
Task Trading for Crowdsourcing in Opportunistic

Mobile Social Networks

Xiao Chen

Department of Computer Science, Texas State University, San Marcos, TX 78666
Email: xc10@txstate.edu

Abstract—With the explosive proliferation of mobile devices,

mobile crowdsourcing has become a new paradigm involving a

crowd of mobile users to collectively take large-scale tasks from

requesters in mobile social networks (MSNs). In this paper, we

study task allocation in crowdsourcing in Opportunistic Mobile

Social Networks (OMSNs) which are formed opportunistically

when people gather together at social events. Specifically, we

aim to minimize the total working hours of the users to finish

these tasks. Different from other algorithms, we hope to raise

the efficiency of the whole network by task trading inspired by

the comparative advantage in macroeconomy. We first prove that

our defined problem is NP-hard and then propose a heuristic

task trading algorithm TTA by which users can trade when

they meet opportunistically. Simulation results comparing our

proposed algorithm with the one without considering trading and

the brute force algorithm to find the minimum total number of

hours show that our proposed algorithm can substantially reduce

the total number of hours to finish all the allocated tasks and is

very close to the benchmark brute force algorithm.

Index Terms—comparative advantage, crowdsourcing, oppor-

tunistic mobile social networks, trading

I. INTRODUCTION

With the explosive population of mobile devices, mobile

crowdsourcing has become a new paradigm involving a crowd

of mobile users to collectively take large-scale tasks from

requesters in mobile social networks (MSNs) [11]. It has

stimulated a lot of research, including platform design [5], [13],

user recruitment [10], [12], [14], task allocation algorithms [6],

[18], [20], [22], and so on. Among them, user recruitment

and task allocation are among the most important topics [6],

[12], [14], [18], [20], [22] and are similar. User recruitment

focuses more on the incentives to get the users while task

allocation focuses more on distributing tasks to the users. In

this paper, we work on task allocation. Furthermore, we discuss

task allocation in a special kind of mobile social network which

is formed opportunistically when people gather together at

conferences, social events, campus activities, etc. We refer to

it as Opportunistic Mobile Social Network (OMSN).

As we know, the majority of the current crowdsourcing im-

plementation relies on centralized registries to recruit possible

participants [16] and assumes the use of cellular networks to

distribute tasks [14]. We discuss task allocation in a distributed

and opportunistic environment such as OMSN because it is

a promising solution [4] to alleviate the intense pressure on

the existing cellular infrastructure caused by the soon-to-be

Zettabytes of annual global IP traffic generated mostly from

the mobile devices [2]. Opportunistic Mobile Social Networks

such as Device-to-Device (D2D) communication network [15]

allow direct communication between two mobile devices [9]

without traversing the core cellular network. Under this trend,

we plan to study task allocation in OMSNs.

More specifically, the goal of our task allocation problem is

how to minimize the total number of working hours to finish

all the tasks allocated to the users. Achieving this goal allows

the users to obtain more tasks to earn more money. Many

task allocation algorithms proposed for mobile crowdsourcing

[6], [12], [14], [18], [20], [22] address the efficiency issue.

However, to our best knowledge, they have one common

feature. That is, once the tasks are allocated to the users, the

users will work on their own without exchanging tasks with

others. We believe the working efficiency of the users can

be improved if they trade tasks with others when they meet

opportunistically. Our idea is backed up by the trading law in

macroeconomics proposed by economist David Ricardo [17]: it

is beneficial for a country to trade with others as long as it has

comparative advantage in producing some goods. A country

has a comparative advantage at producing something if it can

produce the product at lower cost than others. In our context,

a user has comparative advantage in some task if he can finish

it faster than anyone else. We first use an example to show

how trading can reduce the total number of working hours and

then come up with trade conditions when two users meet. We

prove that finding the minimum total number of working hours

for a set of allocated tasks in OMSNs is NP-hard. And then

we propose a heuristic task-trade algorithm (TTA) based on

comparative advantage to solve the problem. We evaluate the

performance of our algorithm by comparing it with the no-

trade algorithm (NTA) and the brute-force algorithm (BFA) to

find the minimum total number of working hours in a brute

force way using two online traces. Simulation results show

that our proposed TTA algorithm can substantially reduce the

total number of working hours compared with the one without

trading by being very close to the benchmark brute force

algorithm.

