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Abstract—Crowdsourcing coordinates a large group of online
workers to perform small tasks published by requesters on
crowdsourcing platforms. While task assignment problems within
these platforms have been extensively studied, multi-objective
task assignment remains an area with limited exploration.
Specifically, existing research on multi-objective optimization
problems has primarily focused on two objectives in the context
of spatial crowdsourcing. In this paper, we address this gap by
investigating a constrained three-objective task assignment in a
general crowdsourcing environment. Our study establishes three
key objectives from the perspective of requestors: maximize the
amount of work finished; minimize the total cost; and minimize
the variance among requestors’ finished work under the limited
capabilities of workers. To solve this multi-objective problem, we
first adopt the Particle Swarm Optimization (PSO) algorithm
to handle the multi-objective task assignment. Next, inspired
by the solution to the knapsack problem and the fair queueing
algorithm in network scheduling, we design a heuristic algorithm
(HA). Finally, we incorporate the results from HA into the
initial swarm of PSO to create a hybrid algorithm, HYB. HYB
leverages the strengths of both approaches: PSO’s exploration
ability and HA’s directness. We conduct simulations to compare
the performance of the three algorithms. Our results demonstrate
that HYB generates the best outcomes, HA performs moderately,
while PSO lags behind. We conclude that leveraging heuristic
insights alongside optimization techniques enhances both PSO
and HA, especially given the large combinatorial nature of the
multi-objective task assignment problem.

Index Terms—crowdsourcing, heuristic, multi-objective, parti-
cle swarm optimization, task assignment

I. INTRODUCTION

Crowdsourcing [2] coordinates large online groups to per-

form small tasks that solve problems beyond individual ca-

pabilities. It is used in voting, information sharing, gaming,

creative systems [21], and mobile crowd sensing (MCS) [9].

Key components include requesters who publish tasks, workers

who complete them, and platforms like Amazon Mechanical

Turk [1] that manage interactions.

One of the critical challenges in crowdsourcing is the task

assignment problem. Task assignment involves the crowd-

sourcing platform assigning the most suitable crowd workers

to tasks to achieve specific objectives. Ensuring a reasonable

and effective task assignment is essential for enhancing the

service quality and efficiency of crowdsourcing systems. While

task assignment problems are well-studied in crowdsourcing

platforms [6], [7], [10], [12], [14], [17], our focus in this

paper lies on multi-objective task assignment problems from

the perspective of requesters - a topic that has received less

attention. Although some papers have explored multi-objective

optimization problems [11], [18], [19], [20], most of them

are limited to two objectives. Notably, [4] addressed three

objectives, but their work was specific to spatial crowdsourc-

ing. In contrast, our research investigates a three-objective

task assignment problem in a general crowdsourcing context.

Additionally, we tackle a constrained optimization problem in

which we consider worker ability limits.

The key differences and contributions of our work compared

to others are as follows:

• Problem Formulation: We formulate a constrained multi-

objective task assignment problem from the requesters’

perspective. Our three objectives are to maximize the

amount of finished work, minimize the total cost, and

balance requestors’ finished work under the limited ca-

pabilities of workers.

• Algorithm Approach: Initially, we adopt the Particle

Swarm Optimization (PSO) algorithm to solve the prob-

lem. Subsequently, we propose a heuristic algorithm

(HA). Finally, we combine both to create a hybrid al-

gorithm (HYB).

• Simulations: We conduct simulations to compare these

methods and draw meaningful conclusions.

The remainder of this paper is structured as follows: Section

II reviews the related work. Section III defines a constrained

multi-objective optimization problem. Section IV presents our

first solution based on the Particle Swarm Optimization algo-

rithm. Section V introduces a heuristic algorithm as our second

solution. Section VI proposes a hybrid approach. Section VII

presents simulation results comparing these methods. And the

conclusion is provided in Section VIII.

II. RELATED WORK

In this section, we review the related work and highlight

the distinctions between our approach and that of others.

