
Improving Satisfaction in Crowdsourcing Platforms

Griffith Samore

Department of Computer Science

Hendrix College

Conway, AR 72032

gsamore99@gmail.com

Jonah Bates

Department of Computer Science

Rochester Institute of Technology

Rochester, NY 14623

jxb8517@rit.edu

Xiao Chen

Department of Computer Science

Texas State University

San Marcos, TX 78666

xc10@txstate.edu

Abstract—Crowdsourcing platforms have gained popularity in

recent years. They allow requesters to quickly find workers to

complete small tasks and workers to undertake pieces of work

for self-fulfillment. The current crowdsourcing models do the

task assignment either from the requester’s side (server assigned

task mode) or the worker’s side (worker selected task mode). The

satisfaction of both sides is not fully considered. Furthermore,

there is a lack of tools to help them make decisions based on

complex information and their preferences. Therefore, in this

paper, we propose a new crowdsourcing platform that takes the

satisfaction of both the requesters and workers into account so

as to improve the quality of the platform. We adopt Analytic

Hierarchy Process (AHP) to automatically generate preference

lists for both parties that best reflect their interests. We propose

a stable matching (SM) algorithm to pair the workers and tasks

according to their preference lists. Simulation results show that

our platform has higher satisfaction scores than the existing ones

and the one that uses random assignment.

Index Terms—analytic hierarchy process, crowdsourcing,

preference list, stable matching, task assignment

I. INTRODUCTION

Crowdsourcing [4] has gained popularity in recent years

because it allows requesters to find a crowd of workers to

work on small tasks that an individual or an organization

cannot easily do and it let workers obtain tasks for money

and self-fulfillment. There are three basic components in

crowdsourcing: requesters who publish tasks on a platform,

workers who carry out tasks, and a platform that permits

a one-to-one task to worker pairing. There are various

crowdsourcing platforms in our daily lives. For example,

Amazon Mechanical Turk [2] offers a place for individuals

and businesses to outsource jobs such as data validation and

survey participation to workers. Fiverr [5] allows individuals

to recruit workers to perform small odd jobs - ranging from

graphic design to music composition. And Chegg Tutors [3]

makes it possible for people to quickly hire online tutors.

In the crowdsourcing platforms, there are two task assign-

ment modes: worker selected task mode and server assigned

task mode [13]. In the worker selected task mode [10], [15],

the server publishes requesters’ tasks and it is the workers’

responsibility to choose any tasks that they are interested

in. One drawback of this mode is that it might neglect jobs

that might not seem appealing, resulting in tasks never being

completed. On the other hand, in the server assigned task

mode [9], [13], [19], the tasks are assigned to workers by the

server on behalf of the requesters to optimize some objective

functions such as to minimize the cost of autonomous car

sharing [12], or to maximize the number of location-related

tasks assigned [14], etc. The problem of this mode is that it

may lead to low-quality contributions if there are unqualified

participants. Right now, these two modes are totally separated,

which causes the task assignment to favor one side over the

other. The satisfaction of both sides is not fully considered.

Furthermore, in a crowdsourcing platform, the requesters

can see many workers with different attributes such as their

availability, previous reviews, desired pay rate, etc. These

attributes have different units and are on different scales.

They have different importance to individual requesters. Some

attribute, e.g., previous reviews, counts positively (the higher,

the better) towards the requester’s preference and some of

them, e.g., availability and pay rate, count negatively (the

higher, the worse) towards the requester’s preference. The

requesters will be at a loss to pick the best workers for their

tasks with so much overwhelming information. Similarly, it

would be hard for the workers to find their best tasks out

of a large number of tasks with multiple attributes such as

the reward of the task, the level of specialization required,

the time required to complete the task, etc. Therefore, it is

necessary for the platform to provide a facility to help the

requesters and workers to make their best choices so that their

satisfaction can be improved and consequently the platform

will look more appealing to them.

In order to address the aforementioned issues, in this paper

we propose a new crowdsourcing model presented in Fig.

1. On our platform, the attributes of each side are visible

to the other side. Some of the workers’ attributes (e.g.,

availability, desired pay rate) are entered into the platform

when they register with the system and some (e.g., previous

reviews) are available when people write reviews on the

platform after the tasks are done. The attributes of the tasks

are input by the requesters when they post the tasks. To

help the requesters and workers to process the information

and make the best choices, we adopt the analytic hierarchy

process (AHP) [1] method, which is a structured technique

for making good decisions after organizing and analyzing

complex criteria using mathematics and personal preference.

