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Abstract—A mobile Social Network (MSN) is a type of wireless
networks formed by people moving around carrying mobile
devices. In this paper, we specifically study the MSNs that
are formed impromptu, e.g. when people gather together for
a conference, event, or festival. We refer to them as Impromptu
Mobile Social Networks (IMSNs), which allow people to commu-
nicate in a lightweight fashion based on contact opportunities via
local wireless bandwidth. In IMSNs, node connections are time-
dependent and short-term. The existing MSN routing algorithms
using network analysis of social network graphs and static node
social features may not be suitable for IMSNs. Thus, we propose
novel hybrid routing algorithms based on two time-related factors
node contact history and dynamic social features to capture node
mobility in IMSNs. We first propose a hybrid algorithm called
Hisso that makes a weighted combination of the history and
the social predictors based on these two factors. And then we
upgrade it to Enhanced Hisso by introducing a novel concept
called social circle in the social predictor to improve message
delivery. Simulation results comparing our algorithms with the
existing ones and with the ones that only consider one factor
show that our algorithms outperform the others in terms of
delivery ratio and latency with a slight increase in the number of
forwardings. The results also confirm the effectiveness of using
a node’s social circle in our algorithms.

Index Terms—history-based, mobile social networks, routing,
social-based, social features

I. INTRODUCTION

Mobile Social Networks (MSNs), formed by people moving
around carrying mobile devices such as smartphones, tablets,
laptops, and so on, are becoming ubiquitous in our daily lives.
Different from the popular social networks like Facebook [1]
and LinkedIn [2], in this paper, we study a specific kind
of MSNs that are formed impromptu. We refer to them as
Impromptu Mobile Social Networks (IMSNs). The IMSNs
can be formed when people carrying mobile devices attend
a conference, event, or festival. The IMSNs allow people to
communicate in a lightweight mechanism based on contact
opportunities via local wireless bandwidth such as Bluetooth
without a network infrastructure. The links between nodes in
IMSNs are time-dependent and short-term and thus continuous
network connectivity is not guaranteed.

Nodes in IMSNs communicate through a store-and-forward
fashion. When two nodes move within each other’s transmis-
sion range, they communicate directly and become neighbors
during that time period. When they move out of their ranges,
their contact is lost. The message to be delivered needs to
be stored in the local buffer until a contact occurs in the next

hop. Due to the uncertainty and time-varying nature of IMSNs,
routing poses unique challenges: The conventional ad-hoc
network routing schemes, such as DSR [11], LAR [13], DSDV
[16], AODV [17], etc., would fail. Routing in IMSNs requires
a new model that consists of a sequence of independent,
local forwarding decisions, based on the current connectivity
information and the predictions of future connectivity to suit
its distributed and dynamic nature.

In IMSNs, routing algorithms can be measured by three
performance metrics. (1) Delivery ratio. It is the fraction
of generated messages that are successfully delivered to the
destination. (2) Delivery latency. It is the time between when
a message is generated and when it is received by the
destination. (3) Number of forwardings. It is the number of
forwardings needed to deliver a message to its destination. An
efficient routing algorithm should entail a high delivery ratio
and low latency with an acceptable number of forwardings.

Despite their simplicity, rudimentary approaches such as
Flooding [25] where a message holder epidemically sends a
message to all of the nodes it contacts and Wait [12] where a
source only directly delivers a message to the destination can
still work in IMSNs. But Flooding has a high cost of message
forwardings and Wait can have a long latency.

