
Optimization Algorithm Balancing Output and
Fairness in Crowdsourcing

Xiao Chen
Department of Computer Science

Texas State University
San Marcos, TX 78666

xc10@txstate.edu

Abstract—Crowdsourcing has become increasingly popular
in recent years as it enables requesters to find a group of
workers to work on small tasks that an individual or or-
ganization cannot easily do. One of the main challenges in
crowdsourcing is to ensure worker participation. Many papers
propose incentive mechanisms among which a few are long-term
incentives. However, none of them have combined incentives with
workers’ output. In this paper, we address not only the long-
term incentive issue but also the workers’ time-average output
maximization issue by formulating a stochastic optimization
problem. In our problem, while maximizing workers’ output is an
explicit objective, the long-term incentive is realized through the
requester’s fairness towards workers. We solve the problem using
the Lyapunov technique and turn the solution into interactive but
independent optimization decisions on the side of the workers
and the requester in each time slot. To evaluate the performance
of our solution, we conduct theoretical analysis first and then
simulations to compare our solution with theoretical values and
two other variations. Analysis and simulation results show that
our solution can maximize workers’ time-average output while
ensuring fairness to retain the workers in the long run.

Index Terms—crowdsourcing, incentive, Lyapunov, optimiza-
tion, stochasticity

I. INTRODUCTION

Crowdsourcing [1] has gained popularity in recent years be-
cause it allows requesters to find a group of workers online to
work on small tasks that an individual or organization cannot
easily do. There are three basic components in crowdsourcing:
requesters who publish tasks on a platform, workers who carry
out the tasks, and a platform such as Amazon Mechanical Turk
[2] that matches requesters and workers.

One of the main problems in crowdsourcing is to ensure
worker participation. There are two classes of incentive mech-
anisms: the short-term and the long-term. Many of the existing
incentive mechanisms [3]–[5] are short-term, compensating
workers directly and not considering how to attract them to
participate for a longer period of time. In the long-term cat-
egory, [6]–[8] exploited reverse auction to encourage workers
in the long run. In [9], a game-based incentive mechanism was
developed to encourage workers to participate over the long
term and provide high-quality data. In [10], a dynamic long-
term incentive mechanism was explored based on reputation
and contract theory. A few other works took stochasticity and
unpredictability into account and optimized incentives using

stochastic optimization techniques like Lyapunov optimation
[11]–[13].

In this paper, we address not only the long-term incen-
tive problem but also the problem of maximizing workers’
time-average output by formulating a stochastic optimization
problem. To the best of our knowledge, this is the first paper
that has ever combined these two issues in crowdsourcing. In
our defined problem, while maximizing workers’ output is an
explicit objective, the requester ensures long-term incentives
by treating workers fairly, which involves guaranteeing queue
stability by removing and paying for tasks from their queues.
Our key contributions are manifold: (1) We define and solve
a stochastic optimization problem using the Lyapunov tech-
nique and turn the solution into interactive but independent
optimization decisions on the side of the workers and the
requester in each time slot. On the workers’ side, they decide
the optimal number of tasks to accept and accomplish, i.e.
Optimal Task Output (OTO). On the requester’s side, he uses
an Optimal Task Selection (OTS) algorithm to select tasks
from workers’ queues to ensure that each worker has a chance
to be paid. This serves as an incentive for the workers to
output more tasks in the long run. In addition, the solution can
balance the stochastic maximization of time-average workers’
output and fairness. (2) We demonstrate that the proposed
solution deviates by at most O(1/V ) from optimality and has
queue backlogs bounded by O(V ), where V is a non-negative
control parameter. (3) We conduct simulations to compare
the proposed algorithm with theoretical results and with two
other variations by adopting round robin (RR) and the longest
queue first (LQF) algorithms, respectively in the task selection
process of the requester. The simulation results indicate that
our proposed algorithm can maximize workers’ output while
ensuring fairness to retain them.

The rest of the paper is organized as follows: Section II
references the related work. Section III defines the problem.
Section IV provides the solution to the problem. Section V
describes the simulations we conducted, and the conclusion is
in Section VI.

