Chen et al.: Performance Guaranteed Routing Protocols

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

node in the forwarding set can receive the message. Normally
the message needs to travel i hops to reach the sink. Assume
the transmission in each layer is the same. To guarantee the
overall delivery rate1, in each layer, we should guarantee the
success rate of transmission to be at least1

1
i . We assume the

loss rate of the link from u to its j-th forwarding node is pj.
A transmission is successful if at least one of the forwarding
nodes receives the message. That is, the probability

Pr{at least one selected node receives the

message after H transmissions}

= 1− (
k∏
j=1

pj)H ≥ 1
1
i

Then, H ≥
ln(1−1

1
i)∑k

j=1 ln(pj)
(4)

We set H to the minimum integer that can satisfy Formula
(4). After node u broadcasts the message H times, the mes-
sage is transmitted to one or more forwarding nodes with
high probability. To reduce redundancy and save energy, not
all the selected nodes receiving the message will forward
the message. The receivers only forward the message with
probability 0 and drop the message with probability 1 − 0.
Given that a message has been received by a few forwarding
nodes, we shouldmake sure that at least one nodewill forward
the message. That probability

Pr{at least one selected node will forward

the message}

= 1− Pr{no node will forward the message}

= 1−
k∏
j=1

(Pr{the jth node does not receive the

message} + Pr{the jth node receives the

message} · Pr{the jth node doesn′t forward

the message})

= 1−
k∏
j=1

(pHj + (1− pHj)(1− 0))

= 1−
k∏
j=1

(1− 0 + pHj 0) ≥ 1
1
i

Then, 1 −1
1
i ≥

∏k
j=1(1 − 0 + p

H
j 0) ≥ (1 − 0 + pHmin0)

k ,
in which pmin is the minimum value of pj, (1 ≤ j ≤ k).
Solving this inequality yields

0 ≥
1− (1−1

1
i)

1
k

1− pHmin
(5)

Parameter 0 can be set to the minimum value that satisfies
Formula (5). Now that H and 0 are calculated according
to requirements, there is a high chance that the routing can
achieve the desired delivery rate1 and reduce the number of
replicated messages in the network.

VIII. SIMULATIONS
In this section, we evaluate the performance of our protocols
LayHet and EgyHet using a self-written simulator in Java
language. We compare them with our previous work ProHet
in [4] because to the best of our knowledge, ProHet is the
only one that handles asymmetric links with performance
guarantee. The BRA protocol in [25] deals with asymmetric
links but does not consider delivery rate and is shown not
to guarantee delivery rate by simulation [4]. Therefore, we
compare our algorithms with ProHet.

A. COMPARISON OF PROTOCOLS FOR ASNs
We use the following metrics to evaluate the performance of
the protocols:

• Delivery rate: the ratio of the number of packets success-
fully delivered to the sink to the total number of packets
generated.

• Average hops: the average hops of a packet successfully
sent from a source to a sink.

• Average packet replication overhead: the average num-
ber of packet replications used to successfully deliver a
packet.

• Average control message overhead: the average number
of control messages which include all of the commu-
nication messages (except the main packet) to identify
neighbors, find reverse paths and update nodes’ delivery
probabilities needed to successfully deliver a packet.

In our experiments, nodes were randomly deployed in a
500 m × 500 m area. To diversify the transmission ranges
of the nodes, we used the idea in [25] to let a node have
one of the three transmission ranges: the minimum (40 m),
the normal (50 m), and the maximum (60 m). A transmission
range was selected randomly out of the three for a node in
simulation. We also considered link loss and randomly set
the link loss rates to be between 0% and 20%. To implement
message sending and receiving, a virtual concept of time slots
was used. In each time slot, we randomly chose a sensor to
generate a new message and let it send the message to the
sink. Each node used a buffer to cache packets from other
nodes. Assume all packets in the buffer could be transmitted
to the next hop node within one time slot. The simulation
time was set to 1000 time slots. During the experiments, we
randomly generated 30 different deployments of asymmetric
sensor networks, set the desired delivery rates to be 99% (very
high) and 80% (medium), and varied the number of nodes
from 200 to 475 with a step of 25 and averaged the simulation
results.
The simulation results are shown in Figs. 4 and 6. Since

LayHet and EgyHet have similar results, we add Figs. 5 and 7
to show their differences better. From the results, we can
see that all of the three algorithms can guarantee the desired
delivery rate after the network density reaches a certain level.
This is because with the increase of network density, the con-
nection between nodes increases, so a message can get more
chances to be delivered to the sink. Also LayHet and EgyHet

VOLUME 1, NO. 1, JUNE 2013 117

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Performance Guaranteed Routing Protocols