As mentioned above, the key to designing an efficient IMSN
routing protocol is to have a good predictor for a message
holder to locally identify a forwarder which is most likely to
deliver a message to the destination based on the message
holder’s current connectivity information. In the literature,
researchers use different current connectivity information to
predict the future connectivity. Some researchers generate
social network graphs by linking nodes with past encounters
and apply complex social analysis methods based on node
centrality and similarity to predict nodes’ future meeting
probabilities [5], [10]. To facilitate discussion, we refer to this
method as social-analysis-based method. In this method, a
link in the social network graph means that two nodes have
met in the past, which has predictive value for future contacts.
Nonetheless, the aggregation of contacts between nodes over
time into a “static” social graph presents an inherent mapping
tradeoff, where some information about timing of contacts is
lost [9], [27]. Some other researchers use social features in
user profiles as the current information to predict future con-
nectivity [14], [26]. We refer to this method as social-profile-
based method. The social features F1, F2, F3, · · · may refer



to people’s nationality, city, language, etc. And f1, f2, f3, · · ·
represent the values of these social features. For example,
the value of language can be English. In this paper, for
convenience’s sake, when we mention “comparing node social
features”, we mean “comparing the values of their social
features”. The intuition of this method is that people come
in contact more frequently if they have more social features
in common. In each hop of the routing process, the message
holder selects a node that has the most common social features
with the destination as the next forwarder. The advantage of
this method is that it does not need to record node contact
history. Nevertheless, it may not work well if users’ activities
do not match the static social features in their profiles. For
example, someone who puts New York as his state in his
profile may actually attend a conference in Texas.

In the IMSNs we discuss in this paper, where links be-
tween nodes are time-dependent, we need to use information,
especially time-related information, that can capture users’
dynamic behavior to be used as the current information to
predict future connectivity. Thus, we consider two pieces of
information: node contact history and dynamic social features.
Node contact history records the contact times of nodes when
they move within each other’s range. Node contact history is
often used by researchers in designing various utility functions
such as average number of contacts [3], number of times nodes
met last [6], and elapsed time since last contact [22] in Delay
Tolerant Network (DTN) routing protocols. As pointed out by
[6], the history of contact between nodes contains valuable,
but noisy information about the current network topology.
Dynamic social features, relative to the static social features
in user profiles, are used to capture nodes’ dynamic behavior.
We first introduced the idea in our paper [19]. In dynamic
social features, we not only record if a node has particular
social feature values, but also record the frequency this node
has met other nodes which have these social feature values.
For example, we not only record that a node A is a New
Yorker and a Student, but also record that it has met New
Yorkers 90% of the time and Students 80% of the time during
the time interval we observe. Unlike static social features from
user profiles, dynamic social features are time-related. So they
change as user activities change over time. And thus we can
have a more accurate way to choose the next best forwarder.
For example, suppose the destination has social feature values
New Yorker and Student and we have two candidate nodes A
and B, both of which are New Yorkers and Students. Nodes
A and B are equally good forwarders if we just look at their
static social feature values. However, if we know that A has
met New Yorkers 90% of the time and Students 80% of the
time and B has met New Yorkers 60% of the time and Students
40% of the time during the time interval we observe, then
obviously A is a better forwarder.

Based on the above discussion, in this paper, we will use
node contact history and dynamic social features as the current
information and design efficient hybrid routing algorithms
using predictors combining the history predictor based on the
node contact history and the social predictor based on the

dynamic social features. As far as we know, we are the first to
combine these two time-related factors to capture the dynamic
behavior of nodes to make routing decisions in IMSNs. We
first put forward a routing algorithm called Hisso which selects
the next best forwarder based on the weighted combination
of the history and the social predictors. In Hisso, the history
predictor is obtained by applying linear regression to the node
contact history with the destination. And the social predictor
is calculated by utilizing social similarity metrics derived from
data mining [8] on the dynamic social features. Next, we
upgrade Hisso to Enhanced Hisso by introducing a novel
concept called social circle in the social predictor calculation.
A node’s social circle here refers to a group of nodes that
are socially similar to this node based on the dynamic social
features. In the social predictor in Enhanced Hisso, we not only
consider the social similarity of a node with the destination but
also the meeting probability and the social similarity of this
node with the destination’s social circle. The intuition is that
if a node is socially similar to the destination or often meets
a set of nodes that are socially similar to the destination, then
this node will have a higher probability to forward the message
to the destination by itself or through one of the nodes in the
destination’s social circle.