II. RELATED WORK

In crowdsourcing, ensuring continual participation from
workers is a very important issue. There are two classes of
incentive mechanisms: the short-term and the long-term. Most



of the existing incentive mechanisms are short-term incentives
[3]–[5] that directly compensate workers and do not consider
drawing workers to participate in crowd tasks for a long period
of time.

The long-term incentives use reverse auctions, game theory,
contract theory, and the Lyapunov method to attract workers
in the long run. Papers [6], [7], [8] all use reverse auction
methods to guarantee workers’ long-term participation. Chi
et al. [9] developed a multistrategy repeated game-based
incentive mechanism to guide participants to provide long-
term participation and high-quality data. Combining reputation
and contract theory, Zhao et al. [10] explored a dynamic long-
term incentive mechanism to attract mobile users to participate
in crowdsourcing networks. Gao et al. [11] investigated a
Lyapunov-based VCG auction policy for online worker se-
lection while considering long-term user participation incen-
tives. Sun et al. [12] presented a semi-online frugal incentive
mechanism by introducing a Lyapunov method and then
extended it to satisfy the long-term participation constraint
and approximate optimality. And Wang et al. [13] focused
on a reputation framework to attract and retain workers in a
competitive market using Lyapunov optimization.

In this paper, we will discuss not only the incentive problem
but also the workers’ time-average output problem using the
Lyapunov model, which has not been explored in the existing
literature.

III. PROBLEM DEFINITION

In this section, we define the problem that we want to solve.

A. The Workers

Let Ai(t) denote the arrival of tasks at worker i at time slot
t. Ai(t) is an i.i.d. random process with the maximum value
of Amaxi . Due to the willingness and capability of worker i,
he may only perform a few, denoted by ai(t), 0 ≤ ai(t) ≤
Ai(t), of the arrived tasks. Therefore, a queue may build up
with time. At time slot t, a requester may select worker i and
purchase his bi(t) performed tasks. Once a task is chosen, it
will be removed from the worker’s queue. We use Qi(t) to
represent the backlog of worker i’s task queue. It is updated
in each time slot as follows:

Qi(t+ 1) = [Qi(t)− bi(t)] + ai(t) (1)

B. The Requester

At time slot t, a requester will receive information (details
provided later in Algorithm 1) from the workers and decide
from which workers to purchase the finished tasks and how
many. If the requester picks bi(t) finished tasks from worker
i, he will pay for them with a price of pi(t) = uibi(t), where
ui is the unit price of a task charged by worker i. We assume
that at time slot t, the total amount of money that a requester
has is P (t). It is a stochastic variable with a maximum value
of Pmax. If the requester cannot afford all the tasks received
at time slot t using P (t), a queue of money, denoted by M(t),
will accumulate. At each time slot, it is updated as follows:

M(t+ 1) = max[M(t)− P (t), 0] +

N∑
i=1

pi(t) (2)

C. Problem Formulation

We first select the utility function φ(a) that satisfies our
goal to embed both workers’ output and fairness.

φ(a) =

N∑
i=1

log(1 + ai) (3)

Here, a = [a1, a2, · · · , aN ] is a vector that contains the
time-average of tasks completed by N workers. If Y (τ) is a
stochastic process, the time-average of the process is defined
as: Y = limt→∞

1
t

∑t−1
τ=0E[Y (τ)]. We chose φ(a) to be a

logarithm function because it is concave and has a diminishing
return property with each increase of a. Let us use two
workers as an example to explain this. If we want to maximize
log(1 + a1) + log(1 + a2) and if a1 < a2, the sum of the two
logarithm functions will increase more if we increase a1 than
a2. This means that the requester should remove more tasks
from worker 1 to boost his output. That is to say that the
utility function implies fairness, which is used as an incentive
because if a worker is rarely selected and paid, he may lose
interest in further participation.

By adding the constraints, we formulate problem P1.