The differences of our work from others and the key contri-

butions of our work are as follows:

• We define a task allocation problem in a distributed and

opportunistic environment OMSN and prove it NP-hard.

• We propose a heuristic task trading algorithm TTA based

on comparative advantage.

• We conduct simulations to compare TTA with the one



without trading NTA and the brute force algorithm BFA.

Simulation results show that TTA substantially outper-

forms NTA by being very close to BFA.

The rest of the paper is organized as follows: Section II

references the related works; Section III defines the problem we

want to solve; Section IV presents our solution to the problem;

Section V describes the simulations comparing our solution

with its variations; and Section VI is the conclusion.

II. RELATED WORKS

There has been a lot of research on user recruitment or

task allocation problems in mobile crowdsourcing [6], [10],

[12], [14], [18], [20], [22]. The various algorithms proposed

by the majority of these works assume a centralized registry

and use the cellular network resources for communication.

For example, M. Cheung et al. in [6] consider a mobile

crowdsourcing platform that posts task information and propose

an algorithm to help the users plan their task selections on their

own. Z. He et al. in [12] propose a participant recruitment

strategy for vehicle-based crowdsourcing based on predicted

vehicle trajectory. S. He et al. in [18] study the problem of

allocating location dependent tasks and design a local ratio

based algorithm to solve it. M. Xiao et al. in [20] and Q. Zhao

et al. in [22] study the task allocation issues by formulating

them as online scheduling problems.

Not many papers in the literature discuss distributed task

allocation over opportunistic networks. We are aware of two

papers under this thread. M. Karaliopoulos et al. [14] study

user recruitment over opportunistic networks. Their focus is

on how the data collected by the users are transferred over the

opportunistic networks to the campaign organizer. G. S. Tuncay

et al. [10] consider both user recruitment and data collection

using the opportunistic network. The goal of their recruitment

protocols is to find users who can cover the sensing areas based

on their previous geographical locations.

So far as we know, none of the above works considers task

trading which we believe can make the whole crowdsourcing

system more efficient. And this is what we will work on next.

III. PROBLEM DEFINITION

In this section, we first show the benefit of trading and then

define our problem.

A. Benefits of Trading

First, we use an example, which we refer to as example 1, to

explain the benefits of trading. Suppose there are two mobile

users A and B and two types of tasks T1 and T2. The units

of the two tasks obtained by A and B from the requester are

lists in Table I. And the number of hours for each one of them

to finish each task is shown in Table II. Here, A has got 300
units of T1 and 400 units of T2 and B has got 500 units of T1

and 100 units of T2. For simplicity, we use a task vector in the

form of (# of T1, # of T2, · · · , # of Tn) to represent the units

of the tasks obtained by a user. So, A’s task vector is (300,

400) and B’s task vector is (500, 100). Similarly, we define an

efficiency vector as (hours to finish T1, hours to finish T2, · · · ,

A B

T1 300 500

T2 400 100

TABLE I
TASKS A AND B HAVE OBTAINED

HA HB

T1 1 3

T2 2 4

TABLE II
THE NUMBER OF HOURS FOR A

AND B TO FINISH EACH TASK

hours to finish Tn) to represent the number of hours to finish

each task by a user. So A’s efficiency vector is (1, 2), meaning

it takes A one hour to finish T1 and two hours to finish T2.

Accordingly, B’s efficiency vector is (3, 4).

If they do not trade, it takes A 300×1+200×2 = 700 hours

and B 500 × 3 + 100 × 4 = 1900 hours to finish their tasks,

respectively. The total number of working hours is 2600. Now

let us look at the situation if they trade. For example, A takes

100 T1 from B. In return, B will take 75 T2 from A because

100 T1 is worth 75 T2 in B due to the fact that the number

of hours to finish T1 and T2 is four and three in B. After

trading, A’s task vector becomes (400, 125) and B’s vector

becomes (400, 175). Then their respective working hours will

be 400×1+125×2 = 625 and 400×3+175×4 = 1900. Here,

B’s working hours remains the same but A’s working hours

is reduced. Therefore, the total number of working hours has

been decreased from 2600 to 2525. Though B does not benefit

from this trading, it may benefit from the trading with other

users. From trading, we can see that the total number of hours

for A and B to finish their tasks can be reduced. Inspired by

this example, we have the following problem formulation.