To evaluate the performance of our algorithms, we compare
them with the social-analysis-based and social-profile-based
methods, and the pure history-based and pure dynamic-social-
feature-based algorithms that just adopt node contact history
or dynamic social features as the current information by
simulations using a real trace reflecting the scenarios of the
IMSNs we discuss. We implement single-copy (only one copy
of the message exists in the network in the routing process)
and multi-copy (multiple copies of the message exist in the
network in the routing process) versions of the algorithms. In
both versions, the results consistently show that our algorithms
outperform the existing algorithms in terms of delivery ratio
and latency with a slight increase in the number of forward-
ings. Furthermore, the Enhanced Hisso algorithm is shown
to be better than Hisso due to the utilization of the social
circle concept. These results demonstrate the effectiveness of
using time-related information and a node’s social circle in the
routing algorithms for IMSNs.

The rest of the paper is organized as follows: Section II
references the related works; Section III presents our routing
algorithms; Section IV explains the calculation of the predic-
tors; Section V shows the simulation results and the conclusion
and future work are in Section VI.

II. RELATED WORKS

In this section, we reference some related routing algorithms
in MSNs. The rudimentary and history-based approaches were
originally developed for DTNs. But they can also be used in
MSNs. The social-based and hybrid approaches are designed
for the MSNs as they consider social factors.

A. Rudimentary Approaches
One efficient yet costly routing approach in DTNs is Flood-

ing [25] where a message holder forwards a message to all of



the hosts it meets. The opposite approach is Wait [12], where
the source just waits and sends the message to the destination
directly when they meet. It only has one forwarding but the
latency can be very high.

B. History-based Approaches

In DTN routing algorithms, several papers make routing
decisions using utility functions based on the contact history
of nodes. Dubois-Ferriere et al. [6] predict the nodes’ future
meeting probability by the number of times two nodes met last.
Chen et al. [3] consider not only that but also the frequency of
nodes contacting the destination in the past and calculate the
average. There are also some variations of these algorithms.
For example, Spyropoulos et al. [22] record the time elapsed
since every other node was last encountered as the elapsed
time contains the relative location information of the nodes.
And Chen et al. [4] develop an extended information model to
capture more history information and use regression methods
to predict nodes’ future meeting probability to guide routing.

C. Social-based Approaches

As social network applications explode in recent years,
analysis of these network graphs shows that some nodes
are the common acquaintances of other nodes and act as
communication hubs [15], [24]. Therefore, one promising
way of predicting future contact probability is to use metrics
such as centrality and similarity in network analysis to assess
the message delivery probability of a node based on the
connections in the graphs [5], [10], [18]. Nevertheless, in these
network graphs, past node contacts have been aggregated into
a “static” social graph. As pointed out by [9], [27], the “static”
social graph has the tradeoff between time-related information
lost and predictive capability.

Some other MSN routing algorithms use social features
in user profiles to guide routing. Mei et al. [14] find that
individuals with similar social features tend to meet more
often in MSNs. The individuals are characterized by high
dimensional feature profiles, though usually only a small
subset of important features are extracted and used in routing.
Wu et al. [26] provide a systematic multicast routing approach
to resolving social feature differences between a source and
destinations by taking advantage of the structural property
of hypercubes. The advantage of these social-profile-based
approaches is that they do not need to record node contact
history. They work well in social networks where the activities
of individuals follow the information in their profiles.

In our recent work [19], we make our first attempt to design
routing algorithms for the IMSNs we address in this paper. We
find that in many mobile social networks, user activities are
time-dependent and may deviate from their social features in
their profiles. For example, someone who puts New York as
his state in his user profile may actually attend a conference in
Texas. Therefore, in order to capture nodes’ dynamic behavior
to steer the routing in the right direction, we use dynamic
social features which not only record a node’s social features
but also its meeting frequencies with other nodes having the

considered social features. With the similarity metrics derived
from data mining [8], we put forward a routing algorithm
called Sosim [19] which makes routing decisions based on
the similarity of nodes’ dynamic social features.