In their research, the authors of [11] proposed a multi-

objective optimization problem related to spatial crowdsourc-

ing (SC). Specifically, they focused on optimizing two objec-

tives: travel costs and task reliability. To tackle this problem,

they transformed it into a minimum-cost maximum-weight bi-

partite matching problem. Their approach involved introducing

the distance reliability ratio (DRR), which relies on combinato-

rial fractional programming. Additionally, they extended their

method by adapting two algorithms: a combinatorial multi-

armed bandit model with semi-bandit learning to estimate

worker reliability. Tran et al. [18] utilized a genetic algorithm

to solve a multi-objective optimization (MOO) problem in

hyper-local spatial crowdsourcing. Their objectives were to



maximize task coverage while minimizing the highest work-

load across workers, all within budget constraints. Wang et

al. [19] investigated a spatial crowdsourcing multi-objective

task allocation problem. Their goal was to search for a set

of representative Pareto-optimal allocation solutions that max-

imize assigned task coverage while simultaneously minimizing

incentive costs. They proposed effective heuristic methods, in-

cluding multi-round linear weight optimization and enhanced

multi-objective particle swarm optimization algorithms, to

achieve adequate Pareto-optimal allocation. The authors of

[20] studied a Multi-Objective Optimization Task Assignment

problem and proposed a Weighted and Multi-Objective Particle

Swarm Combination (WAMOPSC) algorithm to maximize

both the platform’s and crowd workers’ utility. All of the

papers mentioned above addressed two-objective optimization

problems within the field of spatial crowdsourcing.

The only paper we found that addressed the three-objective

optimization problem is [4]. In their study, the authors con-

centrated on task scheduling with three objectives: maximizing

the number of completed tasks, minimizing total travel costs,

and ensuring workload balance among workers. To tackle this

problem, they devised an algorithm using particle swarm op-

timization and further improved it by incorporating a ranking

strategy based on task entropy and execution duration.

Similar to the work in [4], this paper investigates a three-

objective task assignment optimization problem. Unlike [4],

our problem is defined in a general crowdsourcing environ-

ment. In addition, our goals are presented from the perspective

of the requestors - an aspect that has received relatively little

attention. Furthermore, our problem introduces constraints:

each worker has a defined ability or capacity, and task as-

signments should not exceed an individual worker’s ability.

III. PROBLEM FORMULATION

In this section, we formulate a multi-objective task assign-

ment optimization problem.

A. Problem Definition

In our model, we assume that there is a set of tasks

represented as T = {ti}, which originate from a group of

requestors R = {rq}. Each task i is described by a tuple of

four elements: an id, a size si, a requestor associated with it,

and an order number u representing its position among the

tasks from that requestor. On the other hand, there exists a set

of workers denoted as W = {wj} who are actively seeking

tasks. Each worker j is characterized by an id, a unit charge

ξj , and an ability aj to complete tasks. We assume that a task

cannot be divided and can only be assigned to a single worker.

We introduce a binary-valued indicator matrix X , such that

Xji = 1 if task i is completed by worker j, and Xji = 0
otherwise. From the perspective of the requestors, the problem

is formally defined as follows:

maximize
∑

j

∑

i

Xjisi

minimize
∑

j

∑

i

Xjisiξj

minimize V ar([
∑

i∈r

Xjisi, all r ∈ R])

subject to
∑

j

Xjisi ≤ aj , ∀j

(1)

The first objective of the problem is to maximize the total

amount of work completed by summing the sizes of all the

completed tasks. The second one is to minimize the total

cost of the finished tasks by considering the unit charge of

each worker. And the third objective is to balance the finished

work among the requestors by minimizing the variance of the

finished work among the requestors. The constraint states that

the total amount of work assigned to a worker should not

exceed their ability.

B. Problem Hardness

Theorem 1: Our defined problem is NP-hard.

Proof. If we focus solely on the first objective of maximizing

the total amount of finished work, our problem is closely

related to the Multiple Knapsacks Problem (MKP) [5]. In

MKP, we deal with disjoint subsets of items that must be

distributed into different knapsacks. Each subset can be placed

in a separate knapsack, and the goal is to find these disjoint

subsets of items while maximizing the total value, all while

adhering to the weight limits of each knapsack.

In our specific context, we assign disjoint subsets of tasks

to workers to maximize the total amount of finished work.

Each subset of tasks can be assigned to a different worker,

as long as the total size of each subset does not exceed the

corresponding worker’s ability. Notably, MKP has been proven

to be NP-hard [5]. Therefore, our problem, even with just one

objective, falls into the NP-hard category. When we introduce

two additional objectives, our problem becomes even more

complex than MKP, reinforcing its NP-hardness. �

IV. SOLUTION 1: PARTICLE SWARM OPTIMIZATION

ALGORITHM (PSO)

To solve the defined multi-objective optimization problem,

a useful tool is the Particle Swarm Optimization (PSO) algo-

rithm [13]. PSO is a population-based optimization technique

that finds the optimal solution by iteratively adjusting a swarm

of particles. In the first solution, we will adapt PSO to our

problem space to identify the optimal solution.