B. Problem Definition

We consider a mobile crowdsourcing environment OMSN

which has a group of users and m types of tasks

{T1, T2, · · · , Tm}. Each user has a task vector (# of T1, #

of T2, · · · , # of Tm) that represents the units of the tasks

he has obtained from the requester and an efficiency vector

(hours to finish T1, hours to finish T2, · · · , hours to finish Tm)

that describes the number of hours he can finish each task.

When two users meet opportunistically, they can exchange their

vectors and trade if possible. Our goal is to minimize the total

number of working hours for the users to finish these tasks by

taking advantage of task trading.

IV. OUR SOLUTION

In this section, we provide answer to our defined problem.

The solution has two parts. The first part is to answer whether

or not two users should trade, and the second part is how to

trade to minimize the total working hours. In how to trade, we

first discuss the trade conditions for two tasks and then propose

a task-trade algorithm TTA to trade multiple tasks.

A. Trade or not

In reality, many capable people can finish tasks faster than

others. Intuitively they will not benefit from trading. But this

is not true. In example 1, A is more efficient than B by

finishing each task faster. In other words, A has absolute

advantage over B in every task. But after a close look, A
can reduce its working hours by trading. The explanation lies



in the comparative advantage, one of the most powerful yet

counter-intuitive insights developed by David Ricardo [17] in

macroeconomics. More explicitly, two users can trade as long

as each one has comparative advantage over the other in some

task. In example 1, A has comparative advantage over B in

T1 because A can finish one T1 in 1/2 = 0.5 of the time to

finish T2 and B can finish one T1 in 3/4 = 0.75 of the time to

finish T2. We can simply say that one T1 is worth 0.5 T2 in A
and 0.75 T2 in B, respectively. Similarly, B has comparative

advantage over A in T2 because one T2 is worth 4/3 T1 = 1.33
T1 in B and 2/1 T1 = 2 T1 in A. Now we have the following

theorem regarding comparative advantage.

Theorem 1. Assume there are two users A and B and two

tasks T1 and T2. User A’s efficiency vector is (p, q) meaning

that it takes A p hours to finish one unit of T1 and q hours

to finish one unit of T2, respectively and B’s efficiency vector

is (s, r). Parameters p, q, s, r > 0. If user A has comparative

advantage over B in T1, that is, p
q
≤ s

r
, then B must have

comparative advantage over A in T2.

Proof. From the given conditions, B can finish one T2 in r
s

of

the time to finish T1 and A can finish one T2 in q
p

of the time

to finish T1. Since p
q
≤ s

r
, then r

s
≤ q

p
must be true. Therefore,

B has comparative advantage over A in T2. �

From Theorem (1), we conclude that two users should trade

as long as one user has a comparative advantage in some task.

The only situation that they do not need to trade is when both

users are equally efficient in the two tasks. That is, p = s and

q = r. In this special case, you can still trade but it makes

no difference. In the general case, each user carries multiple

tasks. Before trading, they should first identify the common

tasks and then find out each other’s efficiency in these tasks.

In the following two subsections, we discuss how to trade to

minimize the total working hours. In the first subsection, we

look for the trade conditions for two tasks. And in the second

subsection, we propose an algorithm to trade multiple tasks.

B. Trade with two tasks

In this subsection, we work on the trade conditions to trade

two tasks. We first use a concrete example to provide us with

some insights and then formalize the conditions for two users

to trade two tasks to minimize the total working hours.

1) Trade conditions in an example: Let us take a look at

example 1 again. There are two cases here: user A initiates

trading or user B initiates trading.

We first look at the case of A initiating trading shown in

Table III. The table presents A’s tasks and its time HA to finish

them, B’s tasks and its time HB to finish them, and the total

number of hours HAB for both A and B to finish these tasks. In

HAB , A is put before B to indicate that it initiates the trading.

The top rows of A and B show the original tasks obtained from

the requester. That is, A has a task vector of (300, 400) and B
has a task vector of (500, 100). If they do not trade, the number

of hours for A and for B to finish these tasks are 300 × 1 +
400× 2 = 1100 and 500× 3 + 100× 4 = 1900, respectively.