D. Hybrid Approaches

In the literature, there are also some hybrid approaches that
consider more than one factor to make routing decisions. Sim-
Bet [5] routing algorithm uses a hybrid forwarding rule that
makes effective use of two metrics (centrality and similarity)
to determine the “bridge” nodes and nodes’ social similarity to
the destination to deliver data from one node to another. The
centrality here refers to the betweenness centrality of each
node, which is estimated only in its local neighborhood to
avoid exchanging the network topology information. For the
similarity metric, the number of common neighbors of the
current node with the destination is calculated. The Bubble
rap algorithm [10] considers two characteristics of a node- its
community and centrality to make routing decisions. Here, a
node can be a member of more than one community and it has
a local centrality showing its popularity in its own community
and a global centrality showing the popularity of the node in
the network. Both the SimBet and the Bubble rap algorithms
apply complex network analysis methods to social network
graphs built by aggregating past node contacts.

III. OUR ROUTING ALGORITHMS

In this section, we propose two hybrid routing algorithms
Hisso and Enhanced Hisso that select the next best forwarder
based on its highest probability to meet the destination resulted
from the predictors using node contact history and dynamic
social features as the current information. Though these two
algorithms use different predictors, they use the same routing
algorithm framework which is presented in the next paragraph.

A. Routing Framework of Our Algorithms

Our algorithms Hisso and Enhance Hisso use the same
routing framework as shown in Fig. 1 to deliver messages from
a source to a destination. The difference between them is that
they use a different predictor ruid to make routing decisions.
In the routing framework, we adopt delegation forwarding [7],
which is proved by the authors to bring down the expected
cost of message delivery from O(N) to O(

√
N), where N is

the number of nodes in the network. In delegation forwarding,
each node ui is assigned a quality ruid which in our algorithms
indicates ui’s probability to meet destination d in the future
based on node contact history and dynamic social features,
and a level value τi. Initially, the level of each node is equal
to its quality. In each hop of delegation forwarding, a message
holder ui only considers forwarding the message to a node uj

which has a higher quality than ui’s level hoping that uj has
a better chance to deliver the message to the destination. At
the same time, node ui improves its level to the quality of uj .
In the rest of the routing process, each message holder does
the same thing until the destination receives the message. The
essence of delegation forwarding is that a copy is transferred



Routing Algorithm Framework based on Node Contact
History and Dynamic Social Features

1: Let u1, u2, · · · , uN−1 be nodes in the network, d be the
destination, and ruid be the probability that node ui will
meet d in the future based on node contact history and
dynamic social features. The calculations of ruid in Hisso
and Enhanced Hisso are explained in Sections III-B and
III-C.

2: Each node ui has quality ruid and level τi.
3: INITIALIZE ∀i : τi ← ruid

4: On contact between message holder ui and node uj :
5: if uj is the destination d then
6: ui forwards the message to uj and the algorithm is

terminated
7: else if τi < rujd then
8: τi ← rujd

9: if uj does not have the message then
10: ui forwards the message to uj

11: end if
12: end if

Fig. 1. The routing algorithm framework

to a newly encountered node if the node is “closer” to the
destination based on a certain predictor than other nodes that
the current node has already met.

B. The Hisso Algorithm

The predictor rud of the Hisso algorithm is shown in For-
mula (1). It predicts the probability of u meeting destination
d using a weighted combination of the history predictor hud

based on node contact history and the social predictor sud
based on the similarity of nodes’ dynamic social features.
The detailed calculations of hud and sud will be explained
in Sections IV-A and IV-B, respectively. In the formula,
parameters α and β are weights and α + β = 1. Note that
when α is 1, the algorithm becomes the pure history-based
algorithm and when β is 1, it becomes the pure dynamic-
social-feature-based algorithm. The intuition of this formula
is that if u often met d directly in history and/or it is very
socially similar to d based on the dynamic social features,
then it will very likely meet d again in the future.

rud = α · history predictor + β · social predictor
= α · hud + β · sud (1)