Here are the main steps and features of PSO:

1) Initialization:

• Randomly generate a swarm S composed of a set

of particles, with each particle a valid assignment

of tasks to workers.

• A valid assignment ensures that tasks assigned to

workers can be completed within their abilities.



• If a task cannot find an appropriate worker, the

corresponding worker is set to zero.

2) Features:

• Velocity and Position Update:

– Particles start with an initial velocity of zero,

and their initial positions correspond to the initial

assignment of tasks to workers.

– Particles update their velocity and position to

explore and exploit the search space.

– These updates continue iteratively until conver-

gence.

• Fitness:

– A measure of how good a particle is with respect

to the optimization problem.

• Local Best (pbestk):

– Represents the best solution (evaluated by fitness)

achieved so far in particle k.

– Each particle maintains its own local best solu-

tion.

• Global Best (gbest):

– Represents the best solution (evaluated by fitness)

achieved by any particle in the entire swarm.

In short, PSO leverages the collective behavior of particles

to efficiently search for optimal solutions. By balancing ex-

ploration and exploitation, it aims to find the best assignment

of tasks to workers. The details of the adapted PSO algorithm

for solving our problem are presented in Fig. 1.

Algorithm 1: Particle Swarm Optimization Algorithm

(PSO)

Inputs: a list of workers and tasks, G (maximum generation

allowed), particle number

Output: an assignment of tasks to workers meeting three

objectives

1: g = 0; /* initialize generation counter */

2: Initialize random swarm M(0) with each particle a valid

assignment of each task to a worker;

3: Initialize the velocity of each particle v0k to zero;

4: The initial position of each particle w0
k is the first assign-

ment;

5: Evaluate each particle in M(0) using formula (4);

6: Find p0(k,lb) of each particle k and p0gb;

7: while g < G do

8: for k = 1; k ≤ Particle num; k ++ do

9: Update velocity v
g+1
k using formula (2);

10: Update position w
g+1
k using formula (3);

11: end for

12: Evaluate each particle in M(g) using formula (4);

13: Update p
g

(k,lb) of each particle k and p
g
gb;

14: g = g + 1;

15: end while

Fig. 1. Particle Swarm Optimization Algorithm (PSO)

In Fig. 1, the PSO algorithm takes as inputs a list of tasks

T , a list of workers W , the maximum generation G, and the

particle number Particle num, and generates a valid task

assignment to meet our three objectives. In Steps (1) to (6), we

start by initializing the generation counter g to zero, creating a

random swarm of particles, denoted as M(0), in generation 0.

Each particle represents a valid potential assignment of tasks

to workers. We initialize the velocity of each particle to zero,

and the initial position is the first assignment. We evaluate

each particle in M(0) using the fitness formula in (4). Then,

we obtain the local best p0(k,lb) of each particle k and the

global best p0gb for generation 0. In the main loop for g from

Step (7) to Step (15), for each particle k in the swarm, we

update its velocity v
g+1
k in generation g + 1 using formula

(2) and its position w
g+1
k , which is the updated assignment,

using formula (3). After each particle in generation g has been

processed, we update the local best p
g

(k,lb) for each particle k

based on its own experience, and revise the global best p
g
gb

among all particles. The details of Steps (9), (10), and (4)/(12)

are described below.

A. Velocity Update

In Step (9), the velocity of particle k in generation g+1 is

updated as follows:

v
g+1
k = φv

g
k + c1r1(p

g

(k,lb) − w
g
k)

+ c2r2(p
g
gb − w

g
k)

(2)

In the formula, v
g
k is the velocity of particle k in generation

g, w
g
k denotes the position of particle k, p

g

(k,lb) represents

the local best of the k-th particle in generation g, and p
g
gb

corresponds to the global best. Besides these, in PSO, the

parameters φ, c1, and c2 play crucial roles in determining

the behavior of the algorithm. Parameter φ is the inertia

weight, which controls the balance between exploration and

exploitation during the optimization process. It influences how

much a particle’s current velocity contributes to its next posi-

tion update. Parameter c1 is the cognitive component, which

represents a particle’s confidence in its own best position

(local best). It influences how much a particle’s historical best

position affects its movement. The social component c2 reflects

the influence of the global best position (swarm best) on a

particle’s movement, encouraging particles to move toward the

global best position found by other particles.