P1 : maximize
a(t),b(t)

φ(a) (4a)

subject to 0 ≤ ai(t) ≤ Ai(t),∀i ∈ N (4b)

lim
t→∞

E{|Qi|}
t

= 0,∀i ∈ N (4c)

lim
t→∞

E{|M |}
t

= 0 (4d)

In problem P1, line (4a) is the objective. Constraint (4b)
means that the number of performed tasks cannot be larger
than the number of arrived tasks. Constraints (4c) and (4d)
ensure that the queues Qi and M are mean rate stable, which
is essential for maintaining system stability over time [14].

IV. SOLUTION

The objective of problem P1 is a function of time averages.
It is not easy to deal with. We transform it into an equivalent
problem P2.

P2 : maximize
a(t),b(t),γ(t)

φ(γ) (5a)

subject to Constraints (4b), (4c), (4d) (5b)
γi ≤ ai (5c)

0 ≤ γi(t) ≤ Amaxi (5d)

Vector γ(t) = [γ1(t), · · · , γN (t)] contains a list of auxiliary
variables in each time slot t.

Problem P2 is related to P1 as follows: P2 has two more
constraints (5c) (5d) than P1. We need to prove that the
maximum for P2 is at least as good as that for P1 under
these two constraints. Let φ(γ) be the maximum for P2,
and a∗ the corresponding time-average task output. We have
φ(a∗) ≥ φ(γ) ≥ φ(γ). The first inequality is due to constraint
(5c) and the monotonic increasing property of function φ,
and the second is Jensen’s inequality [15]. We denote φopt

as the maximum for P1 and aopt(t) the corresponding task



output at time slot t. We can construct a policy that satisfies
all constraints in P2 and by setting γ(t) = aopt for all t, we
get φ(γ) = φopt. Attaching to the previous inequalities, we
have φ(a∗) ≥ φopt. Thus, solving P2 ensures all constraints
in P1 are satisfied while producing a maximum that is at least
as good as that for P1.

In P2, to satisfy the constraint (5c), we replace it with the
mean rate stable condition of a worker-specific virtual queue,
denoted by Gi(t), which is updated as follows:

Gi(t+ 1) = max{Gi(t) + γi(t)− ai(t), 0} (6)

Constraint (5c) is satisfied if and only if Gi(t) is mean rate
stable [14]. Therefore, problem P2 becomes problem P3:

P3 : maximize
a(t),b(t),γ(t)

φ(γ) (7a)

subject to Constraints (4b), (4c), (4d), (5d) (7b)

lim
t→∞

E{|Gi|}
t

= 0 (7c)

After the transformation, problem P3 only involves time
averages, rather than a function of time averages, it can be
solved using the Lyapunov drift-plus-penalty framework [14].

Let Θ(t) = [Qi(t),M(t), Gi(t)] be a concatenated vector
of all actual and virtual queues, with update equations (1), (2),
and (6), respectively. We define the Lyapunov function:

L(Θ(t)) =
1

2
{M(t)2 +

N∑
i=1

[Qi(t)
2 +Gi(t)

2]} (8)

The drift-plus-penalty function is:

∆(Θ(t))− V E{
N∑
i=1

log(1 + γi(t))|Θ(t)}, (9)

where ∆(Θ(t)) = E{L(Θ(t + 1)) − L(Θ(t))|Θ(t)} rep-
resents the conditional Lyapunov drift for slot t, that is, the
conditional expectation of the change in the Lyapunov function
from one slot to the next, and V ≥ 0 is a parameter that
represents a weight on how much we emphasize system utility
and queue stability.

According to [14], minimizing an upper bound of (9) can
maximize the time-average conditional expectation of system
utility while achieving queue stability. The upper-bound of (9)
is:

∆(Θ(t))− V E
N∑
i=1

log(1 + γi(t))|Θ(t) ≤ B+

M(t)E[

N∑
i=1

pi(t)− P (t)|Θ(t)] +

N∑
i=1

Qi(t)E[ai(t)− bi(t)|Θ(t)]

+

N∑
i=1

Gi(t)E[γi(t)− ai(t)|Θ(t)]− V E[

N∑
i=1

log(1 + γi(t))|Θ(t)]

(10)

Theorem 1: The drift-plus-penalty function is upper-
bounded by the right-hand side of (10).
Proof. We first look at ∆(Θ(t)) = E{L(Θ(t + 1)) −
L(Θ(t))|Θ(t)}. From (8), ∆(Θ(t)) = 1