C. The Enhanced Hisso Algorithm

In the predictor rud shown in Formula (2) for the Enhanced
Hisso, the social predictor is enhanced by considering not
only the social similarity between u and d but also covering a
broader scope - the social closeness between u and d’s social
circle. A node’s social circle means a group of nodes that are
socially similar to the node. Here, specifically, social similarity
refers to the similarity of nodes based on their dynamic social
features. The intuition of this idea is that if u is socially similar
to d or often meets a set of nodes that are socially similar to d,

node u will have a higher probability to successfully forward
the message to d by itself or through one of the nodes in d’s
social circle. In Formula (2), parameters α and β are weights
and α + β = 1. Set Lu contains the top L nodes that are
socially similar to d and frequently meet u, and szd is the
social similarity between a node z ∈ Lu and d. Again, how
to calculate hud and szd will be explained in Sections IV-A
and IV-B, respectively.

rud = α · history predictor + β · social predictor

= α · hud + β ·
∑

z∈Lu
szdhuz∑

z∈Lu
huz

(2)

The Enhanced Hisso becomes Hisso when we only consider
the social similarity of u to d. In other words, when Lu only
contains u.

IV. PREDICTOR CALCULATION

In this section, we explain the calculations of the history
and social predictors. We normalize each predictor to the range
of [0, 1] so that they can be of similar order of magnitude -
otherwise they may overshadow each other when combined.

A. History Predictor

For the history predictor, in [4], we proposed an informa-
tion model to capture more contact information of nodes in
history and used linear regression to predict future contacts for
routing algorithms in DTNs. Since it can catch more history
information and make good predictions [4], we adopt it to
calculate the history predictor for routing algorithms in IMSNs
as well. Its idea is as follows: We observe the past t time
intervals {1, 2, · · · , t} in history. Each time interval i has a
length of l units. Let ni (ni ≤ l) be the number of contacts
between node u and destination d in time interval i. Let X-
axis represent the time interval i and Y -axis represent the
number of contacts ni. For t intervals, we can obtain t points
(i, ni) (1 ≤ i ≤ t) in the 2-D space as shown in Fig. 2.
Although these t points (i, ni) may not all lie on a line, it is
reasonable to examine di = ni− (ai+b) = ni−ai−b, which
is the difference between the y-coordinates of the point (i, ni)
and the corresponding point on the line y = ax + b. The
Least-Squares-Method criterion for the “best” linear model
approximation is to determine the values of a and b that
minimize the sum of squares of all of the y-differences denoted
by F (a, b) as follows:

F (a, b) =
t∑

i=1

(ni − ai− b)2.

To minimize F (a, b), we take the partial derivatives of F (a, b)
and set them equal to 0 to find the unique critical point for
F (a, b).

F ′
a(a, b) = −

∑t
i=1 2i(ni − ai− b) = 0,

F ′
b(a, b) = −

∑t
i=1 2(ni − ai− b) = 0.

Thus [
a
b

]
=

[ ∑t
i=1 i

2
∑t

i=1 i∑t
i=1 i t

]−1 [ ∑t
i=1 ini∑t
i=1 ni

]
and



d1
d

d d
d

d

2

3
7

d6

5
4

y = ax + b

2 3 4 5 6 70

10

20

30

y

x

Time interval i
1

N
um

be
r 

of
 c

on
ta

ct
s 

ni

Fig. 2. Node contacts in the past time intervals

nt+1= a(t+ 1) + b = [ t+ 1 1 ]
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a
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2
∑t
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]−1 [ ∑t
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∑t
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−
∑t
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∑t
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 ∑t
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
t
∑t

i=1 i2−(
∑t

i=1 i)
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The value of nt+1 is the predicted future contacts of u and
d in time interval i + 1 based on their contacts in the past t
intervals. We set hud = nt+1

lt after normalization as our history
predictor to estimate their future meeting probability.