 50

 60

 70

 80

 90

 100

 200 250 300 350 400 450

De
liv

er
y r

ate
 (%

)

Number of nodes

EgyHet
LayHet
ProHet

 6

 6.5

 7

 7.5

 8

 200 250 300 350 400 450

Ho
ps

Number of nodes

EgyHet
LayHet
ProHet 50

 100

 150

 200

 250

 200 250 300 350 400 450

Pa
ck

et
re

pl
ica

tio
n o

ve
rh

ea
d

Number of nodes

EgyHet
LayHet
ProHet

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 200 250 300 350 400 450

Co
nt

ro
l m

es
sa

ge
 ov

er
he

ad

Number of nodes

EgyHet
LayHet
ProHet

(a) (b) (c) (d)

FIGURE 4. Comparison of ProHet, LayHet and EgyHet with assurable delivery rate 99%. (a) Average delivery rate. (b) Average hops.
(c) Average packet replication overhead. (d) Average control message overhead.

 75

 80

 85

 90

 95

 100

 200 250 300 350 400 450

De
liv

er
y r

ate
 (%

)

Number of nodes

EgyHet
LayHet

 6

 6.5

 7

 7.5

 8

 200 250 300 350 400 450

Ho
ps

Number of nodes

EgyHet
LayHet

 30

 35

 40

 45

 50

 55

 200 250 300 350 400 450

Pa
ck

et
re

pl
ica

tio
n o

ve
rh

ea
d

Number of nodes

EgyHet
LayHet

 50

 100

 150

 200

 250

 300

 200 250 300 350 400 450

Co
nt

ro
l m

es
sa

ge
 ov

er
he

ad

Number of nodes

EgyHet
LayHet

(a) (b) (c) (d)

FIGURE 5. Comparison of LayHet and EgyHet with assurable delivery rate 99%. (a) Average delivery rate. (b) Average hops.
(c) Average packet replication overhead. (d) Average control message overhead.

 50

 60

 70

 80

 90

 100

 200 250 300 350 400 450

De
liv

er
y r

ate
 (%

)

Number of nodes

EgyHet
LayHet
ProHet

 6

 6.5

 7

 7.5

 8

 8.5

 200 250 300 350 400 450

Ho
ps

Number of nodes

EgyHet
LayHet
ProHet

 0

 50

 100

 150

 200

 250

 200 250 300 350 400 450

Pa
ck

et
re

pl
ica

tio
n o

ve
rh

ea
d

Number of nodes

EgyHet
LayHet
ProHet

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 200 250 300 350 400 450
Co

nt
ro

l m
es

sa
ge

 ov
er

he
ad

Number of nodes

EgyHet
LayHet
ProHet

(a) (b) (c) (d)

FIGURE 6. Comparison of ProHet, LayHet and EgyHet with assurable delivery rate 80%. (a) Average delivery rate. (b) Average hops.
(c) Average packet replication overhead. (d) Average control message overhead.

can reach the desired delivery rate earlier than ProHet. After
the network becomes dense enough, for example, with more
than 250 nodes in the 80% desired delivery rate setting,
ProHet’s delivery rate will continue increasing but LayHet
and EgyHet’s delivery rates will keep at the 80% delivery
rate level. This is because LayHet and EgyHet are designed
to satisfy the desired delivery rate but do not go over that for
the purpose of saving energy. In ProHet, on the other hand,
more nodes will receive the message in denser topologies by
the nature of opportunistic routing, so its delivery rate will
eventually reach 100%. Comparing the delivery rates of Lay-
Het and EgyHet, LayHet is better due to the fact that EgyHet
uses a subset of LayHet’s forwarders in each forwarding. For
the number of hops to send a message from a source to the
sink, LayHet and EgyHet are better than ProHet because the
layer numbers in them embed the shortest path information.
But the average hops of ProHet are also close to the ideal
results. EgyHet has a little higher hop number than LayHet
again because of its using a subset of LayHet’s forwarders
in each forwarding. The major improvement of LayHet and

EgyHet over ProHet lies in the packet replication overhead
and the control message overhead. The packet replication
overhead of LayHet and EgyHet is substantially less than
that of ProHet and the reduction in control message overhead
in LayHet and EgyHet is also large even with their initial
overhead to set up layer numbers counted. This indicates
that the proactive protocols LayHet and EgyHet can save a
lot of overhead in each hop by identifying node layers at
the beginning whereas the reactive protocol ProHet has more
overhead in each hop trying to discover the route. The packet
replication overhead and controlmessage overhead of EgyHet
are smaller than those of LayHet (though not very obvious in
Figs. 5(d) and 7(d)) for the same subset reason and thus proves
the improvement in EgyHet.