B. Position Update

In Step (10), the position of particle k in generation g + 1
is adjusted as follows:

w
g+1
k = w

g
k + v

g+1
k (3)

Particle k’s position w
g+1
k in generation g + 1 depends on

its position in generation g and its velocity in generation g +
1. Along with the velocity update, PSO dynamically adjusts

these parameters to strike a balance between exploration and

exploitation, ultimately converging toward optimal solutions.

In our context, if a position update causes a task assignment

to exceed the maximum worker number Worker num or fall

below 1, we bring it within the valid range by assigning the

task to worker Worker num or worker 1, respectively.



C. Particle Evaluation (fitness)

In Steps (5) and (12), the fitness of a particle is evaluated

by summing the three components that correspond to the three

objectives in our optimization problem. Before combining

them, we preprocess these components to ensure they are on

the same scale and contribute in the same direction during the

optimization process.

To transform the components to the same scale, we employ

min-max normalization [16] to map the values into the range

[0, 1]. The formula for min-max normalization is as follows:

Normalized V alue =
Original V alue−Min V alue

Max V alue−Min V alue

Our optimization problem’s first objective is to maximize

the amount of work finished. We denote the normalized

amount of work finished as Nwork finished.

Our second objective is to minimize the overall cost. To

achieve this, we first normalize the total cost and denote it as

Ntotal cost. Then, we maximize 1−Ntotal cost to ensure

it aligns in the same direction during the optimization process.

Our third objective aims to balance the amount of finished

work among the requestors. A common metric for measuring

balance is the variance of the amount of work finished among

the requestors. We minimize the variance to achieve a good

balance. After calculating the variance, we normalize it and

denote it as Nvariance. Additionally, we adjust the goal to

maximize 1 − Nvariance to maintain consistency with the

other two objectives.

After preprocessing, the fitness of a particle is determined

as follows to evaluate how well it aligns with our objectives.

fitness = Nwork finished + (1−Ntotal cost)

+ (1−Nvariance)
(4)

V. SOLUTION 2: HEURISTIC ALGORITHM (HA)

Our second solution to the defined problem is a heuristic

algorithm (HA) illustrated in Fig. 3. The idea was inspired

by the heuristic solution to the knapsack problem and fair

queueing in networks. In Step (1), we start by ordering the

workers based on the ratio of their ability to unit cost in non-

increasing order. This helps maximize the amount of finished

work while minimizing the overall cost. In Step (2), to achieve

a balance in the amount of finished work among the requestors,

we adopt the concept of the fair queuing algorithm from the

quality of service in computer networks [15]. In our context,

the workers represent resources. We create a queue for each

requestor and place their tasks in these queues, as shown in

Fig. 2. Fair queuing achieves fairness by preventing requestors

with large tasks from consuming more resources than other

requestors when a limited resource is shared. We calculate the

finish time of each task using the formulas provided in (5). For

simplicity, and without affecting our main focus, we assume

that the arrival time Arrive(u)r of the first task of requestor

r is 0. Once all finish times of the tasks are calculated, we

order the tasks by their finish times in a non-decreasing order.

Fig. 2. Task assignment inspired by fair queuing

Arrive(u)r = arrival time of u-th task of requestor r

Size(u)r = size of u-th task of requestor r

F inish(u)r = max(Arrive(u)r, F inish(u− 1)r) + Size(u)r
(5)

From Step (3) to (12), we assign each task to a worker. If

task i is assigned to worker j, worker j must have sufficient

ability to complete the task. Once assigned, worker j reduces

his ability by the size of the task. If a worker is found, we

break the internal loop, reorder the workers based on ability

per unit cost, and proceed to the next task. If no worker can

be found for a task, we assign the task to worker 0.

Algorithm 2: Heuristic Algorithm (HA)

Inputs: a list of workers and tasks

Output: an assignment of tasks to workers meeting three

objectives

1: Order the workers in non-increasing order by ability/unit

cost;

2: Order the tasks in non-decreasing order by finish times

calculated using formulas in (5);

3: for i = 1 : Task num do

4: for j = 1 : Worker num do

5: if the size of task i ≤ worker j’s ability then

6: Assign task i to worker j;

7: Deduct worker j’s ability by the size of task i;

8: break;

9: end if

10: end for

11: Order the workers according to ability/unit cost;

12: end for

Fig. 3. Heuristic Algorithm (HA)

VI. SOLUTION 3: HYBRID ALGORITHM COMBINING PSO

AND HA (HYB))

Given a list of workers and tasks, there are numerous

possible assignments. The PSO algorithm in Solution 1
starts from the initial particle positions for its exploration

and exploitation dynamics. Proper initialization is crucial to

achieving a balanced search that efficiently converges toward

optimal solutions. The HA method in Solution 2 can directly

produce a solution, but it lacks the exploration capability to

find the optimal solution. To address the limitations of both



approaches, we propose a hybrid solution, HYB, that combines

PSO and HA to optimally solve our defined problem.

