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Abstract

With the proliferation of mobile devices, Opportunistic Mobile Social Networks

(OMSNs) where the communication takes place on-the-fly by the opportunistic

contacts among mobile users when they gather together at events have become

increasingly popular. Multicast is an important routing service which supports

the dissemination of messages to a group of users. Some existing multicast

algorithms are designed by taking advantage of the internal social features of

nodes in the network. This approach is motivated by the fact that nodes come

in contact more frequently if they have more social features in common. These

social features are obtained from nodes’ profiles and thus static. Different from

these multicast protocols that utilize static social features, in this paper, we

adopt dynamic social features to more accurately capture node contact behav-

ior and thereafter propose a novel Social-Similarity-based Multicast framework

using the dynamic social features and a compare-split scheme to improve mul-

ticast efficiency in OMSNs. We instantiate the framework with two multicast

algorithms named Multi-SoSim and E-Multi-SoSim that adopt the dynamic and

enhanced dynamic social features, respectively. A detailed analysis of the pro-

posed algorithms is given and simulations are conducted to evaluate our pro-

posed algorithms by comparing them with their variations and the existing one

using static social features.
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1. Introduction

With the proliferation of smartphones, PDAs, and laptops, Opportunistic

Mobile Social Networks (OMSNs) formed by people moving around carrying

these mobile devices have become popular in recent years [1, 2, 3, 4, 5]. Unlike

popular online social networks such as Facebook and LinkedIn, the OMSNs we5

discuss here are a special kind of Delay Tolerant Networks (DTNs) [6] where

the communication takes place on-the-fly by the opportunistic contacts among

mobile users when they gather together at conferences, social events, rescue

sites, campus activities, and so on. This type of communication relies on a

lightweight mechanism via local wireless bandwidth such as Bluetooth or WiFi10

without a network infrastructure [2, 7, 8]. In OMSNs, node connections are

usually short-term, time-dependent, and unstable as people come and go at

events.

Multicast, a service where a source node sends messages to multiple desti-

nations, widely occurs in OMSNs. For example, in a conference, presentations15

are delivered to inform the participants about the newest technology; In an

emergency scenario, information regarding local conditions and hazard levels is

disseminated to the rescue workers; And in campus life, school information is

sent to a group of student mobile users over their wireless interfaces.

Due to the uncertainty and time-dependent nature of OMSNs, there does20

not guarantee a path from a source to the destinations at any time, which poses

special challenges to routing, either unicast or multicast. Nodes in OMSNs

can only communicate in a store-carry-forward fashion: When two nodes move

within each other’s transmission range, they meet each other and can commu-

nicate directly, and when they are out of the range, their contact is lost. The25

message to be delivered needs to be stored in the local buffer until a contact

occurs in the next hop.
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Most existing multicast algorithms focus on DTNs [9, 10, 11, 12, 13] without

considering social factors. Recently, a few algorithms propose to take advantage

of the social features in user profiles to facilitate routing [2, 14, 15]. Among these30

algorithms, the one proposed by Deng et al. [14] addresses multicast. Specif-

ically, the researchers found, through the study of the Infocom06 trace, that

the social features in user profiles could effectively reflect nodes’ contact behav-

ior and developed a social profile-based multicast (SPM) scheme based on the

two most important social features: Affiliation and Language. In their scheme,35

social features Fi can refer to non-private user attributes such as Nationality,

City, Language, Affiliation, and so on and these social features can take different

values fi. For example, a social feature can be Language and its value can be

English. The intuition is that nodes having more common social features come

to meet more often. Thus the nodes having more common social features with40

the destination are better forwarders to deliver the message to it. We believe,

in the dynamic environment of OMSNs, the multicast algorithm can be fur-

ther improved because the static social features may not always capture nodes’

dynamic contact behavior. For example, a student who puts New York as his

state in his profile may actually attend a conference in Texas. In that case,45

the static information in his profile can not reflect his behavior in Texas. The

information that is helpful in making multicast decisions can only be gathered

from the nodes’ contact behavior at the conference. Therefore, in this paper, we

extend static social features to dynamic social features to better reflect nodes’

contact behavior and thereafter develop a new multicast algorithm specifically50

for OMSNs based on the dynamic social features.

In dynamic social features, we want to embed information that can reflect

users’ dynamic behavior to facilitate routing and that can be easy to obtain and

inexpensive to maintain in OMSNs. Thus, we not only record if a node has the

same social feature value with the destination, but also record the frequency55

this node has met other nodes that have the same social feature value during

the time interval we observe. For example, we not only record if node A, same

as the destination, is a New Yorker but also record that it has met New Yorkers
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90% of the time during the observation interval. Unlike the static social features

from user profiles, dynamic social features are time-related. So they change as60

user contact behavior changes over time. So we can have a more accurate way

to choose the best forwarders in multicast. In this paper, we first apply the

frequency-based dynamic social features and then the enhanced dynamic social

features to multicast to improve its performance.