And the total number of hours HAB is 3000. Now suppose A

T1 T2 HA T1 T2 HB HAB

300 400 1100 500 100 1900 3000
400 325 1050 400 175 1900 2950
500 250 1000 300 250 1900 2900
600 175 950 200 325 1900 2850
700 100 900 100 400 1900 2800
800 25 850 0 475 1900 2750

A B AB

TABLE III
A INITIATES TRADING AND TAKES T1 FROM B

T1 T2 HA T1 T2 HB HBA

300 400 1100 500 100 1900 3000
450 325 1100 350 175 1750 2850
600 250 1100 200 250 1600 2700
750 175 1100 50 325 1450 2550
800 150 1100 0 350 1400 2500

A B BA

TABLE IV
B INITIATES TRADING AND TAKES T2 FROM A

initiates trading and since it has comparative advantage in T1

and B has comparative advantage in T2, A should take some

units of T1 from B and B should take some units of T2 from

A in return. If A takes 100 T1 from B, then B should take

100 ∗ 3/4 = 75 T2 from A. Then shown in row 2, A’s task

vector becomes (400, 325) and B’s task vector becomes (400,

175). In this case, HA is reduced to 1050 and HAB is reduced

to 2950. After that, A can continue taking more units of T1

from B and B can continue taking the corresponding units of

T2 from A based on their efficiency vectors. We have several

observations from Table III. First, with A taking more units of

T1 from B, A’s working hours HA and HAB are decreasing.

Second, the maximum units of T1 A can take is bounded by

whichever the total units of T1 obtained by B and the total

units of T2 obtained by A goes to zero first after trading. In

this example, the units of T1 in B goes to zero first. This is

the termination point of the trading initiated by A. So A can

take a maximum of 500 T1 from B and reduces HA to 850
and thereafter reduces HAB to 2750.

Now we look at the case of B initiating the trading shown in

Table IV. The table shows the similar content. B is put before

A in HBA to indicate that B initiates the trading. The first rows

of A and B show their initial task vectors. In row 2, B takes

75 T2 from A and in return A takes 75∗2/1 = 150 T1 from B.

Thus, A’s task vector becomes (450, 325) and B’s task vector

becomes (350, 175). Now B is able to reduce HB to 1750 and

HBA to 2850. Then B can continue taking T2 from A and A
can continue taking the corresponding units of T1 from B until

either B is running out of T1 or A is running out of T2. In this

case, B runs out of T1 first again. At the termination point,

the total number of working hours HBA is 2500, which is less

than HAB in A initiating the trading. In this example, this is

the best trade condition. That is, B initiates trading and takes

250 T2 from A and A takes 500 T1 in return from B to reach

a minimum of 2500 working hours.

From this example, we can get some insights for the trade

conditions to minimize the total working hours. First, whoever

initiates trading can reduce its working hours. Second, an



initiator can achieve the minimum working hours when he takes

the maximum units of the task he has comparative advantage in

from the other user. Third, for the initiator, the maximum units

of the task he can take (the termination condition) depends

on the original units of tasks obtained by the users and their

efficiency vectors. Fourth, who should be the initiator depends

on whoever can achieve the minimum total number of hours.

And finally, each user is motivated to trade even if he cannot

benefit from one trade because he can benefit from another

trade with another user. The proofs of these conclusions are

straightforward. So we skip them to save space. Next, we

formalize the trade conditions.

2) Formalize trade conditions: Assume there are two users

A and B and two tasks T1 and T2. Users A and B have

efficiency vectors (p, q) and (s, r), respectively. Suppose A has

comparative advantage in T1 over B and B has comparative

advantage in T2 over A. So, p
q
≤ s

r
. Initially, their task vectors

are (tA1, tA2) and (tB1, tB2), respectively.