2E{M(t + 1)2 +

∑N
i=1[Qi(t + 1)2 + Gi(t + 1)2] −M(t)2 −

∑N
i=1[Qi(t)

2 +
Gi(t)

2]|Θ(t)}. Expanding it using (1), (2), (6) and utilizing
formula (max[x− y, 0] + z)2 ≤ x2 + y2 + z2 = 2x(z− y) for
any x, y, z ≥ 0, we get

∆(Θ(t)) ≤
1

2
E{M(t)2 + P (t)2 + (

N∑
i

pi(t))
2 + 2M(t)

N∑
i=1

pi(t)

− 2M(t)P (t)−M(t)2 +

N∑
i=1

[(Qi(t)− bi(t) + ai(t))
2 −Qi(t)

2]

+

N∑
i=1

[(Gi(t)− ((ai(t)− γi(t)))2 −Gi(t)
2]|Θ(t)}

≤
1

2
E{P (t)2|Θ(t)}+

1

2
E{

N∑
i=1

pi(t)
2|Θ(t)}+

1

2
E{

N∑
i=1

bi(t)
2|Θ(t)}

+ E{
N∑
i=1

ai(t)
2|Θ(t)}+

1

2
E{

N∑
i=1

γi(t)
2|Θ(t)}

+M(t)E[

N∑
i=1

pi(t)− P (t)|Θ(t)] +

N∑
i=1

Qi(t)E[ai(t)− bi(t)|Θ(t)]

+

N∑
i=1

Gi(t)E[γi(t)− ai(t)|Θ(t)]

≤ (Pmax)2 + 2(Amax
i )2 +M(t)E[

N∑
i=1

pi(t)− P (t)|Θ(t)]

+

N∑
i=1

Qi(t)E[ai(t)− bi(t)|Θ(t)] +

N∑
i=1

Gi(t)E[γi(t)− ai(t)|Θ(t)]

Let B = (Pmax)2+2(Amaxi )2. It is a constant and obtained
by maximizing the expected conditional value of each squared
item. After finding the upper-bound of ∆(Θ(t)), we subtract
V E[

∑N
i=1 log(1 + γi(t))|Θ(t)] from both sides. This theorem

is proved. �
Now solving problem P3 becomes minimizing the right-

hand side of (10), subject to the constraints in P3. Since B is a
constant and P (t) is irrelevant to the variables a(t), b(t), γ(t),
we can drop them and rearrange the remaining parts based on
the variables. Then minimizing the right-hand side becomes
minimizing f1(γ(t)) + f2(a(t)) + f3((b(t)), where

f1(γ(t)) =

N∑
i=1

[−V log(1 + γi(t)) +Gi(t)γi(t)]

f2(a(t)) =

N∑
i=1

[Qi(t)−Gi(t)]ai(t)

f3(b(t)) =

N∑
i=1

[−Qi(t) + uiM(t)]bi(t)

(11)

Since a(t), b(t), and γ(t) are decoupled in both the ob-
jectives and constraints, the three functions can be minimized
separately as follows.

a). Minimize f1(γ(t))

min f1(γ(t)) =

N∑
i=1

[−V log(1 + γi(t)) +Gi(t)γi(t)]

subject to 0 ≤ γi(t) ≤ Amaxi ,∀i ∈ N
(12)



Since each worker is independent, we can let each worker

min
γi(t)

− V log(1 + γi(t)) +Gi(t)γi(t)

subject to 0 ≤ γi(t) ≤ Amaxi

(13)

We take the first-order partial derivative of the objective
in (13) with respect to γi(t) and make it equal to 0. We get
γi(t) = V

Gi(t) ln 2−1. Considering the boundary values of γi(t)
and the case when Gi(t) = 0, the optimal

γi(t) =


Amaxi , if Gi(t) = 0

0, if Gi(t) ≥ V
ln 2

min{ V
Gi(t) ln 2 − 1, Amaxi }, if Gi(t) < V

ln 2

(14)

b). Minimize f2(a(t))

min f2(a(t)) =

N∑
i=1

[Qi(t)−Gi(t)]ai(t)

subject to 0 ≤ ai(t) ≤ Ai(t),∀i ∈ N
(15)