In multicast, a message holder is expected to forward a message to multiple65

destinations. To reduce the overhead and forwarding cost, the destinations

should share the routing path as much as possible until the point that they

have to be separated. Thus, the overall multicast process results in a tree

structure. A compare-split scheme to determine the separation point is critical

to the efficiency of a multicast. In our multicast, if a message holder x meets70

another node y, the scheme of compare-split is based on the social similarity of

each of the destinations with x and y using dynamic social features. That is,

whichever, either x or y, is more socially close to the destination will have a

higher chance to deliver the message and thus should relay the message to that

destination.75

Based on the notions of dynamic social features and the scheme of compare-

split, we propose a novel social-similarity-based multicast framework for OMSNs.

Two algorithms instantiate this framework: the social-similarity-based multicast

(Multi-Sosim) algorithm which utilizes dynamic social features to capture node

contact behavior and a compare-split scheme to select the best relay node for80

each destination in each hop to improve multicast efficiency and the enhanced

social-similarity-based multicast (E-Multi-Sosim) algorithm which upgrades the

dynamic social features in Multi-Sosim to enhanced dynamic social features to

further improve multicast efficiency. To evaluate the performance of our algo-

rithms, we conduct an analysis and compare them with the existing algorithm85

that uses static social features and some variations of the proposed algorithms.

Simulation results conclude that using dynamic social features can make better

multicast routing decisions than using the static ones, letting destinations share

the paths longer can reduce the cost, and separating destinations and allocating
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them to better forwarders can reduce latency.90

The rest of the paper is organized as follows: Section 2 references the related

works; Section 3 gives the definitions of dynamic social features and the calcu-

lation of social similarity; Section 4 presents our multicast algorithms; Section

5 gives the analysis of the algorithms; Section 6 shows the simulation results;

and the conclusion is in Section 7.95

2. Related Works

The multicast algorithm in Mobile Social Networks (MSNs) can be imple-

mented using rudimentary approaches such as flooding [16], but it has inevitable

high forwarding cost. Most of the existing multicast algorithms are designed for

DTNs where social factors are not considered. Zhao et al. [13] introduce some100

new semantic models for multicast and conclude that the group-based strategy

is suitable for multicast in DTNs. Lee et al. [9] study the scalability property of

multicast in DTNs and introduce RelayCast to improve the throughput bound

of multicast using mobility-assist routing algorithm. By utilizing mobility fea-

tures of DTNs, Xi et al. [12] present an encounter-based multicast routing, and105

Chuah et al. [17] develop a context-aware adaptive multicast routing scheme.

Mongiovi et al. [10] use graph indexing to minimize the remote communication

cost of multicast. And Wang et al. [11] exploit the contact state information and

use a compare-split scheme to construct a multicast tree with a small number

of relay nodes.110

There are a few multicast papers that involve social factors. Gao et al.

[18] propose a community-based multicast routing scheme by exploiting node

centrality and social community structures. This approach is based on the

fact that “social relations among mobile users are more likely to be long-term

characteristics and less volatile than node mobility” [18] in MSNs. Hu et al.115

[19, 20] put forward multicast algorithms to disseminate data in MSNs. In [19],

the content owners multicast to their social contacts which are defined by the

geographic social strength between nodes and in [20], node centrality in the

social contact graph extracted from node contact trace is adopted to select the
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initial receiver set [20]. Deng et al. [14] propose a social-profile-based multicast120

(SPM) algorithm that uses social features in user profiles to guide the multicast

routing in MSNs. This approach has the advantage of not having to record node

contact history, but the static social features may not catch people’s dynamic

contact behavior in the OMSNs. So the multicast algorithm for OMSNs can be

further improved by catching the dynamic features of the network.125

3. Preliminary

In this section, we first introduce static social features used in the existing

papers [14], then define dynamic social features and its enhanced version, and

then give the formula to calculate nodes’ social similarities which will be used

in the compare-split scheme in our multicast algorithms.130

3.1. Definition of Static Social Features

Suppose we consider m social features 〈F1, F2, · · · , Fm〉 in an OMSN. Note

that the choice of which social features to include in a network depends on the

situation and the nodes can agree on the selection through message exchange or

manually when the network was first set up. A node x’s static social features is135

a a vector in the form of 〈x1, x2, · · · , xm〉, where xi is the social feature value

for Fi obtained from the user’s profile.

3.2. Definitions of Dynamic Social Features

In dynamic social features, we define xi as follows based on nodes’ encounter

history to capture nodes’ contact behavior.140

3.2.1. Dynamic Social Features

One definition of xi is the frequency of node x meeting nodes with the same

fi out of all of the nodes it has met in the history we observe. That is,

xi =
Mi

Mtotal

(1)

In definition (1), Mi is the number of times that x has met nodes with the

same fi in the history we observe and Mtotal is all of the nodes that x has met in145

6



that interval. For example, if fi refers to Student and if x has met 20 Students

out of a total of 100 people, then xi = 20/100 = 0.2.

Nevertheless, one problem with the frequency definition of xi is that if node

x has met one Student out of two people it has met in total in the history we

observe and node y has met five Students out of ten people it has met in total,150

using definition (1), both of their frequencies are 0.5 in meeting Students. So

which one is more likely to meet Students in the future? From the intuition,

node y should be given a higher priority because it is more active in meeting

people. There are many formulas we can design to favor y. In the following,

we present one formula, which will be proved in the later Analysis section, that155

can break the tie and favor the more active node.