If A initiates trading and takes x units of T1 from B, B will

take xs
r

units of T2 from A in return. Then, their task vectors

become:

A : (tA1 + x, tA2 −
xs

r
) B : (tB1 − x, tB2 +

xs

r
)

And the total number of hours to finish these tasks is:

HAB = (tA1+x)p+(tA2−
xs

r
)q+(tB1−x)s+(tB2+

xs

r
)r

If B initiates the trading and takes y units of T2 from A,

A will take yq
p

units of T1 from B in return. Then, their task

vectors become:

A : (tA1 +
yq

p
, tA2 − y) B : (tB1 −

yq

p
, tB2 + y)

And the total number of hours to finish these tasks is:

HBA = (tA1 +
yq

p
)p+(tA2− y)q+(tB1−

yq

p
)s+(tB2+ y)r

These parameters need to satisfy the following conditions:

minimize(HAB, HBA) (1)

subject to x ≤ tB1, y ≤ tA2 (2)

x ≤
r

s
· tA2, y ≤

p

q
· tB1 (3)

p

p+ q
≤

s

s+ r
,

r

s+ r
≤

q

p+ q
(4)

Condition (1) states our goal to minimize the total number

of hours to finish all the tasks obtained by the users through

the comparison of the cases of A initiating the trading and B
initiating the trading. Conditions in (2) say that the units of a

task a taker with comparative advantage in can take from the

giver is less or equal to the units of the task initially obtained by

the giver. Conditions in (3) talk about the corresponding return

a taker can get. The return should not exceed the original units

of the task the taker does not have comparative advantage in.

And conditions in (4) show the comparative advantage of A in

T1 and B in T2.

With the requirements formalized, we can derive the trade

conditions next. To find out whether HAB or HBA is smaller,

we consider HAB −HBA. After simplification, we get

Cases Parameter relationship Trade conditions

x = tB1, y = tA2

p · tB1 ≤ r · tA2

B∗ ← tA2(T2)
A←

q

p
tA2(T1)

p · tB1 ≥ r · tA2

A∗ ← tB1(T1)
B ← s

r
tB1(T2)

x = tB1, y = p

q
tB1

q ≤ r
B∗ ←

p
q
tB1(T2)

A← tB1(T1)

q ≥ r
A∗ ← tB1(T1)
B ← s

r
tB1(T2)

x = r
s
tA2, y = tA2

p ≤ s
B∗ ← tA2(T2)
A← q

p
tA2(T1)

p ≥ s
A∗ ← r

s
tA2(T1)

B ← tA2(T2)

x = r
s
tA2, y = p

q
tB1

q · tA2 ≤ s · tB1

B∗ ←
p

q
tB1(T2)

A← tB1(T1)

q · tA2 ≥ s · tB1

A∗ ← r
s
tA2(T1)

B ← tA2(T2)

TABLE V
TRADE CONDITIONS BASED ON FOUR CASES AND PARAMETER

RELATIONSHIPS

HAB −HBA = xp− yt−
sqx

r
+

sqy

p
(5)

As we know from the above insights, to minimize the total

working hours, a taker should take as many units of the task he

has comparative advantage in from the giver as possible and at

the same time, the number of units should satisfy conditions

(2-4). So x = min(tB1,
r
s
· tA2) and y = min(tA2,

p
q
· tB1).

Based on the data given, there are four cases listed in Table

V depending on the values of x and y. Under each case, there

are two subcases leading to different trade conditions. A trade

condition in the format of U∗ ← x(Ti) means user U takes x
units of Ti from the other user. The star on the user denotes that

this user is the initiator of the trading. The trade conditions are

in pairs because when one user takes some units of the task he

has comparative advantage in from the other user, the other user

will take some units of the task he has comparative advantage

in from this user in return.

Next we use the first case to explain how we get the trade

conditions in Table V. In the first case, x = min(tB1,
r
s
·tA2) =

tB1 and y = min(tA2,
p
q
· tB1) = tA2. We plug the values of

x and y into expression (5). After simplification, we get

(tp− sq)(
tB1

r
−

tA2

p
) (6)

At the same time, from conditions in (4), we get r
q
≤ s+r

p+q
≤

s
p

. Thus, tp ≤ sq. So whether expression (5) is greater equal

to zero depends on whether tB1

r
− tA2

p
is less equal to zero. If

tB1

r
− tA2

p
≤ 0, that is, ptB1 ≤ rtA2, HAB ≥ HBA will be true,

which means B should initiate trading to achieve the minimum

total number of hours. So B should take tA2 units of T2 from

A and A should take q
p
· tA2 units of T1 from B in return. If

tB1

r
− tA2

p
≥ 0, in other words, ptB1 ≥ rtA2, HAB ≤ HBA

will be true, which means A should initiate trading and take

tB1 units of T1 from B and B should take s
r
· tB1 units of

T2 from A in return. The next three cases can be derived in

the same way. After combining the identical trade conditions

and writing the cases just in terms of the efficiency and task

vectors, Table V is converted into Table VI.