AHP takes the attributes and the relative importance of these

attributes (weights) deemed by the decision maker as inputs

and generates a preference list ordered from the favorite

to the least preferred for the decision maker. A requester

Fig. 1. Our Crowdsourcing Platform

will get a preference list of the workers and a worker will

get a preference list of the tasks. Then the platform will

use an algorithm called Stable Matching (SM) derived from

the stable marriage approach [11] to pair the tasks and the

workers according to their preference lists. Stable matching

can greatly improve the satisfaction of the requesters and

workers because it leads to a state where no worker prefers

another task than his matched one and no requester prefers

another worker than his assigned one.

The differences of our work from others and the key

contributions of our work are as follows:

• We propose a crowdsourcing platform model that consid-

ers the satisfaction of both the requesters and the workers

so as to improve the quality of the platform.

• We use Analytic Hierarchy Process (AHP) to help gen-

erate preference lists for both the requesters and workers

to best reflect their wishes.

• We propose a stable matching (SM) algorithm to pair

the workers and the tasks based on their preference lists

generated by AHP.

• Simulations are conducted to compare the satisfaction of

both parties using the methods on our proposed platform

with that of the existing ones as well as that of a naive

random assignment of tasks and workers.

The rest of the paper is organized as follows: Section II

references the related works. Section III defines the problem.

Section IV introduces the AHP method. Sections V and VI

explain how to use AHP to generate a requester’s preference

list and a worker’s preference list, respectively. Section VII

matches the workers and tasks using the stable matching (SM)

algorithm. Section VIII describes the simulations we have

conducted, and the conclusion is in Section IX.

II. RELATED WORKS

Crowdsourcing covers a wide spectrum. In terms of task

assignment, there are two modes: worker selected task mode

and server assigned task mode [13]. In the worker selected

task mode [10], [15], the server publishes the tasks and it

is the workers’ call to choose any tasks they are interested

in. One drawback of this method is that the server does not

have control over the allocation of the tasks. This may lead

to some tasks never been assigned. Differently, in the server

assigned task mode [9], [13], [19], the task is totally assigned

by the server according to certain rules. This method has

a global picture of the tasks so it can achieve the global

optimum in terms of some objective functions. But it does not

consider much about the quality of the contributions. There

are several server assigned task algorithms in some specific

applications. For example, in the car sharing industry, [12]

provides a greedy method that assigns a passenger request

to its geometrically nearest taxi. In the spatial-crowdsourcing

environment, [9], [19] assign tasks to workers according to

their positions and then the workers will physically move to

the specified locations to conduct tasks.

Right now, the worker selected task mode and the server

assigned task mode are separated in the existing crowdsourc-

ing platforms. To the best of our knowledge, the research that

considers the combination of both modes is our previous work

[8]. In that paper, on the requester’s side, we put forward

a formula derived from Beysian inference to rank workers

by considering two factors: previous reviews and the prices

the workers ask. On the worker’s side, we let each worker

decide his task preference list manually. In this paper, we

extend, unify, and automate the ranking process on both sides

using AHP [1]. AHP was developed by Thomas L. Saaty in

the 1970s and is used around the world in a wide variety of

decision situations. By using AHP, our proposed platform can

generate the preference lists for both sides that reflect their

best interests after processing multiple complex criteria. The

algorithm we use to pair the workers with the tasks is the

stable matching (SM) algorithm derived from the solution to

the Stable Marriage Problem (SMP) [16]. SMP aims to find

a stable matching between two equally-sized sets of elements

(i.e., men and women) given complete preference orders of

each man and woman. Stability requires that a matched man

and a matched women will not prefer each other over their

existing partners.

III. PROBLEM DEFINITION

On our proposed platform, we assume that there are a set

of small tasks T = {t1, t2, · · · , tn} posted by requesters and

a set of workers W = {w1, w2, · · · , wn} looking for tasks

to make some profit. When posting a task, a requester gives

the attributes of a task such as its level of specialization,

reward, urgency, etc. Similarly, a worker provides his infor-

mation such as availability, desired pay rate, etc., when he

registers with the platform. The platform can also obtain some

information such as reviews from the requesters after jobs are

done. We assume that the platform uses an evaluation system

on the workers in the form of X% positive out of Y reviews.

Different crowdsourcing websites [3], [5] may use different

formats to evaluate the workers, but they can be converted to

the format we adopt here.