3.2.2. Enhanced Dynamic Social Features

In this enhanced definition of dynamic social features, xi is calculated as:

xi = ( Mi+1
Mtotal+1 )

pi( Mi

Mtotal+1 )
1−pi = (Mi + 1)pi

M
1−pi
i

Mtotal+1
(2)

In definition (2), pi = Mi/Mtotal. This definition predicts xi by looking at

the next meeting probability of node x with another node having the same fi.160

In the next time, the total meeting times will be Mtotal + 1. The first part

( Mi+1
Mtotal+1 )

pi means that there will be pi probability that x will have a “good”

meeting with another node having the same social feature value fi next time.

In this case, Mi will also be incremented by 1. The second part ( Mi

Mtotal+1 )
1−pi

means that there will be 1 − pi probability for x not to meet a node with the165

same fi next time. In that case, Mi will remain the same. The definition of xi

then takes the geometric mean of the two parts.

With definition (2), we can break the tie in the example above. For node

x, Mi = 1,Mtotal = 2, pi = 0.5; and for node y, Mi = 5,Mtotal = 10, pi = 0.5.

Using definition (2), xi = (1 + 1)0.5 ∗ 1(1−0.5)

2+1 = 0.4714 and yi = (5 + 1)0.5 ∗170

5(1−0.5)

10+1 = 0.4979. These two results are close, reflecting that the two nodes had

the same frequency using definition (1), yet they tell us that y is better because

it is more active meeting nodes.
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Dynamic social features, as shown in the definitions, not only record if a

node has certain social features, but also predict the probability of this node175

meeting other nodes with the same social features. Unlike the static social

features, dynamic social features change as user activities change over time. So

they can better reflect users’ dynamic contact behavior in OMSNs.

3.3. Calculation of Social Similarity

With nodes’ dynamic social features defined, we can use similarity metrics180

such as Tanimoto [21], Cosine [22], Euclidean [23], and Weighted Euclidean [24]

derived from data mining [25] to calculate the social similarity S(x, y) of two

nodes x and y. We finally decide to use the Euclidean similarity metric because

it does not require the calculation of additional weighting values and performs

slightly better than Tanimoto and Cosine in terms of latency when these metrics185

are compared in our simulations [24].

Euclidean Similarity Metric

After normalizing the original definition of the Euclidean similarity [23] in

data mining to the range of [0, 1] and subtracting it from 1, it is now defined as

S(x, y) = 1−
√

∑m

i=1(yi − xi)2√
m

.

Using the Euclidean similarity metric, if two nodes x and y have the same190

dynamic social features, e.g., xi = yi, then S(x, y) = 1. In other words, they

have 0 social similarity gap. So the social similarity gap of two nodes is defined

as 1− S(x, y).

Here is how the metric is used in our algorithms. Suppose we consider

three social features 〈City, Language, Position〉 of the nodes in the network.195

Assume destination d has social feature values 〈NewY ork,English, Student〉.
The vector of d is set to <1, 1, 1> because this is our target. Suppose there are

two relay candidates x and y. We want to decide which is a better one to deliver

the message to the destination. From the history of observation, node x has met

people from New York 70% of the time, people who speak English 93% of the200

time, and students 41% of the time. If we use definition (1) of the dynamic
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social features, node x has a vector of x = 〈0.7, 0.93, 0.41〉. Suppose y’s vector

is: y = 〈0.23, 0.81, 0.5〉. Using the Euclidean social similarity, S(x, d) = 0.62

and S(y, d) = 0.46. So x has a social similarity gap of 1−0.62 = 0.38 to d and y

has a social similarity gap of 0.54 to d. Thus x is more socially similar to d and205

therefore is more likely to deliver the message to the destination. Definition (2)

of the dynamic social features can be used in a similar way.

4. Multicast Routing Protocols

In this section, we propose a social-similarity-basedmulticast framework that

selects the best forwarding nodes depending on the social similarity of nodes210

using dynamic social features and a compare-split scheme. Here we assume

that there is one multicast source. If there are multiple multicast sources, then

the framework can be used by each individual source to multicast messages. In

the framework, when the social similarities of the nodes are calculated using

dynamic social feature definition (1) and definition (2), the resulting multicast215

algorithms are called Multi-Sosim and E-Multi-Sosim, respectively.

4.1. Social-Similarity-based Multicast Framework

Our multicast framework is shown in Fig. 1. In the beginning, suppose a

source node s has a message to send to a set of destinations which we refer to

as its destination set Ds = {d1, d2, · · · , dk}. The destination sets of all of the220

other nodes are initially empty. The message holder is denoted as x. Initially,

x is the source node s.