In this hybrid approach, we use the assignment obtained

from HA as the initial particle and combine it with other

randomly generated particles to explore the search space. By

starting with a good solution and continuing the exploration

process, we aim to find an even better solution.

VII. SIMULATIONS

In this section, we conducted simulations using MATLAB

to compare the methods we proposed above.

A. Algorithms Compared

We compared the following algorithms:

1) Particle Swarm Optimization Algorithm (PSO)

2) Heuristic Algorithm (HA)

3) Hybrid Algorithm combining PSO and HA (HYB)

B. Metrics

We employed the following metrics, each corresponding to

one of the three objectives in our optimization problem:

1) Amount of Work Finished

2) Total Cost of Finished Work

3) Variance of the Amount of Finished Work among Re-

questors

In multi-objective optimization, a feasible solution that

optimizes all objective functions simultaneously typically does

not exist [3]. Here, we compare the assignments found by each

of the three algorithms when the program terminates.

C. Settings

In our simulations, we randomly generated a list of workers

and tasks. Each worker was associated with the following at-

tributes: worker id, unit cost, and ability. The unit cost for each

worker was randomly selected from the range [1, 10], while

the ability was chosen randomly from the range [10, 30]. On

the other hand, each task possessed the following properties:

task id, task size, its requestor, and its sequence number at the

requestor. The task size was randomly drawn from the interval

[1, 10]. The maximum task number of each requestor was set

to 5.

Regarding the parameters for PSO and HYB, we set the

particle number to 8. The inertial weight φ typically falls

between 0.4 and 0.9. We used 0.72984, following [8]. The

acceleration coefficients c1 and c2 were both set to 1.4.

D. Performance Evaluation

In our simulations, we explored two different numbers of

requestors: 100 and 200. The number of workers was set to

the product of the number of requestors and maximum task

number divided by two. To compare the performance of the

algorithms, we randomly generated 200 cases of workers and

tasks. For each case, in PSO and HYB, we set the maximum

number of generations G to start at 100 and increment by 50

until reaching 300. After running the algorithms, we calculated

the average values for the three metrics.

The simulation results are presented in Figs. 4, 5, and 6. In

Figs. 4(a) and 4(b), with 100 and 200 requestors, respectively,

HYB achieved the highest value of finished work, followed by

HA, and PSO performed the least effectively. Figs. 5(a) and

5(b) display the total cost of completing these tasks with 100
and 200 requestors. Here, HYB incurred the lowest cost, HA

fell in the middle, and PSO had the highest cost. Lastly, the

variance in the amount of finished work among the requestors

is shown in Figs. 6(a) and 6(b). Once again, HYB exhibited

the least variance, HA was intermediate, and PSO had the

highest variance.

In summary, HYB outperforms the other two. It achieves

the highest amount of finished work, the lowest cost, and

the minimum variance. HA falls in the middle, while PSO

performs the worst. Due to the explosive combinations of

assignments, a brute-force strategy like PSO struggles to

enumerate all possible solutions. The heuristic algorithm HA

is a viable choice; its results are close to those of HYB, and

it efficiently finds the solution without relying on generations.

The superior performance of HYB demonstrates that adding

good particles to the initial swarm improves both PSO and HA.

Although HYB relies on generations for the optimal solution,

its improvement in the three metrics justifies this approach.

VIII. CONCLUSION

In this paper, we have addressed a constrained three-

objective task assignment optimization problem from the per-

spective of requestors in a general crowdsourcing environ-

ment. Our objectives have included maximizing the amount

of finished work, minimizing the total cost, and reducing

the variance of the amount of finished work among the

requestors under the limited capabilities of workers. To tackle

this problem, we have employed two distinct approaches:

particle swarm optimization (PSO) and a heuristic algorithm

(HA). Furthermore, we have proposed a hybrid approach,

HYB, which combines PSO and HA. Through simulations, we

have compared the performance of these three algorithms. The

results have demonstrated that HYB achieves the best outcome

in satisfying all three objectives, while HA falls in the middle

and PSO performs the worst. Our conclusion highlights the

importance of incorporating good particles from a heuristic

algorithm into the swarm, as it enhances the performance of

both PSO and HA. In the future, we will work on more multi-

objective optimization problems in crowdsourcing.
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