Our overall goal in the platform is to improve the satis-

faction of both the requesters and the workers to make the

platform more attractive to them. To do that, our first objective

is to find a structured method to assist both parties to process

complex information and produce preference lists in their best

interests. Our next target is to design an algorithm to pair

the workers with the tasks stably without each looking for

other choice according to their preferences to improve their

satisfaction. We not only cover the case that the numbers of

workers and tasks are the same but also extend the algorithm

to the case when their sizes are different.

IV. THE AHP METHOD

In this section, we introduce the AHP method [18] that

is adopted by our crowdsourcing platform to generate the

requester’s preference list (w1, w2, · · · , wn) and the worker’s

preference list (t1, t2, · · · , tn). Since ranking the workers and

the tasks follow the same process, we call workers and tasks

the choices. So the AHP method is used to rank the available

choices c1, c2, · · · , cn (either workers or tasks) based on

multiple attributes α1, α2, · · · , αm a user considers. The AHP

method is composed of the following steps.

Step 1, the user creates a Pairwise Comparison Matrix

(PCM) shown in Fig. 2, where each element αij is the relative

importance of attribute αi over attribute αj deemed by the

user. In AHP, a user uses a scale of 1-9 to rate the relative

importance of the attributes. For example, if a user sets αij

to 2, this means that the user thinks attribute αi is two times

as important as αj . Then obviously, attribute αj is half as

important as attribute αi. That is, αji = 1

2
. In the matrix,

all the elements on the diagonal are reduced to 1 because

attribute αi is as important as itself.

Attribute\Attribute α1 α2 α3 · · · αm
























α1 1 α12 α13 · · · α1m

α2 1/α12 1 α23 · · · α2m

α3 1/α13 1/α23 1 · · · α3m

...
...

...
...

...
...

αm 1/α1m 1/α2m 1/α3m · · · 1

Fig. 2. The Pairwise Comparison Matrix (PCM)

Step 2, we need to check the consistency of PCM. When

the user fills out the PCM, the resulting matrix may not

be consistent. Matrix consistency is defined as follows: a

positive m × m matrix A is consistent if aijajk = aik, for

i, j, k = 1, · · · ,m. In a PCM, if the user defines attribute αi

as being twice as important as αj , and αj to be three times

as important as αk, then αi should be six times as important

as αk. But the user may not observe this relationship while

populating the PCM. If the PCM is not consistent, we adopt

the linearization technique in [6] to convert it to its closest

consistent matrix. Due to space limitation, we do not expand

the method here. The detailed theory and the matlab code to

do the conversion can be found in [6].

Step 3, we calculate the weight λi of each attribute αi. We

put these weights into a vector Λ = (λ1, λ2, · · · , λm). Each

element λi is computed as:

λi =
(
∏m

j=1
αij)

1/m

∑m
i=1

(
∏m

j=1
αij)1/m

(1)

Obviously,
∑m

i=1
= 1.

Step 4, we put all the values of the attributes for all the

choices into matrix X as presented in Fig. 3, where each

element χij is the value of attribute αj of choice ci.

Choice\Attribute α1 α2 α3 . . . αm
























c1 χ11 χ12 χ13 . . . χ1m

c2 χ21 χ22 χ23 . . . χ2m

c3 χ31 χ32 χ33 . . . χ3m

...
...

...
...

...

cn χn1 χn2 χn3 . . . χnm

Fig. 3. Matrix X

Step 5, we transform matrix X . This step is important be-

cause the attributes we consider can be on different scales and

can contribution positively or negatively to our preference.

For some attributes, it is the higher the value, the better while

for others, the lower the value, the better. So we need to do a

transformation on each element in matrix X as follows. For

all the values in column αj , if they contribute positively to our

preference, then for each value χij in the column of αj , we

change it to χij/maxm
i=1

(χij). If they contribute negatively

to our preference, then for each value χij in column αj , we

change it to minm
i=1

(χij)/χij . After this transformation, the

values in different attributes are normalized and contribute

positively to our preference.

Step 6, we calculate the final scores of all the choices and

sort them to obtain the preference list. The final scores of all

the choices are put in an n× 1 matrix S which is calculated

as follows:
Sn×1 = Xn×mΛm×1

Finally, we can obtain our preference list by sorting the

choices according to their scores in a non-increasing order.

V. REQUESTER’S PREFERENCE LIST

In this section, we explain the concrete procedure to

generate a requester’s preference list using AHP.