If the message holder x meets a node y, we first check if y is one of the

destinations. If it is, x will deliver the message to y and remove it from its

destination set. Next, we combine the destination sets of x and y into Dxy225

and make the destination sets Dx and Dy empty. Then we use a compare-split

scheme to split the destinations in Dxy to Dx and Dy by comparing the social

similarity of each of the destinations di with x and y. The social similarity

S(x, y) of x and y is calculated either by dynamic social feature definition (1) or

(2). If y is more socially similar to di, then di will be placed into Dy, meaning230
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Multicast Framework: social-similarity-based multicast framework

Require: The source node s and its destination set Ds = {d1, d2, · · · , dk}; the
destination sets of all of the nodes except s are empty; the initial message

holder x is s

1: /* On contact between a message holder x and node y: */

2: if y ∈ Dx then

3: x forwards the message to destination y and removes y from Dx

4: end if

5: /* Combine the destination sets of x and y */

6: Let Dxy = Dx ∪Dy and Dx = Dy = ∅
7: /* Compare node social similarities and split the destinations in Dxy to Dx

and Dy */

8: for each of the destinations di ∈ Dxy do

9: if S(x, di) < S(y, di) then

10: add di to Dy, and x forwards the message to y if y does not have it

11: else

12: add di to Dx

13: end if

14: end for

Figure 1: Our multicast framework

that y will be the next forwarder for the message destined for di; otherwise,

di will be put into Dx. After this, nodes x and y will become new message

holders and the process will repeat until all of the destinations have received

the message.

Starting from the source node s and through the splits in the middle, the235

multicast process naturally forms a tree. It follows the cost reduction intuition

that the destinations should share the paths on the tree as long as possible

until a better node appears to carry over some of the destinations. This idea

can be clearly presented in the example shown in Fig. 2. In the figure, the

label in a solid circle represents an intermediate relay and the label in a dashed240
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Dx={d1,d2,d3,d4,d5}

S(x,d2:d4)<S(y,d2:d4)

Dx={d1,d3,d5} Dy={d2,d4}

S(x,d3:d5)<S(a,d3:d5)
S(y,d4)>S(d2,d4)

Dx={d1} Da={d3,d5}

Dy={d4}

S(a,d5)<S(b,d5)

Dc={d4}

S(y,d4)<S(c,d4)
Da={d3} Db={d5}

x

x

x

y

y

a

a b
c

d1

d2

d3 d4d5

S(x,d1:d3:d5)>S(y,d1:d3:d5)
x meets y

y meets d2
S(x,d1)>S(a,d1)

x meets a

S(a,d3)>S(b,d3)
a meets b

y meets c

x meets d1

a meets d3 b meets d5 c meets d4

Figure 2: A tree showing the multicast process. The notation “S(x, di : dj : dk) > S(y, di :

dj : dk)” means “S(x, di) > S(y, di) and S(x, dj) > S(y, dj) and S(x, dk) > S(y, dk) ”.

circle represents a destination. Initially, the source node or message holder x

has a message to deliver to the destination set Dx = {d1, d2, d3, d4, d5}. When

x meets a node y, if destinations d1, d3, d5 are more socially similar to x than

y, then they will be allocated to Dx, and d2, d4 will be allocated to Dy if they

are more socially similar to y. The notation “S(x, di : dj : dk) > S(y, di : dj :245

dk)” is a shortened form of “S(x, di) > S(y, di) and S(x, dj) > S(y, dj) and

S(x, dk) > S(y, dk)”. Later, when x meets node a and a meets node b, they will

make decisions following the same rule. The multicast tree continues expanding

until all of the destinations are reached.

5. Analysis250

In this section, we analyze the properties of our algorithms.

5.1. Property of Dynamic Social Feature Definition (2)

Theorem 1. Suppose node x has met Mxi nodes with a certain social feature

out of Mxtotal nodes it has met so far and node y has met Myi nodes with the
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same social feature out of Mytotal nodes it has met so far. Assume they have the255

same meeting frequency pi = Mxi/Mxtotal = Myi/Mytotal with these nodes, and

Mxtotal ≤ Mytotal. According to definition (2) of the dynamic social features,

xi = ( Mxi+1
Mxtotal+1 )

pi ∗ ( Mxi

Mxtotal+1 )
1−pi and yi = (

Myi+1
Mytotal+1 )

pi ∗ (
Myi

Mytotal+1 )
1−pi .

Then xi ≤ yi. That is, definition (2) breaks the tie of the same frequency by

favoring the more active node.260

Proof. To prove xi ≤ yi, it is equivalent to proving that xi− yi ≤ 0. Expand xi

and yi and replace Mxi by piMxtotal and Myi by piMytotal, it is to prove that

(piMxtotal + 1)piM1−pi

xtotal

Mxtotal + 1
−

(pi ∗Mytotal + 1)piM1−pi

ytotal

Mytotal + 1
≤ 0.

Multiply the two sides by (Mxtotal + 1)(Mytotal + 1)Mpi

xtotalM
pi

ytotal, we get

(piMxtotal+1)piMxtotal(Mytotal+1)Mpi

ytotal− (piMytotal+1)piMytotal(Mxtotal+

1)Mpi

xtotal ≤ 0. Rearrange the inequality, it is to prove that

(
piMxtotalMytotal +Mytotal

piMxtotalMytotal +Mxtotal

)pi ≤ MxtotalMytotal +Mytotal

MxtotalMytotal +Mxtotal

.

Since Mytotal ≥ Mxtotal,
piMxtotalMytotal+Mytotal

piMxtotalMytotal+Mxtotal
≥ 1. So the left side is a non-

decreasing function with the increase of pi. The maximum pi is 1, so the max-

imum value of the left side is
MxtotalMytotal+Mytotal

MxtotalMytotal+Mxtotal
, which is the right side.

Therefore the left side is less or equal to the right side. This proves the theo-

rem. �265

5.2. The Number of Forwardings

Theorem 2. In our routing framework, if there is only one destination d in the

destination set D, the expected number of forwardings to reach the destination

from source s is ln g + 1, where g is the social similarity gap from s to d.