B. Social Predictor

For the social predictor, the key points are how to represent
nodes’ dynamic social features and how to measure the
social similarity of two nodes based on them. We explain
them as follows. Suppose we consider m social features
⟨F1, F2, · · · , Fm⟩ of nodes in IMSNs. We associate each node
with a vector of its social features. For convenience, we use
a node’s label as its vector’s label. Thus, a node x has a
vector x of ⟨x1, x2, · · · , xm⟩ and a node y has a vector
y of ⟨y1, y2, · · · , ym⟩. A node x’s dynamic social features
are contained in its vector, which is < x1, x2, · · · , xm >=⟨

M1

Mtotal
, M2

Mtotal
, M3

Mtotal
, · · · Mm

Mtotal

⟩
, where Mi is the number

of meetings of node x with nodes whose value fi of feature
Fi is the same as that of destination d, and Mtotal is the total
number of meetings of node x with any other node in the
history we observe. Thus 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ m.
With the node’s dynamic social features defined, we can use
the following similarity metrics derived from data mining [8]
to compare the similarity sxy of nodes x and y.

• Tanimoto similarity

It measures the similarity of x and y as: sxy =
x · y

x · x+ y · y − x · y
. The notation x · y is the product

of the two vectors. For example, suppose we consider
three social features: ⟨City, Language, Position⟩. If
the values of the social features of destination d are:
⟨NewY ork,English, Student⟩ and node x has met
people from New York 70% of the time, people that
speak English 93% of the time, and students 41% of
the time in the history we observe, then node x has
a vector of x = ⟨0.7, 0.93, 0.41⟩. If y’s vector is:
y = ⟨0.23, 0.81, 0.5⟩, then using the Tanimoto metric,
sxy = 0.82.

• Cosine similarity

It measures the similarity of x and y as: sxy =
x · y√

(x · x)(y · y)
.

• Euclidean similarity

After normalizing the original Euclidean similarity to the
range of [0, 1] and subtract it from 1, it is now defined

as sxy = 1−
√∑m

i=1(yi − xi)2√
m

.

• Weighted Euclidean similarity

In addition to the basic Euclidean similarity mentioned
above, we also employ the weighted Euclidean similarity
to favor the social features that are more influential to
the delivery of the packet. To determine the weight of
a social feature, we use the Shannon entropy [21] which
quantifies the expected value of the information contained
in the feature [26]. The Shannon entropy for a given so-

cial feature is calculated as: wi = −
k∑

i=1

p(fi) · log2(fi),

where wi is the Shannon entropy for feature Fi, vector
⟨f1, f2, · · · fk⟩ contains the possible values of feature Fi,
and p denotes the probability mass function of Fi. The
weighted Euclidean similarity normalized to the range of

[0, 1] is: sxy = 1−
√∑m

i=1 wi · (yi − xi)2√∑m
i=1 wi

.

V. SIMULATIONS

This section describes the simulations we conducted us-
ing a custom simulator written in Java. We first performed
simulations to determine the values of the parameters in our
algorithms and then we compared our algorithms with the
existing ones in two versions: single-copy and multi-copy.

In our simulations, we used the INFOCOM 2006 trace [20],
which recorded conference attenders’ encounter history using
Bluetooth small devices (iMotes) for three days at the IEEE
INFOCOM 2006 conference in Miami. This data set consists
of two parts: contacts between the iMote devices that were
carried by participants and the self-reported social features
of the participants, which are collected using a questionnaire
form. The six social features extracted from the dataset and
used for the social predictor were Affiliation, City, Nationality,
Language, Country, and Position.

We use delivery ratio, delivery latency, and number of for-
wardings as important metrics to evaluate the performance of
the algorithms. An efficient routing entails a high delivery ratio
and low latency with an acceptable number of forwardings.