Cases Trade conditions

tB1 ≤
r
s
tA2, tA2 ≤

p

q
tB1, p · tB1 ≤ r · tA2 or

r
s
tA2 ≤ tB1, tA2 ≤

p

q
tB1, p ≤ s

B∗ ← tA2(T2)
A←

q

p
tA2(T1)

tB1 ≤
r
s
tA2, tA2 ≤

p

q
tB1, p · tB1 ≥ r · tA2 or

tB1 ≤
r
s
tA2,

p

q
tB1 ≤ tA2, q ≥ r

A∗ ← tB1(T1)
B ← s

r
tB1(T2)

tB1 ≤
r
s
tA2,

p
q
tB1 ≤ tA2, q ≤ r or

r
s
tA2 ≤ tB1,

p
q
tB1 ≤ tA2, q · tA2 ≤ s · tB1

B∗ ←
p

q
tB1(T2)

A← tB1(T1)
r
s
tA2 ≤ tB1, tA2 ≤

p

q
tB1, p ≥ s or

r
s
tA2 ≤ tB1,

p

q
tB1 ≤ tA2, q · tA2 ≥ s · tB1

A∗ ← r
s
tA2(T1)

B ← tA2(T2)

TABLE VI
TRADE CONDITIONS

C. Trade with Multiple Tasks

In this subsection, we present a solution to our defined

problem which may involve multiple tasks. The trading of

multiple tasks can be treated as a sequence of trading between

two tasks whose minimum number of hours can be achieved

using the trade conditions above. We first prove that our defined

problem is NP-hard and then propose a heuristic algorithm

based on the trade conditions.

Theorem 2. In a mobile crowdsourcing environment OMSN,

there are a group of users and m types of tasks

{T1, T2, · · · , Tm}. Each user has an efficiency vector and a

task vector. When two users meet opportunistically, they trade

the tasks they have comparative advantage in. Then given a

list of such tradable tasks and the minimum number of hours

they can achieve to trade a pair of tasks, finding the minimum

total number of hours to finish all these tasks is NP-hard.

Proof sketch. We provide here a proof sketch due to limited

space. This problem resembles the travelling sales man problem

[3] (TSP). Here each task is a city and the minimum number

of hours to trade a pair of tasks is the distance between two

cities. The trade sequence to achieve the minimum total number

of hours to finish all these tasks is the minimum possible

route to visit the cities. Furthermore, in our problem, a task

can be visited multiple times because it can be traded with

multiple other tasks. And once a task is traded with another

task, the user’s task vector is updated. So our problem is more

complicated than TSP. Since TSP is NP-hard, our problem is

NP-hard. �

Since our problem is NP-hard, there is no polynomial

time solution unless P = NP . So we propose a heuristic

task trading algorithm (TTA) to solve the problem. The TTA

algorithm is shown in Fig. 1. We assume that each user x
has an efficiency vector and a task vector. When two users x
and y meet, they first find the tradable tasks where they have

comparative advantage. These tradable tasks must appear in

pairs according to Theorem 1. For each pair of such tradable

tasks, x and y trade according to the trade conditions in Table

VI. For the trade sequence in the tradable tasks, it is related

to the user efficiency and task vectors. The intuition is that

we should first trade two tasks with many units and with a

big difference in task efficiency. In that case, tasks can be

performed by the most efficient users and more tasks can

be exchanged. After trading, the task vectors of x and y are

updated. The TTA algorithm will continue as long as there

are tradable tasks in the network. After some time, the tasks

will be concentrated in the hands of the most efficient users to

finish these tasks and the whole efficiency of the network will

be greatly improved.