B. EFFECT ON DELIVERY RATE WHEN SENSOR ENERGY
IS REDUCED
In this simulation, we want to see how the delivery rates of
protocols are affected if sensor energy reduces.

118 VOLUME 1, NO. 1, JUNE 2013

Chen et al.: Performance Guaranteed Routing Protocols

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

 75

 80

 85

 90

 95

 100

 200 250 300 350 400 450

De
liv

er
y r

ate
 (%

)

Number of nodes

EgyHet
LayHet

 6

 6.5

 7

 7.5

 8

 200 250 300 350 400 450

Ho
ps

Number of nodes

EgyHet
LayHet

 16

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 200 250 300 350 400 450

Pa
ck

et
re

pl
ica

tio
n o

ve
rh

ea
d

Number of nodes

EgyHet
LayHet

 50

 100

 150

 200

 250

 300

 200 250 300 350 400 450

Co
nt

ro
l m

es
sa

ge
 ov

er
he

ad

Number of nodes

EgyHet
LayHet

(a) (b) (c) (d)

FIGURE 7. Comparison of LayHet and EgyHet with assurable delivery rate 80%. (a) Average delivery rate. (b) Average hops. (c) Average
packet replication overhead. (d) Average control message overhead.

1) ENERGY MODEL
We assume that each node u has a finite and unreplenish-
able initial energy eu, which is a non-negative integer value.
For the energy consumption of sending and receiving a mes-
sage by a node, we adopt the first order radio model [14]
where for k-bit data over distance l, the transmission energy
ET (k, l) and the receiving energy ER(k) are calculated as
follows:

ET (k, l) = Eelec × k + εamp × k × l2 (6)

ER(k) = Eelec × k (7)

where Eelec = 50 nJ/bit and εamp = 100 pJ/bit/m2. When
the distances among nodes are in the order of one hundred
meters, the term with εamp is much larger than the term with
Eelec. Therefore, we assume that for each node, sending one
unit-sized message costs one unit of energy while receiving
one message costs zero energy.

2) PARAMETER SETTING
We again assume that, in our simulations, a sensor has one
of the three transmission ranges 40 m, 50 m or 60 m and a
link loss rate between 0% and 20% initially. We randomly
generated 30 different deployments of ASNs, set the desired
delivery rate to be 99% and randomly generated the sink and
the sources. We tried from 10 to 550 messages with a step of
50. In the routing process, we set the ratios of the length of a
control message and that of a regular message to be 1:25 and
1:50. We set the initial energy level for each node to be 2000
when the ratio is 1:25 and 4000 for each node when the ratio is
1:50. Whenever a sensor sent a packet, some energy would be
deducted from its energy level using the above energy model.
The simulation results are shown in Fig. 8(a)(b).

From the figures, we can see that, with the sending of the
messages, the remaining energy of sensors decreases and after
a certain point, the network can not satisfy the desired delivery
rate anymore. Regardless of message length ratios and nodes’
remaining energy levels, the delivery rate of EgyHet is better
than those of LayHet and ProHet, which justifies the energy
consideration in EgyHet. In Fig. 8(a), when the number of
messages is between 90 and 200 and in Fig. 8(b), when the
number of messages is between 90 and 250, ProHet’s delivery
rate is better than that of LayHet. This is because LayHet
tries to use the shortest path between a source and the sink.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

De
liv

er
y r

ate

Number of messages

EgyHet
LayHet
ProHet

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

De
liv

er
y r

ate

Number of messages

EgyHet
LayHet
ProHet

(a) (b)

FIGURE 8. Comparison of ProHet, LayHet and EgyHet’s delivery
rates as sensors run out of energy. (a) Delivery rate with control
message and regular message length ratio 1:25. (b) Delivery rate
with control message and regular message length ratio 1:50.

The failure of the sensors on or close to the shortest path will
make the routing more difficult. On the other hand, ProHet
can use detours so that its delivery rate during this section
does not decrease as much as LayHet’s. But ProHet depletes
nodes’ energy faster. So eventually its delivery rate falls faster.