A. Comparison of social similarity metrics

To find the best fit for our simulated context, we compared
Tanimoto, Cosine, Euclidean, and Weighted Euclidean social
similarity metrics by performing delegation forwarding routing
algorithm. We utilized the first two days of the data as the
initial history and performed our simulations on the remaining
one day. We generated messages from a randomly chosen
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Fig. 3. Comparison of Tanimoto, Cosine, Euclidean, and Weighted Euclidean social similarity metrics

source to a randomly chosen destination every two seconds
in the first 24 hours of the simulation. We then averaged five
separate simulations for each similarity metric with identical
setups to mitigate the effect of any outliers in the performance.
We set time-to-live of all of the packets to 9, meaning that a
given packet can be transferred at most nine times so that the
delivery ratio will not always be 100% during the whole time
frame of the trace. Results in Fig. 3 show that all of the metrics
performed similarly in delivery ratio, latency, and forwardings.
We therefore decided to use the Euclidean metric since it did
not require the calculation of additional weighting values and
performed slightly better than Tanimoto and Cosine in latency.

B. Determine α and β values

To give reasonable weights for the history and social predic-
tors in our algorithms, we need to find out the values for α and
β depending on the trace we use. We tried < α, β > pair to be:
< 0, 1 >, < 0.25, 0.75 >, < 0.5, 0.5 >, < 0.75, 0.25 >, and
< 1, 0 > in Hisso and Enhanced Hisso algorithms. The results
of both algorithms showed that < α = 0.75, β = 0.25 > has
the highest delivery ratio, comparatively lower latency, and
lower number of forwardings. Therefore, we set α to 0.75
and β to 0.25 for our trace. The performance of Hisso using
different α and β values is shown in Fig. 4.

C. Determine the number of copies in multi-copy schemes

We implemented Hisso and Enhanced Hisso in two ver-
sions: single-copy and multi-copy schemes. In the single-copy
version, only one copy of the message exists in the network
during delivery. That is, each time a message holder forwards
the message to the next forwarder, it does not keep a copy
for itself. In the multi-copy version, we adopt the idea of
binary Spray-and-Focus [23] in DTN as the authors showed
that binary Spray minimizes the time to spray the message
to newly encountered nodes and Focus can actively deliver
the message to the destination. In the multi-copy version of
our algorithms, the source of a message initially starts with
C(C ≥ 1) copies. Then routing is carried out in the Spray and
Focus phases. In the Spray phase, any node with c > 1 copies
will forward half (⌊c/2⌋) of the copies to the encountered node
with no copy. Then in the Focus phase, if the destination is
not found in the Spray phase, each message holder forwards
the copy to the best encountered node selected by Hisso or

Enhanced Hisso. To determine the value for C, we tried multi-
copy versions of Hisso and Enhanced Hisso with C setting
to 4, 8, 31, and 64. The simulation results using different C
values of both algorithms are consistent. As shown by the
multi-copy version of Hisso in Fig. 5, with the increase of the
number of copies, the delivery ratio improves, but the latency
and forwardings also increase. To reduce the cost, we therefore
decided to set C to 4.

D. Comparison with existing algorithms

To evaluate the performance of our algorithms considering
both history and social predictors, simulations were conducted
to compare them with the existing social-analysis-based and
social-profile-based algorithms, and pure history-based and
pure dynamic-social-feature-based algorithms. The Flooding
and Wait algorithms were included as benchmarks. The fol-
lowing is the list of algorithms we compare. To fit the legend
in each figure later, we create a short name for each algorithm.

1) The Flooding algorithm (Flooding) [25]: Every message
is spread epidemically throughout the network until it
reaches its destination.

2) The Wait algorithm (Wait) [12]: The source holds the
message until it meets the destination.

3) The Social-profile-based algorithm (Profile) [26]: It
takes the idea from [26] where routing is guided by
resolving social feature differences between source and
destination using social features in user profiles.

4) The Social-analysis-based algorithm (Analysis) [5]: This
algorithm takes the idea from [5] where routing deci-
sions are made using social analysis methods on the
social network graphs reflecting past node encounters.

5) The History-based algorithm (History) [4]: It just con-
siders the history predictor using linear regression.

6) The Dynamic-social-feature-based algorithm (Sosim)
[19]: It just considers the social predictor using dynamic
social features.