The optimal

ai(t) =

{
0, if Qi(t) ≥ Gi(t)
Ai(t), if Qi(t) < Gi(t)

(16)

c). Minimize f3(b(t))
Minimizing this function is equivalent to maximizing its

negative, which is:

max f3(b(t)) =

N∑
i=1

[Qi(t)− uiM(t)]bi(t)

subject to uibi(t) ≤ P (t)

(17)

This is a knapsack problem [16]. Here b(t) is a set of items,
each having a value Qi(t) − uiM(t). The given limit is the
total amount of money P (t) that the requester can pay at time
slot t. To solve the problem, we can use the greedy method
to order the workers in the descending order of Qi(t)−uiM(t)

ui

and choose the workers one by one until the requester’s budget
runs out. Assume that the last worker chosen is L, then the
optimal

bi(t) =


ai(t), if i < L

P (t)−
∑L−1
i=1 uiai(t), if i = L

0, if i > L

(18)

Based on the solution, we propose an optimal solution
in Algorithm 1 (A1) to solve P3, and therefore P1. The
algorithm describes the interaction between the requester and
the workers over time to maximize workers’ output and ensure
fairness through queue stability.

The following two theorems present the optimality and
queue stability of our solution.

Theorem 2: Define φopt and φ(a) as the maximum utilities
of problems P1 and P3, respectively. Then φopt − φ(ā) ≤

Algorithm 1: Optimal Solution Balancing Workers’ Output
and Fairness

Initialize all queues to empty;
V is given; each worker i decides ui;
/*In each time slot t, the workers and the requester interact
as follows:*/
For each worker i: /*Optimal Task Output*/

1: Acquire Qi(t), Gi(t), Ai(t);
2: Find optimal γi(t) using (14) and ai(t) using (16);
3: Send γi(t), ai(t), Qi(t), and ui to the crowdsourcing

platform;
4: Receive bi(t) from the platform;
5: Update Qi(t+ 1) using (1);
6: Update Gi(t+ 1) using (6);

For the requester: /*Optimal Task Selection*/
1: Aquire P (t);
2: Collect γi(t), ai(t), Qi(t), and ui from worker i;
3: Find optimal bi(t) using (18);
4: Send bi(t) to worker i;
5: Update M(t+ 1) using (2);

B/V holds true. That is, the solution provided by Algorithm
1 deviates from the optimal solution to P1 by O(1/V ).
Proof. According to [14], for any δ > 0, there exists a
randomized i.i.d control policy π over time slots that makes
the resulting ai(t), bi(t), and γ(t) independent of Θ(t), and

−φ(γ(t)|π) ≤ −φopt + δ, E[

N∑
i=1

pi(t)− P (t)|π] ≤ δ

E[ai(t)− bi(t)|π] ≤ δ, E[γi(t)− ai(t)|π] ≤ δ
(19)

Plugging (19) into the right side of (10), making δ → 0,
and expanding ∆(Θ(t)), we get

E{L(Θ(t+1))−L(Θ(t))|Θ(t)}−V E[φ(γ(t))] ≤ B−V φopt

Using the law of telescoping sums [17] over time slots
{0, 1, · · · , T − 1}, we have

E[L(T )]− E[L(0)]− V
T−1∑
t=0

E[φ(γ(t))] ≤ BT − V Tφopt

All the queues are initially empty. So E[L(0)] = 0. Dividing
both sides by V T and taking the limit T →∞ yield

φopt − B

V
≤ lim
T→∞

1

T
E[φ(γ(t))] = φ(γ) ≤ φ(γ) ≤ φ(a)

The latter part is attributed to Jensen’s inequality [15], (5c),
and the monotonic increasing property of function φ. Thus,
φopt − φ(ā) ≤ B/V , i.e., O(1/V ), holds true. �

Theorem 3: The solution given by Algorithm 1 makes all
the queues bounded by O(V ). More specifically,

G(t) ≤ V

ln 2
+

1

N

N∑
i=1

Amaxi (20)