Algorithm TTA: Task-Trade Algorithm

Require: Each user x has an efficiency vector and a task vector

1: while there are tradable tasks do

2: /* On contact between a user x and a user y */

3: x and y identify tradable tasks where they have compar-

ative advantage;

4: for all the tradable tasks do

5: pick a pair of tasks with a large number of units and

the biggest difference in efficiency

6: x and y trade the two tasks according to the trade

conditions in Table VI;

7: the task vectors of x and y are updated

8: end for

9: end while

Fig. 1. The task-trade algorithm

V. SIMULATIONS

In this section, we evaluate the performance of our proposed

scheme TTA by comparing it with the one without considering

trading and the brute force algorithm to find the minimum

number of hours to finish the tasks. To obtain the opportunistic

meetings of users, we used the two real traces posted on the

Crawdad website [1], namely the Infocom [19] trace and the

upb/hyccups [7] trace. We wrote a customized simulator in

Matlab to apply the traces to the algorithms.

A. Traces Used

1) The Infocom trace (v. 5/29/2009) [19]: The Infocom

trace has been widely used to test routing algorithms in mobile

social networks [8], [21]. The trace recorded Infocom 2006
attenders’ encounter history using Bluetooth small devices

(iMotes) for 4 days at the conference.

2) The upb/hyccups trace (v. 10/17/2016) [7]: The

upb/hyccups trace was collected at the University Politehnica

of Bucharest, using an application entitled HYCCUPS Tracer.

It gathered information about a device’s encounters with other

nodes or with wireless access points. The duration of the

tracing experiment was 63 days and had 42 participants.

B. Algorithms Compared

1) The Task-Trade Algorithm (TTA): our proposed heuristic

algorithm where two users trade when they meet oppor-

tunistically.

2) The Brute-Force Algorithm (BFA): the algorithm to

achieve the minimum total number of hours to finish all

the tasks when users meet and trade. This algorithm is

implemented using dynamic programming and is used as

a benchmark to test our proposed algorithm.



0

0.1M

0.2M

0.3M

0.4M

0.5M

0.6M

0.7M

0.8M

0.9M

1 2 3 4 5

T
o
ta

l 
n
u
m

b
e
r
 o

f
 h

o
u
r
s

Intervals

NTA

 TTA

 BFA

(a) Infocom trace - 5 task types

0

0.2M

0.4M

0.6M

0.8M

1M

1.2M

1.4M

1.6M

1.8M

1 2 3 4 5

T
o
ta

l 
n
u
m

b
e
r
 o

f
 h

o
u
r
s

Intervals

NTA

 TTA

 BFA

(b) Infocom trace - 10 task types

0.1M

0.2M

0.3M

0.4M

0.5M

0.6M

0.7M

0.8M

1 2 3 4 5

T
o
ta

l 
n
u
m

b
e
r
 o

f
 h

o
u
r
s

Intervals

NTA

 TTA

 BFA

(c) upb/hyccups trace - 5 task types

0.3M

0.4M

0.5M

0.6M

0.7M

0.8M

0.9M

1M

1.1M

1.2M

1.3M

1 2 3 4 5

T
o
ta

l 
n
u
m

b
e
r
 o

f
 h

o
u
r
s

Intervals

NTA

 TTA

 BFA

(d) upb/hyccups trace - 10 task types

Fig. 2. Comparison of the algorithms using Infocom and upb/hyccups traces

3) The No-Trade Algorithm (NTA): the algorithm where

users do not trade when they meet.

C. Simulation Setup

In our simulations, we divided each trace time into five

intervals. For each user in each interval, we randomly generated

his efficiency and task vectors. Each element in the efficiency

vector was randomly picked in the range of [1, 10] and each

element in the task vector was randomly generated in the range

of [0, 1000]. We tried five and ten types of tasks. We used

the total number of hours to evaluate the performance of our

algorithms. We ran each algorithm 1000 times and averaged

the results of the evaluation metric.

D. Simulation Results

The simulation results using the Infocom trace and the

upb/hyccups trace are shown in Fig. 2 (a)(b) and Fig. 2 (c)(d),

respectively. The horizontal axis represents the trace intervals

and the vertical axis represents the total number of hours for

the users to finish all the tasks. The notation “M” means 106.

In both traces with both five and ten types of tasks, we can see

that trading can substantially reduce the total number of hours

to finish the tasks obtained by the users, which confirms the

benefits of trading using comparative advantage. In addition,

our proposed algorithm TTA shows its competency by being

very close to the benchmark brute force algorithm.