Proof. The source node s has a social similarity gap g to the destination d. To270

reach d, the message will be delivered to a node with a smaller gap to d in each

forwarding. For the convenience of later deduction, we set the gap from source

s to d to be 1 and define the gap within which to reach d in one hop to be β

as shown in Fig. 3(a). In other words, if the message holder is within gap β to
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g

d1
0

d2

s

g

g  +e

g  +e

g  +e

g  −e

g  −e

g  −e

1

1

1

1

1

1

1

h

1

0

1

h

(a)

1

β=1/g

s

(b)

1

β=1/g

s

d

(c)

d

Relay

x

1−x

Figure 3: (a) One destination d, whose gap to source s is 1. The range to reach d in one hop

is β = 1/g. (b) Reaching d in 2 hops via the relay node. The gap from s to the relay is x

and the gap from the relay to d is 1− x. (c) Two destinations d1 and d2, whose gaps to s are

g1 and g, respectively. We construct the range [g1 − eh, g1 + eh] around g1 to calculate the

expected number of extra forwardings to reach d1 after spliting.

d, that node can deliver the message to d in one hop. Since the gap length is β275

and the gap from s to d is 1, the probability of a node falling in such a gap is

β. So β is also the probability to reach d in one hop. Relative to the original

gap g between s and d, gap β is equal to 1
g
.

Now let us calculate the probability to reach d in h hops from s. If h = 1,

that means d can be reached from s in one hop. That probability is β according280

to the above explanation. If h = 2, that means d can be reached from s in two

hops. Then there should be a relay lying between s and d as shown in Fig. 3(b).

Assume the gap from s to the relay is x and the gap from the relay to d is 1−x.

Now the probability to reach d from s in two hops becomes β
1−x

. Since x is in

the range of [0, 1− β], the overall probability to reach d in two hops should be285

∫ 1−β

0
β

1−x
dx. The same reasoning can be extended to calculate the probability

to reach d in h hops.
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Therefore, the probability to reach d in

1 hop from s is: β,

2 hops from s is:
∫ 1−β

0
β

1−x
dx = β ln 1

β
,

3 hops is:
∫ 1−β

0

∫ 1−β

x1

β
(1−x1)(1−x2)

dx2dx1 = β
2! (ln

1
β
)2,

· · · ,

h hops is:
∫ 1−β

0

∫ 1−β

x1
· · ·

∫ 1−β

xh−1

β
(1−x1)(1−x2)···(1−xh−1)

dxh−1 · · · dx1

= β
h!(ln

1
β
)h, and so on.

These probabilities form a distribution as their summation
∑∞

h=0
β
h! (ln

1
β
)h is

1 using the Taylor series for the exponential function ex. Therefore, the ex-290

pected number of forwardings is: β · 1 + β ln 1
β
· 2 + β

2! (ln
1
β
)2 · 3 + · · · =

1+(ln 1
β
)
∑∞

h=1
β

(h−1)!(ln
1
β
)h−1. Using the Taylor series for ex again, it is equal

to 1 + ln 1
β
· β · eln 1

β = 1 + ln 1
β
= ln g + 1. �

Theorem 3. The expected number of forwardings in our routing framework295

with k(k > 1) destinations is
∑k−1

i=1 ln(min(g − gi, gi)) + ln g + O(k), where

gi(1 ≤ i ≤ k− 1) is the social similarity gap from source s to destination di and

gk = g is the social similarity gap from the source to the farthest destination dk.

Proof. In our routing framework, the rule of compare-split is that when a mes-

sage holder with k destinations meets another node, a destination di should be300

carried by the node that has a smaller social similarity gap to that destination.

Let us first look at the 2-destination case as shown in Fig. 3(c). Assume the

social similarity gaps from source s to the farther destination d2 and to the

closer destination d1 are g2 = g and g1, respectively. We know from Theorem

2 that the expected number of forwardings to reach d2 is ln g + 1. Now let305

us calculate the extra number of forwardings needed to reach d1 after the two

destinations split. From Theorem 2, the expected number of forwardings h to

reach a destination with gap g from the source is ln g + 1. So g = eh−1. That

means, if the message holder meets a node within the range of [g1− e0, g1 + e0],
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the expected number of hops to reach d1 is 1(h = 1). If the message holder310

meets a node within the range of [g1 − e1, g1 + e1] but not within the range

of [g1 − e0, g1 + e0], the expected number of hops to reach d1 is 2(h = 2). In

general, if the message holder meets a node within the range of [g1− eh, g1+ eh]

but not within the range of [g1 − eh−1, g1 + eh−1], the expected number of hops

to reach d1 is h + 1 and the probability to meet such a node is 2eh

g−g1+eh
from315

the gap range. Now we discuss two cases: (1). g1 ≤ g
2 and (2). g1 > g

2 .

In case (1), if the two destinations split at the h+1 (h ≥ 0) hop, the expected

number of extra forwardings to reach d1 is

1 · 2e0

g−g1+e0
+ 2 · ( 2e1

g−g1+e1
− 2e0

g−g1+e0
) + 3 · ( 2e2

g−g1+e2
− 2e1

g−g1+e1
)

+ · · ·+ ⌈ln g1⌉(1 − 2e⌊ln g1⌋−1

g−g1+e⌊ln g1⌋−1 ) = ⌈ln g1⌉ −
∑⌊ln g1⌋−1

h=0
2eh

g−g1+eh
.