Q(t) ≤ V

ln 2
+

2

N

N∑
i=1

Amaxi (21)

M(t) ≤ max{V/ ln 2 + 2Amaxi

ui
}+

N∑
i=1

ui(
V

ln 2
+ 2Amaxi )

(22)
Proof. To prove (20), we first prove the bound of Gi(t) ≤
V
ln 2 +Amaxi . We use induction. When t = 0, Gi(0) = 0. The
bound is true. Now we assume that the bound is true at t. Next,
we prove that the bound holds true at t+1. Gi(t+1) is updated
by (6). Whenever the max operation returns a zero, the bound
is true. Now let us look at cases when the max operation does
not return a zero. There are three cases in (14). Case 1. If
Gi(t) = 0, γi(t) = Amaxi and Gi(t + 1) = Amaxi − ai(t) ≤
V
ln 2 +Amaxi . The bound is true at t+1. Case 2. If Gi(t) ≥ V

ln 2 ,
γi(t) = 0 and Gi(t + 1) = Gi(t) − ai(t) ≤ Gi(t) ≤ V

ln 2 +
Amaxi . The last inequality uses the assumption in the induction.
So the bound also holds at t+ 1. And case 3. If Gi(t) < V

ln 2 ,
γi(t) = min{ V

Gi(t) ln 2 −1, Amaxi }. No matter what the min is,
Gi(t + 1) = Gi(t) + γi(t) − ai(t) ≤ Gi(t) + Amaxi − ai(t).
Since Gi(t) < V

ln 2 , Gi(t + 1) < V
ln 2 + Amaxi − ai(t) <

V
ln 2 + Amaxi . The bound of Gi(t) holds true. Finally G(t) =
1
N

∑N
i=1Gi(t) ≤

V
ln 2 + 1

N

∑N
i=1A

max
i .

To prove (21), we first prove the bound of Qi(t) ≤ V
ln 2 +

2Amaxi . We use induction. When t = 0, Qi(0) = 0. The bound
is true. Now we assume that the bound is true at t. Next, we
prove that the bound holds true at t+ 1. Qi(t+ 1) is updated
by (1). According to (16), if Qi(t) ≥ Gi(t), ai(t) = 0. So
Qi(t + 1) = Qi(t) − bi(t) ≤ Qi(t) ≤ V

ln 2 + 2Amaxi holds
true. The last inequality uses the induction assumption at t.
If Qi(t) < Gi(t), ai(t) = Ai(t). Then Qi(t + 1) = Qi(t) −
bi(t) + Ai(t) < Gi(t) − bi(t) + Ai(t). Since Gi(t) ≤ V

ln 2 +
Amaxi holds from the above proof and Ai(t) ≤ Amaxi , Qi(t+
1) < V

ln 2 + 2Amaxi holds true. Then Q(t) = 1
N

∑N
i=1Qi(t) ≤

V
ln 2 + 2

N

∑N
i=1A

max
i .

Now let us prove (22). Queue M(t) is updated by (2).
Whenever the max part returns a zero, M(t + 1) is zero
and the bound of M(t) holds true. Next, we just need to
look at the case when the max part does not return a zero.
Again, we use induction. When t = 0, M(0) = 0. The
bound holds. We assume the bound holds at t and then prove
that the bound still holds at t + 1. According to (18), if
P (t) < max{Qi(t)−uiM(t)

ui
}, the requester will not select any

worker, i.e., bi(t) = 0. Then M(t + 1) = M(t) − P (t) ≤
max{V/ ln 2+2Amax

i

ui
}+

∑N
i=1 ui(

V
ln 2 +2Amaxi ) holds true. The

last inequality is due to the induction assumption at t. If
P (t) ≥ max{Qi(t)−uiM(t)

ui
}, the requester will select workers.