IX. CONCLUSION
In this paper, we designed performance guaranteed routing
protocols in asymmetric sensor networks where two end
nodes may not use the same path to communicate with each
other. To address the difficulty caused by the asymmetric
links, we first proposed a general framework protocol RP that
finds reverse paths for asymmetric links. Then we presented
two efficient routing algorithms LayHet and EgyHet built on
RP to satisfy performance requirements. Simulation results
showed that LayHet and EgyHet can reach the desired deliv-
ery rate earlier than the existing protocol and outperformed it
in terms of average hops, average packet replication overhead
and average control message overhead. Furthermore, LayHet
and EgyHet’s performance degrades more slowly than the
existing one as sensors run out of their energy. In this paper,
we focused on designing efficient routing protocols on the top
of the reverse path protocol RP. The study of the reverse path
protocol itself and the comparison with the one proposed by
Ramasubramanian and Mosse can be an independent topic,
which wewill leave for the future work.We believe asymmet-
ric links are very common inmanywireless networks. Besides
the spatial reasons mentioned in this paper, they can be the
result of the time dependency of nodes’ connections such as
in the case of delay tolerant networks, vehicular networks and

VOLUME 1, NO. 1, JUNE 2013 119

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING Chen et al.: Performance Guaranteed Routing Protocols

mobile social networks. In the future, we will study efficient
routing algorithms in these wireless asymmetric networks.

REFERENCES
[1] Notification System [Online]. Available: http://en.wikipedia.org/wiki/

Notification_system
[2] I. Alyildiz, Y. Sankarasubramaniam W. Su, and E. Cayicrci, ‘‘A survey on

sensor networks,’’ IEEE Commun. Mag., vol. 40, no. 8, pp. 102–116, Aug.
2002.

[3] L. C. Bao and J. J. Garcia-Luna-Aceves, ‘‘Link-state routing in networks
with unidirectiona links,’’ in Proc. IEEE ICCCN, Oct. 2005, pp. 358–363.

[4] X. Chen, Z. X. Dai, W. Z. Li, Y. F. Hu, J. Wu, H. C. Shi, and S. L. Lu,
‘‘Prohet: A probabilistic routing protocol with assured delivery rate in
wireless heterogeneous sensor networks,’’ IEEE Trans. Wireless Commun.,
vol. 12, no. 4, pp. 1524–1531, Apr. 2013.

[5] X. Chen, Z. X. Dai,W. Z. Li, andH. C. Shi, ‘‘A layer-based routing protocol
for heterogeneous wireless sensor networks,’’ in Proc. IEEE ICC, Jun.
2012, pp. 228–232.

[6] X. Chen, Z. X. Dai, and H. C. Shi, ‘‘Egyhet: An energy-saving routing
protocol for wireless heterogeneous sensor networks,’’ in Proc. ICNC, Jan.
2013, pp. 778–782.

[7] X. Chen, W. Y. Qu, H. L. Ma, and K. Q. Li, ‘‘A geography–based hetero-
geneous hierarchy routing protocol for wireless sensor networks,’’ in Proc.
10th IEEE HPCC, Sep. 2008, pp. 767–774.

[8] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A. Qayyum, and L. Vien-
not, ‘‘Optimized link state routing protocol for ad hoc networks,’’ in Proc.
IEEE INMIC, Mar. 2001, pp. 62–68.

[9] R. C. Dixon and D. A. Pitt, ‘‘Addressing, bridging, and source routing
(LAN interconnection),’’ IEEE Netw., vol. 2, no. 1, pp. 25–32, Jan. 1988.

[10] X. Du, M. Guizani, X. Yang, and H. H. Chen, ‘‘Two tier secure routing pro-
tocol for heterogeneous sensor networks,’’ IEEE Trans. Wireless Commun.,
vol. 6, no. 9, pp. 3395–3401, Sep. 2007.

[11] E. Duros,W. Dabbous, H. Izumiyama, N. Fujii, and Y. Zhang, A Link Layer
Tunneling Mechanism for Unidirectional Links. NewYork, NY, USA: RFC
Editor, 2001.

[12] I. A. Essa, ‘‘Ubiquitous sensing for smart and aware environments,’’ IEEE
Personal Commun., vol. 7, no. 5, pp. 47–49, Oct. 2000.

[13] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker, ‘‘An empirical study of epidemic algorithms in large scale
multihop wireless networks,’’ Intel Corp., Santa Clara, CA, USA,
Tech. Rep. IRB-TR-02-003, Mar. 2002.

[14] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, ‘‘Energy-efficient
communication protocol for wireless microsensor networks,’’ in Proc.
HICSS, Jan. 2000.

[15] D. B. Johnson and D. A. Maltz, Dynamic Source Routing in Ad Hoc
Wireless Networks. Norwell, MA, USA: Kluwer, 1996.

[16] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
‘‘Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet,’’ in Proc. 10th Int. Conf. ASPLOS,
Oct. 2002, pp. 96–107.