From g1 ≤ g
2 and e⌊ln g1⌋ ≤ g1, we have

∑⌊ln g1⌋−1
h=0

2eh

2(g−g1)
≤ ∑⌊ln g1⌋−1

h=0
2eh

g−g1+eh
≤ ∑⌊ln g1⌋−1

h=0
2eh

g−g1
.

That is, 1
2

2(g1−1)
(g−g1)(e−1) ≤ ∑⌊ln g1⌋−1

h=0
2eh

g−g1+eh
≤ 2(g1−1)

(g−g1)(e−1) .320

Again from g1 ≤ g
2 ,

1

2
·

2

e− 1
≤

⌊ln g1⌋−1∑

h=0

2eh

g − g1 + eh
≤

2

e− 1
.

This means that
∑⌊ln g1⌋−1

h=0
2eh

g−g1+eh
is a constant. So the expected number of

extra forwardings to reach d1 is ln g1 +O(1).

In case (2), if the two destinations split at the h+1 (h ≥ 0) hop, the expected

number of extra forwardings to reach d1 is 1· 2e0

g−g1+e0
+2·( 2e1

g−g1+e1
− 2e0

g−g1+e0
)+3·325

( 2e2

g−g1+e2
− 2e1

g−g1+e1
)+· · ·+⌈ln(g−g1)⌉(1− 2e⌊ln(g−g1)⌋−1

g−g1+e⌊ln(g−g1)⌋−1 ) = ln(g−g1)+O(1).

Combining cases (1) and (2), the expected number of extra forwardings

to reach d1 is ln(min(g − g1, g1)) + O(1). Adding the expected number of

forwardings to reach d2, the total expected number of forwardings to reach the

two destinations is ln(min(g − g1, g1)) + ln g +O(1).330

We extend the same analysis idea to the k-destination case. The expected

number of forwardings to reach the farthest destination dk is ln g + 1, and the
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expected number of extra forwardings to reach each other destination di(i 6= k)

is ln(min(g−gi, gi))+ln g+O(1). Then the total expected number of forwardings

to reach all of the k destinations is
∑k−1

i=1 ln(min(g − gi, gi)) + ln g +O(k). �335

5.3. The Number of Copies

Theorem 4. The number of copies produced by our routing framework is k,

where k is the number of destinations in the multicast set.

Proof. It is trivial to see that each split of the destinations will produce one

extra copy. There are k destinations, so it takes k − 1 splits to separate the k340

destinations into individual ones. Adding the original one copy, the number of

copies produced by our routing framework is k. �

6. Simulations

In this section, we evaluate the performance of our multicast algorithms

by comparing them with their variations and the existing ones using a custom345

simulator written in Java. The simulations were conducted using a real confer-

ence trace [26] representing an OMSN created at INFOCOM 2006. The trace

dataset consists of two parts: contacts between the iMote devices that were

carried by conference participants and the self-reported social features of the

participants, which were collected using a questionnaire form. The six social350

features considered were Affiliation, City, Nationality, Language, Country, and

Position.

6.1. Algorithms Compared

We compared the following related multicast protocols.

1. The Flooding Algorithm (Flooding) [16]: The message is spread epidemi-355

cally throughout the network until it reaches all of the destinations.

2. The Social-Profile-based Multicast Routing Algorithm (SPM) [14]: The

multicast algorithm based on static social features in user profiles.

3. The Multi-Sosim Algorithm (Multi-Sosim): Our multicast algorithm based

on dynamic social feature definition (1) and using the Euclidean social360

similarity metric.
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4. The E-Multi-Sosim Algorithm (E-Multi-Sosim): Our multicast algorithm

based on dynamic social feature definition (2) and using the Euclidean

social similarity metric.

5. Variation 1 of the Multi-Sosim Algorithm (Multi-FwdNew): This algo-365

rithm is similar to Multi-Sosim but a message holder only forwards the

message to a newly met node whose destination set is empty.

6. Variation 2 of the Multi-Sosim Algorithm (Multi-Unicast): The message to

multiple destinations is delivered by multiple independent unicasts (from

the source to each of these destinations), where each unicast is conducted370

using dynamic social features.

6.2. Evaluation Metrics

We used three important metrics to evaluate the performance of the mul-

ticast algorithms. Since a multicast involves multiple destinations, we define a

successful multicast as the one that successfully delivers the message to all of375

the destinations. The three metrics are: (1) Delivery ratio: The ratio of the

number of successful multicasts to the number of total multicasts generated.

(2) Delivery latency: The time between when the source starts to deliver the

message to when all of the destinations have received the message. (3) Number

of forwardings: The number of forwardings needed to deliver the message to all380

of the destinations.

6.3. Simulation Setup

In our simulations, we divided the whole trace time into 10 intervals. Thus,

1 time interval is 0.1 of the total time length and 10 time intervals make up the

length of the whole trace. For each of algorithms compared, we tried the sizes of385

the destination sets to be 5 and 10. In each experiment, we randomly generated

a source and its destination set. We ran each algorithm 300 times and averaged

the results of the evaluation metrics.