VI. CONCLUSION

In this paper, we have worked on task allocation in crowd-

sourcing in OMSNs. Different from other works, users can

trade tasks when they meet opportunistically. We have proved

that our defined problem is NP-hard and proposed a heuristic

task-trade algorithm TTA. Simulation results have confirmed

that TTA can substantially reduce the total number of working

hours compared with the one without trading and it is very

close to the benchmark brute force algorithm. In this paper,

we have mainly worked on the trade conditions. In the future,

we will continue optimizing the trading sequence to further

bring down the total working hours.

ACKNOWLEDGMENTS

This research was supported in part by NSF under

CNS1305302 and ACI1440637.

REFERENCES

[1] Crawdad - A Community Resource for Archiving Wireless Data At
Dartmouth. http://www.crawdad.org/.

[2] The Zettabyte Era: Trends and Analysis. http://www.cisco.com/c/en/us/
solutions.

[3] Travelling salesman problem. https://en.wikipedia.org/wiki/Travelling
salesman problem.

[4] A. Asadi, Q. Wang, and V. Mancuso. A survey on device-to-device
communication in cellular networks. IEEE Communication Surveys &

Tutorials, 16(4), 2014.
[5] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea, M. Talasila,

and R. Curtmola. Fostering participaction in smart cities: A geo-social
crowdsensing platform. IEEE Communications Magazine, 51:112–119,
2013.

[6] M. H. Cheung, R. Southwell, F. Hou, and J. Huang. Distributed
timesensitive task selection in mobile crowdsensing. In ACM MobiHoc,
2015.

[7] R. I. Ciobanu and C. Dobre. CRAWDAD dataset upb/hyccups (v.
20161017). http://crawdad.org/upb/hyccups/20161017,https://doi.org/10.
15783/C7TG7K, October 2016.

[8] X. Deng, L. Chang, J. Tao, J. Pan, and J. Wang. Social profile-based
multicast routing scheme for delay-tolerant networks. In IEEE ICC, pages
1857–1861, 2013.

[9] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet: vehicular content
delivery using wifi. In Proc. ACM MobiCom, 2008.

[10] A. Helmy G. S. Tuncay, G. Benincasa. Participant recruitment and data
collection framework for opportunistic sensing: a comparative analysis.
In The 8th ACM MobiCom workshop on Challenged networks, 2013.

[11] R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state and
future challenges. IEEE Communications Magazine, 49:32–39, 2011.

[12] Z. He, J. Cao, and X. Liu. High quality participant recruitment in vehicle-
based crowdsourcing using predictable mobility. In IEEE INFOCOM,
2015.

[13] X. Hu, T. H. S. Chu, H. C. B. Chan, and V. C. Leung. Vita: A
crowdsensing-oriented mobile cyber-physical system. IEEE Transactions

on Emerging Topics in Computing, 1:148–165, 2013.
[14] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos. User recruitment for

mobile crowdsensing over opportunistic networks. In IEEE INFOCOM,
2015.

[15] J. Liu, N. Kato, J. Ma, and N. Kadowaki. Device-to-device communica-
tion in lte-advanced networks: A survey. IEEE Communication Surveys

& Tutorials, 16(4), 2014.
[16] S. Reddy, D. Estrin, and M. Srivastava. Recruitment Framework for

Participatory Sensing Data Collections. In International Conference on

Pervasive Computing, 2010.
[17] D. Ricardo. On the Principles of Political Economy and Taxation (1 ed.).

London: John Murray, 1817.
[18] J. Zhang S. He, D.-H. Shin and J. Chen. Toward optimal allocation of

location dependent tasks in crowdsensing. In IEEE INFOCOM, 2014.
[19] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau.

CRAWDAD trace cambridge/haggle/imote/infocom2006(v.2009-05-29).
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006,
2009.

[20] M. Xiao, J. Wu, L. Huang, Y. Wang, and C. Liu. Multi-task assignment
for crowdsensing in mobile social networks. In IEEE INFOCOM, 2015.

[21] Y. Xu and X Chen. Social-similarity-based multicast algorithm in
impromptu mobile social networks. In IEEE Globecom, 2014.

[22] Q. Zhao, Y. Zhu, H. Zhu, J. Cao, G. Xue, and B. Li. Fair energy-efficient
sensing task allocation in participatory sensing with smartphones. In
IEEE INFOCOM, 2014.