If M(t) > P (t), M(t+1) = M(t)−P (t)+
∑
i=1 uibi ≤M(t)

because −P (t) +
∑
i=1 uibi ≤ 0 due to the fact that P (t)

is all the money the requester has at t to pay for tasks∑
i=1 uibi selected from the workers. So the bound still holds

at t + 1 by the induction assumption. If M(t) ≤ P (t), then
M(t + 1) =

∑
i=1 uibi. We know that bi(t) ≤ Qi(t) as you
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Fig. 1. Evaluation of Algorithm 1 by its upper-bounds

cannot select more than you have in the queue. Using the
bound of Qi(t) from the above, M(t+ 1) ≤

∑N
i=1 ui(

V
ln 2 +

2Amaxi ) ≤ max{V/ ln 2+2Amax
i

ui
} +

∑N
i=1 ui(

V
ln 2 + 2Amaxi ).

After considering all the cases, we have proved that the bound
of M(t) holds true. �

V. SIMULATIONS

In this section, we evaluate Algorithm 1 by first comparing
its performance with theoretical values and then comparing
it with two other variations. The simulations were conducted
using Matlab.

A. Setting

In all the simulations, the maximum time slots Tmax =
1000; Amaxi is randomly generated in the range of [0, 5] for
each worker; ui is randomly generated in the range of [1, 5];
and Pt is randomly generated in the range of [0, 100]. All other
parameters are set in each specific simulation below.

B. Comparing with Theoretical Values

From Theorem (2) we know that, with the increase of V ,
the proposed algorithm will get closer to the optimal solution
to problem P1. In other words, the optimal value produced
by Algorithm 1 should converge. In Figure 1(a), we set the
number of workers N = 10 and varied the value of V from
10 to 100 with a gap of 10 first, and then jumped the V value
to 200 and then 300. We can see from the figure that the result
really starts to converge after V = 70.

According to Theorem (3), there exist upper bounds for all
physical and virtual queues. These are demonstrated by the Q,
G, and M values and their upper bounds in Figs. 1(b)-(d).
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Fig. 2. Comparison of the algorithms with different Ns

C. Comparing with other Algorithms

In this simulation, we compared Algorithm 1 (A1) with two
variations. We kept the workers’ part the same and replaced
the requester’s optimal task selection (OTS) with round robin
(RR) and the longest queue first (LQF), respectively. To be
simple, we just call the whole algorithms RR and LQF. In RR,
we let the requester pick tasks from workers in a round-robin
fashion. In LQF, the requester will choose tasks from workers
based on the length of the physical queue Q. The worker with
the longest queue will be considered first. The purpose of LQF
is to balance the physical queue of the workers.

In the first experiment, we set the value of V to 10 and
varied the value of N from 10 to 100 with a gap of 10. We
evaluated the optimal value produced by the three algorithms
and the standard deviation of their physical queue Q. Given
that virtual queues are only utilized for problem-solving, we
solely compare the physical queues of the algorithms in this
simulation. Our goal is to determine which algorithm can
generate the best optimization value for problem P1, and
which algorithm has the most balanced queue. We ran the
algorithms 1000 times and averaged the results. The simulation
results are shown in Figs. 2(a) and (b).

From the figures, we can see that A1 obtains the best
optimization value for problem P1, LQF is the second, and
RR is the last. In queue balance, LQF is the best because its
main focus is the queue length, RR is the worst, and A1 is
close to LQF. The results indicate that A1 not only produces
the best solution but also balances its queue well.

In the second experiment, we set the value of N to 20
and varied the value of V from 10 to 100 with a gap of
10. We compared the optimal value produced by the three
algorithms and the standard deviation of their physical queue
Q. We ran the algorithms 1000 times and averaged the results.
The simulation results are similar to the above and are depicted
in Figs. 3(a) and (b).

VI. CONCLUSION

In this paper, we formulated a stochastic optimization
problem addressing both the long-term incentive issue and the
workers’ time-average output maximization issue. We solved
the problem using the Lyapunov technique and turned the
solution into interactive but independent optimization deci-
sions on the side of the workers and the requester in each
time slot. To evaluate the performance of our solution, we
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conducted a theoretical analysis first and then simulations to
compare our solution with theoretical values and two other
variations. Analysis and simulation results have shown that
our solution can maximize workers’ time-average output while
ensuring fairness to retain them over time. In the future, we
will expand our model to include factors like task quality,
worker capabilities, competition among requesters, and more.
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