6.4. Simulation Results

The simulation results with 5 and 10 destinations are shown in Figs. 4 and390

5, respectively. For the flooding algorithm, as expected, it achieves the highest
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Figure 4: Comparison of different algorithms with 5 destinations
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Figure 5: Comparison of different algorithms with 10 destinations
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Figure 6: Comparison of MultiSosim, Multi-Unicast, and MultiFwdNew with 5 destinations
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Figure 7: Comparison of MultiSosim, Multi-Unicast, and MultiFwdNew with 10 destinations
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Figure 8: Comparison of Multi-Sosim and E-Multi-Sosim with 5 destinations
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Figure 9: Comparison of Multi-Sosim and E-Multi-Sosim with 10 destinations

delivery ratio and lowest delivery latency (almost close to 0 compared with oth-

ers in the figures) at the cost of sending a copy to any newly met node. Thus it

has the highest number of forwardings. The Multi-Sosim algorithm outperforms

SPM in having a higher delivery ratio and lower latency with a little increase395

in the number of forwardings. This is because the dynamic social features in

Multi-Sosim can more accurately capture node encounter behavior than the

static social features in SPM so that multicast efficiency can be improved. The

little increase in the forwardings indicates that Multi-Sosim is more actively

delivering the message to the destinations.400

Figs. 6 and 7 show the zoom-in simulation results of Multi-Sosim, Multi-

Unicast, and Multi-FwdNew algorithms with 5 and 10 destinations. There is not

much difference in delivery ratio and latency between Multi-Sosim and Multi-

Unicast in this simulation as their curves are overlapped in the figures. But

Multi-Sosim decreases the number of forwardings in Multi-Unicast by 16.7%405

and 29.9% with 5 and 10 destinations, respectively. This is because letting
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the destinations share the path in Multi-Sosim can reduce the number of for-

warding nodes, especially when the number of destinations is increased. Multi-

Sosim outperforms Multi-FwdNew in delivery ratio, latency, and the number

of forwardings. With 5 destinations, the Multi-Sosim algorithm increases the410

delivery ratio by 1.5%, decreases latency by 2.0%, and decreases the number of

forwardings by 6.7% comparing with Multi-FwdNew. With 10 destinations, the

Multi-Sosim algorithm increases the delivery ratio by 2.8%, decreases latency

by 3.9%, and decreases the number of forwardings by 11.6%. This is because

Multi-Sosim selects a better forwarder for each of the destinations whenever a415

message holder meets another node while Multi-FwdNew does that only when

a newly met node is encountered.

Figs. 8 and 9 present the comparison of Multi-Sosim and E-Multi-Sosim

algorithms with 5 and 10 destinations. With 5 destinations, the E-Multi-Sosim

algorithm increases the delivery ratio by 2.1%, decreases latency by 6.4%, and420

decreases the number of forwardings by 2.7% comparing with Multi-Sosim. With

10 destinations, the E-Multi-Sosim algorithm increases the delivery ratio by

4.3%, decreases latency by 2.9%, and decreases the number of forwardings by

10.6%. This is because the enhanced dynamic social features in E-Multi-Sosim

can more accurately capture nodes’ dynamic contact behavior to improve mul-425

ticast efficiency.

7. Conclusion

In this paper, we have proposed a novel social-similarity-based multicast

framework for OMSNs where node connections are established opportunistically.

We have instantiated this framework with two algorithms Multi-Sosim and E-430

Multi-Sosim based on a compare-split scheme to select the best relay node for

each of the destinations in each hop to improve multicast efficiency and dynamic

and enhanced dynamic social features to capture nodes’ contact behavior. We

have conducted a theoretical analysis of our proposed algorithms and evaluated

their performance by comparing them with other related algorithms through435

simulations using a real trace representing an OMSN. The simulation results
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have verified the advantages of the dynamic social features over the static ones

and the appropriateness of the compare-split scheme adopted in our multicast

algorithms. In our future work, we plan to test our algorithms using more traces

in OMSNs as they become available.440

Acknowledgements

This research was supported in part by NSF CNS grant 1305302 and NSF ACI

grant 1440637.

References

[1] J. Fan, J. Chen, Y. Du, W. Gao, J. Wu, Y. Sun, Geo-community-based broad-445

casting for data dissemination in mobile social networks, IEEE Trans. on Parallel

and Distributed Systems 24 (4) (2013) 734–743.

[2] J. Wu, Y. Wang, Opportunistic Mobile Social Networks, Taylor & Francis, 2014.

[3] M. Xiao, J. Wu, L. Huang, Community-Aware Opportunistic Routing in Mobile

Social Networks, IEEE Trans. on Computers 63 (7) (2014) 1682–1695.450

[4] H. Zhou, J. Chen, J. Fan, Y. Du, S. K. Das, ConSub: Incentive-Based Content

Subscribing in Selfish Opportunistic Mobile Networks, IEEE Jnl. on Selected

Areas in Communications 31 (9) (2013) 669–679.

[5] H. Zhou, J. Chen, H. Y. Zhao, W. Gao, P. Cheng, On Exploiting Contact Patterns

for Data Forwarding in Duty-Cycle Opportunistic Mobile Networks, IEEE Trans.455

on Veh. Tech. 62 (9) (2013) 4629–4642.