As a toy example, let us assume that a requester is looking

for a worker to complete a job. To rank the workers, he

considers three attributes: the availability of the worker (α1),

worker’s previous reviews (α2), and the worker’s desired pay

rate (α3). Based on his opinion of the importance of the three

attributes, his PCM is set as follows:

Attribute\Attribute α1 α2 α3
()α1 1 2 1

α2
1

2
1 3

α3 1 1

3
1

After the consistency checking, this PCM is not consistent

- since α1 is 2 times as important as α2 and α2 is 3 times

as important as α3, α2 should be 6 times as important as α3.

But α13 is labeled 1. We apply the method in [6] to convert

the PCM into its closest consistent matrix. This yields:

Attribute\Attribute α1 α2 α3
()

α1 1 1.1006 1.8171
α2 0.9086 1 1.6510
α3 0.5503 0.6057 1

According to Formula (1), we obtain the weights of the

three attributes as: Λ = (0.41, 0.37, 0.22). Now suppose we

have three workers to choose from. Their values in the three

attributes are presented in the following matrix X :

Choice\Attribute α1 α2 α3
()

c1 1 2600 15
c2 3 2100 10
c3 2 2400 12

In matrix X , column α1 lists in how many days each

worker is available and column α3 shows each worker’s

desired pay rate per hour. These numbers are provided by

the workers when they register on the platform. Column α2

displays each worker’s review score. This score is calculated

based on a worker’s previous reviews using the method in

our previous work [8]. The main idea of the method is as

follows. Suppose two workers A and B get reviews like these:

worker A is 97% positive out of 1000 reviews and worker B

is 98% positive out of 100 reviews. Then which worker is

better? In term of the positive reviews, B is higher. But B

gets much fewer reviews, which makes B’s rating seems not

as trustworthy as A’s. So the number of reviews a worker gets

matters. In order to predict the workers’ future performance

and rank them using a single metric, we designed a rating

formula including both the ratings and the number of reviews

using Beysian inference [7]. Beysian inference is a widely

used and powerful tool. In the Beysian inference, there is a

prior and a posterior. We treat how people rate a worker as a

random variable P and the current set of people’s ratings of

a worker as a random variable X . We observe that the prior

X |P ∼ B(r, p). Here, B(r, p) is a binomial distribution [20],

where r is the number of reviews and p is the probability

that a worker gets a positive rating. We do not know P ’s

distribution. But it is appropriate to assume that it follows a

beta distribution β(a, b) [17] because beta distribution covers

a broad range of distributions with the variations of its two

parameters a and b. So P ∼ β(a, b). Then we found that the

posterior P |X is still a Beta distribution but with parameters

a + x and b + r − x. That is, P |X ∼ β(a + x, b + r − x).
We interpret x as the new positive ratings on the basis of

the original a positive ratings and r − x as the new negative

ratings on the basis of the original b negative ratings. We

then used the ratio of the mean and variance of the posterior

Beta distribution as the review score for each worker. For the

review score, the higher the value, the better the review is.
In AHP, after matrix X is ready, we do a transformation

on X to normalize the data and make them contribute

positively towards our preference following Step 5. After the

transformation, matrix X becomes:

Choice\Attribute α1 α2 α3
()

c1 1 1 0.67
c2 0.33 0.81 1
c3 0.5 0.92 0.83

The final score matrix of the three workers S = XΛ, which

is (0.93, 0.66, 0.73). Sorting the workers in a non-increasing

order based on their scores, the requester’s preference list is:

{w1, w3, w2}.

VI. WORKER’S PREFERENCE LIST

In a similar way, we can generate a worker’s preference

list using AHP. A worker determines which tasks are most

appealing to him by looking at three attributes: the reward

of the task, the level of specialization required, and the time

required to complete the task.

VII. MATCHING TASKS AND WORKERS

Now that we have both the worker’s preference list and

the requester’s preference list, we can match them pairwise to

one another using the stable matching (SM) algorithm in Fig.

4 derived from the solution to the Stable Marriage Problem

[16]. In SM, we find the best possible pairing between tasks

and workers. Here ‘stable’ means that no worker will prefer

another task than his matched one and no requester will prefer

another worker than his assigned one. Algorithm SM does

one-to-one matching. If the sizes of the workers and tasks

are not the same, we can insert some dummies in the shorter

preference list to make the two sizes equal. After running SM,

if a requester/a worker gets a dummy, that means he does not

get a match this time from the platform and needs to wait for

future opportunities.