[17] A. M. Mainwaring, D. E. Culler, J. Polastre, R. Szewczyk, and
J. Anderson, ‘‘Wireless sensor networks for habitat monitoring,’’ in Proc.
1st ACM Int. Workshop WSNA, 2002, pp. 88–97.

[18] M. K. Marina and S. R. Das, ‘‘Routing performance in the presence of
unidirectional links in multihop wireless networks,’’ in Proc. IEEE Symp.
Mobile Ad Hoc Netw. Comput., Jun. 2002, pp. 85–97.

[19] S. Nesargi and R. Prakash, ‘‘A tunneling approach to routing with unidirec-
tional links in mobile ad hoc networks,’’ in Proc. 9th ICCCN, Oct. 2000,
pp. 522–527.

[20] D. A. Patterson, ‘‘Rescuing our families, our neighbors, and ourselves,’’
ACM Commun., vol. 48, no. 11, pp. 29–31, Nov. 2005.

[21] C. E. Perkins and P. Bhagwat, ‘‘Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers,’’ in Proc. Conf.
Commun. Archit., Protocols Appl., Oct. 1994, pp. 234–244.

[22] C. E. Perkins, E. M. Royer, and S. R. Das, ‘‘Ad hoc on-demand distance
vector (AODV) routing,’’ Ph.D. dissertation, Sun Microsyst. Lab., Adv.
Develop. Group, Menlo Park, CA, USA, Jun. 2002.

[23] R. Prakash, ‘‘Unidirectional links prove costly in wireless ad hoc net-
works,’’ in Proc. 3rd Int. Workshop Discrete Algorithms Methods Mobile
Comput. Commun., Aug. 1999, pp. 15–22.

[24] J. M. Rabaey, M. J. Ammer, J. L. da Silva, Jr., D. Patel, and S. Roundy,
‘‘PicoRadio supports ad hoc ultra-low power wireless networking,’’ IEEE
Comput., vol. 33, no. 7, pp. 42–48, Jul. 2000.

[25] V. Ramasubramanian and D. Mosse, ‘‘BRA: A bidirectional routing
abstraction for asymmetric mobile ad hoc networks,’’ IEEE/ACM Trans.
Netw., vol. 16, no. 1, pp. 116–129, Feb. 2008.

[26] A. Sixsmith and N. Johnson, ‘‘A smart sensor to detect the falls of the
elderly,’’ IEEE Pervas. Comput., vol. 3, no. 2, pp. 42–47, Apr./Jun. 2004.

[27] Q. Zhang and W. G. Chang, ‘‘A power efficiency routing protocol for
heterogeneous sensor networks,’’ inProc. 4th Int. Conf. Wireless Commun.,
Netw. Mobile Comput., Oct. 2008, pp. 1–4.

[28] W. Y. Zhang, X. J. Du, J. Wu, S. D. Soysa, and Y. Liu, ‘‘Near-minimum-
energy routing in heterogeneous wireless sensor networks,’’ in Proc. IEEE
Global Telecommun. Conf., Dec. 2010, pp. 1–5.

XIAO CHEN is an Associate Professor of com-
puter science with Texas State University, San
Marcos, TX, USA. She received the Ph.D. degree
in computer engineering from Florida Atlantic
University, Boca Raton, FL, USA. Her current
research interests include sensor and ad hoc wire-
less networks. She served as an Associate Editor, a
Program Committee Member, a Session Chair, and
a Reviewer of numerous international journals and
conferences.

ZANXUN DAI received the master’s degree of
computer science with Texas State University-San
Marcos, SanMarcos, TX, USA, and the bachelor’s
degree in software engineering from the Harbin
Institute of Technology, Harbin, China. His current
research interests include sensor networks and ad
hoc wireless networks.

WENZHONG LI received the B.S. and Ph.D.
degrees from Nanjing University, Nanjing, China,
both in computer science. He is currently an
Associate Professor of computer science with
Nanjing University. His current research interests
include wireless networks, pervasive computing,
and social networks. He published over 30 papers
at international conferences and journals. He was
the winner of the Best Paper Award of ICC in 2009.
He is a member of ACM.

HONGCHI SHI is a Professor and the Chair of
computer science with Texas State University, San
Marcos, TX, USA. Prior to joining Texas State
University, he was an Assistant/Associate/Full
Professor of computer science and electrical and
computer engineering with the University of Mis-
souri, Columbia, MO, USA. He received the Ph.D.
degree in computer and information sciences from
the University of Florida, Gainesville, FL, USA.
His current research interests include parallel and

distributed computing, wireless sensor networks, neural networks, and image
processing. He has served on many organizing and/or technical program
committees of international conferences. He is a member of ACM.

120 VOLUME 1, NO. 1, JUNE 2013