[6] DTN Research Group, http://w5,www.dtnrg.org/.

[7] B. Guo, D. Zhang, Z. Yu, X. Zhou, Z. Zhou, Enhancing spontaneous interaction

in opportunistic mobile social networks, Communications in Mobile Computing

1 (2012) 1–6.460

[8] B. Jedari, F. Xia, A Survey on Routing and Data Dissemination in Opportunistic

Mobile Social Networks, http://arxiv.org/abs/1311.0347.

[9] U. Lee, S. Y. Oh, L. K.-W., M. Gerla, Relaycast: scalable multicast routing in

delay tolerant networks, in: Proc. of IEEE ICNP, 2008, pp. 218–227.

21

http://w5, www.dtnrg.org/
http://arxiv.org/abs/1311.0347


[10] M. Mongiovi, A. K. Singh, X. Yan, B. Zong, K. Psounis, Efficient multicasting465

for delay tolerant networks using graph indexing, in: Proc. of IEEE INFOCOM,

2012.

[11] Y. Wang, J. Wu, A dynamic multicast tree based routing scheme without repli-

cation in delay tolerant networks, Journal of Parallel and Distributed Computing

72 (3) (2012) 424–436.470

[12] Y. Xi, M. Chuah, An encounter-based multicast scheme for disruption tolerant

networks, Computer Communications 32 (16) (2009) 1742–1756.

[13] W. Zhao, M. Ammar, E. Zegura, Muticasting in delay tolerant networks: semantic

models and routing algorithms, in: Proc. of ACM WDTN, 2005, pp. 268–275.

[14] X. Deng, L. Chang, J. Tao, J. Pan, J. Wang, Social profile-based multicast routing475

scheme for delay-tolerant networks, in: Proc. of IEEE ICC, 2013, pp. 1857–1861.

[15] A. Mei, G. Morabito, P. Santi, J. Stefa, Social-aware stateless forwarding in pocket

switched networks, in: Proc. of IEEE INFOCOM, 2011, pp. 251–255.

[16] A. Vahdat, D. Becker, Epidemic routing for partially connected ad hoc networks,

Tech. rep., CS-200006, Duke University (2000).480

[17] M. Chuah, P. Yang, Context-aware multicast routing scheme for disruption toler-

ant networks, Journal of Ad Hoc and Ubiquitous Computing 4 (5) (2009) 269–281.

[18] W. Gao, Q. Li, B. Zhao, G. Cao, Multicasting in delay tolerant networks: a social

network perspective, in: Proc. of ACM MobiHoc, 2009.

[19] J. Hu, L. L. Yang, L. Hanzo, Distributed Cooperative Social Multicast Aided485

Content Dissemination in Random Mobile Networks, IEEE Transactions on Ve-

hicular Technology 64 (7) (2014) 3075–2229.

[20] J. Hu, L. L. Yang, H. V. Poor, L. Hanzo, Bridging the Social and Wireless Net-

working Divide: Information Dissemination in Integrated Cellular and Oppor-

tunistic Networks, IEEE Access 3 (2015) 1809–1848.490

[21] Tanimoto Coefficient, https://docs.tibco.com/pub/spotfire/7.0.1/doc/html

//hc/hc_tanimoto_coefficient.htm.

22

https://docs.tibco.com/pub/spotfire/7.0.1/doc/html
//hc/hc_tanimoto_coefficient.htm


[22] Cosine Correlation, https://docs.tibco.com/pub/spotfire/7.0.1/doc/html

//hc/hc_cosine_correlation.htm .

[23] Euclidean Distance, https://docs.tibco.com/pub/spotfire/7.0.1/doc/html495

//hc/hc_euclidean_distance.htm .

[24] D. Rothfus, C. Dunning, X. Chen, Social-similarity-based routing algorithm in

delay tolerant networks, in: Proc. of IEEE ICC, 2013, pp. 1862–1866.

[25] J. W. Han, M. Kamber, J. Pei, Data Mining: concepts and techniques, Morgan

Kaufmann, MA, USA, 2012.500

[26] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, Crawdad trace

cambridge/haggle/imote/infocom2006(v.2009-05-29), http://crawdad.cs.dart

mouth.edu/cambridge/haggle/imote/infocom2006 (May 2009).

23

https://docs.tibco.com/pub/spotfire/7.0.1/doc/html
//hc/hc_cosine_correlation.htm
https://docs.tibco.com/pub/spotfire/7.0.1/doc/html
//hc/hc_euclidean_distance.htm
http://crawdad.cs.dart
mouth.edu/cambridge/haggle/imote/infocom2006

	Introduction
	Related Works
	Preliminary
	Definition of Static Social Features
	Definitions of Dynamic Social Features
	Dynamic Social Features
	Enhanced Dynamic Social Features

	Calculation of Social Similarity

	Multicast Routing Protocols
	Social-Similarity-based Multicast Framework

	Analysis
	Property of Dynamic Social Feature Definition (2)
	The Number of Forwardings
	The Number of Copies

	Simulations
	Algorithms Compared
	Evaluation Metrics
	Simulation Setup
	Simulation Results

	Conclusion