7) The Hisso algorithm (Hisso): Both the history and social
predictors are considered with weights.

8) The Enhanced Hisso algorithm (Enhanced Hisso): Both
the history and social predictors are considered with the
enhanced social predictor.

In the algorithms that involve social features, namely Hisso,
Enhanced Hisso, and Sosim, the actual number of iMotes used
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Fig. 4. The performance of single-copy Hisso using different α and β values
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Fig. 5. The performance of multi-copy Hisso using different number of copies

was 62 in the trace after excluding 17 iMotes that have no
or partial social features. We define 1 time interval (TTL) as
1/10 of the whole trace time length. Then 10 TTLs is the time
length of the whole trace. In the Hisso and Enhanced Hisso
algorithms, we set α and β to 0.75 and 0.25, respectively
according to our simulation results above. In the Enhanced
Hisso algorithm, the size of Lu is decided by huz . We only
select those nodes whose huz > 0. The total number of these
nodes does not exceed 10 in this trace. For the multi-copy
versions, we set C to 4 from the above discussion. All of the
comparing algorithms have a multi-copy version using binary
Spray-and-Focus. But Flooding and Wait are a little different
in implementation. In Flooding, after the message is binary-
sprayed to newly encountered nodes, the message holders still
deliver the message epidemically to the destination without
being constrained by the number of copies in the network.
And in Wait, the source holds the initial copies of the message
until it meets the destination. We generated 5000 packets
between randomly chosen source-destination pairs and applied
them to all of the algorithms. The three performance metrics,
namely delivery ratio, latency, and number of forwardings,
were calculated and averaged.

The simulation results of all of the algorithms in both single-
copy and mulit-copy versions are consistent as shown in Figs.
6 and 7. As expected, Flooding has the highest delivery ratio
and lowest delivery latency but highest number of forwardings.
Wait has the lowest number of forwardings but lowest delivery
ratio and highest delivery latency. The pure history-based
algorithm History and pure dynamic-social-feature-based algo-
rithm Sosim outperform Profile and Analysis in delivery ratio

and latency at the cost of the slight increase in forwardings.
That means, in our application scenario, the static social fea-
tures in user profiles and the links in the social network graphs
are less capable of capturing conference attenders’ activities to
make good predictions. The time-related predictors are better.
The slight increase in the number of forwardings shows that
History and Sosim are more actively forwarding messages
than Profile and Analysis. Furthermore, our hybrid algorithms
Hisso and Enhanced Hisso are better in delivery ratio and
latency than the pure ones with a slight increase in the number
of forwardings. This shows that the combination of the two
time-related predictors works better. From the increase in
forwardings, we can again conclude that Hisso and Enhanced
Hisso are more active in message delivery. Comparing with
Hisso, Enhanced Hisso performs better in delivery ratio and
latency with a few more forwardings. This testifies our idea
that considering a node’s social circle can facilitate routing.

VI. CONCLUSION

In this paper, we proposed novel hybrid routing algo-
rithms for IMSNs where node connections are time-dependent
and short-term by considering two time-related factors: node
contact history and dynamic social features to capture node
mobility in IMSNs. We first put forward a hybrid algorithm
Hisso that makes a weighted combination of the history and
the social predictors based on these two factors. And then
we upgraded it to Enhanced Hisso by introducing a novel
concept called social circle in the social predictor to improve
message delivery. Simulations were conducted to compare our
algorithms with the existing social-analysis-based and social-
profile-based algorithms, and with the algorithms that only
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Fig. 6. The performance of the algorithms implemented in single-copy scheme
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Fig. 7. The performance of the algorithms implemented in multi-copy scheme

consider one factor. Simulation results showed that our pro-
posed algorithms outperformed the others in delivery ratio and
latency with a slight increase in the number of forwardings.
The results also confirmed that the idea of social circle can
facilitate routing in our algorithms. In our future work, we will
test our algorithms using more traces with social features as
they become available and find better predictors to improve
routing in IMSNs.
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