There are three main components in SM. In the Main

control, every task tj runs the Proposal subroutine to find

its matching worker. In the Proposal subroutine, task tj is

matched with its next preference wi. Then subroutine Refusal

is called to see if wi would refuse the match. In subroutine

Refusal, if wi is assigned t′j but prefers tj over t′j , we break up

wi and t′j and assign wi to tj . Now t′j goes back to the market

and needs to get a new matching worker by calling Subroutine

Proposal. Otherwise, the matched pair stay matched. The

algorithm terminates after all the tasks have their matched

workers.

VIII. SIMULATIONS

In this section, we evaluate the quality of our proposed

platform by comparing it with the existing platforms and

the one that uses the random algorithm using a customized

simulator written in Matlab.

Algorithm SM: Stable Matching

1: Inputs: a set of tasks T , and a set of workers W .

2: Output: a stable task assignment A matching a worker

with a task.

3: Each worker i ∈ W generates his task preference list

using AHP

4: Each requester generates his worker preference list using

AHP

5: Main control

6: Initialize each worker as unassigned.

7: for each task tj ∈ T do

8: call Subroutine Proposal for tj .

9: end for

10: return A as the stable task assignment.

11: Subroutine: Proposal

12: Input: task tj .

13: if wi is the next entry in tj’s preference order then

14: assign wi to tj .

15: call Subroutine Refusal for A, tj , and wi.

16: end if

17: Subroutine: Refusal

18: Input: assignment A, task tj , and worker wi.

19: if wi is assigned t′j but prefers tj over t′j then

20: break up wi and t′j and assign wi to tj ; update A.

21: reassign t′j by calling Subroutine Proposal.

22: else

23: the matched pair remain matched

24: end if

Fig. 4. The stable matching (SM) algorithm

A. Algorithms Compared

We compare the following algorithms:

• Stable Matching (SM) algorithm: it produces a stable

matching between workers and tasks using the prefer-

ence lists generated from AHP.

• Requester Picking (RP) algorithm: the requester hand-

picks his favorite worker from the platform. If the

favorite worker is not available, the requester picks his

next choice. This is the method used by Chegg Tutors

[3] and Fiverr [5] platforms.

• Random Assignment (RA) algorithm: this is the random

assignment of the tasks and the workers.

B. Comparison Metric

We assess the success of the algorithms by a satisfaction

metric representing how each party i (either a worker or a

task) feels about its partner after they have been matched.

Let us look at i’s preference list. Suppose the size of the

preference list is n. The index of the partner assigned to i
in the preference list is j. Then i’s satisfaction score fi is

calculated as follows:

fi = (n− j + 1) ·
1

n
(2)

0 5 10 15 20 25 30 35 40 45 50

Worker/Task size

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 o

f
R

e
q

u
e

s
te

rs

RA

RP

SM

(a) Satisfaction of Task Requesters

0 5 10 15 20 25 30 35 40 45 50

Worker/Task size

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 o

f
W

o
rk

e
rs

RA

RP

SM

(b) Satisfaction of Workers

Fig. 5. Comparison of Stable Matching (SM), Requester Picking (RP), and
Random Assignment (RA) algorithms with equal worker and task sizes

For example, suppose worker i’s preference list is:

(t3, t5, t1, t4, t2). The size of the preference list is 5. If the

worker is assigned t3 which has an index of 1 on the list, his

satisfaction score fi is 1. This means that he is 100% satisfied.

If he is assigned the next task on the list, his satisfaction will

decrease by 0.2 to 80%.

C. Simulation Setup

In our simulations, we have a set of tasks T and a set of

workers W . For a requester, he considers three attributes to

evaluate a worker: availability, previous reviews, and desired

pay rate. And for a worker, he uses the reward of the task,

level of specialization, and time required to finish to choose a

task. In our simulation setting, when a requester adds a new

task to our platform, he enters the reward of the task in the

range of [$10,$100], level of specialization in the range of

[1,5], and time required to complete the task in the range of

[1,7] days. And when a worker registers with our platform, he

specifies his availability in the range of [1,5] days and desired

pay rate in the range of [$10,$20] per hour. The reviews of

a worker are left by the requesters on the platform after the

tasks are done. The platform calculates the review score of

each worker using the Bayesian method mentioned in Section

V. For each requester or worker, he also needs to fill out the

PCM indicating how he weighs the pairwise importance of

the attributes he uses to evaluate the other side. Since we

do not have the real data from the requesters or workers,

these data are randomly generated within the range of 1− 9
at the moment. In the simulation, we tried the number of

workers/tasks from 1 to 50.

After the data are ready, we used AHP to generate the

worker’s preference list and the task’s preference list and then

feed them to the SM algorithm. The RP and RA algorithms

do not need the preference lists. After the workers and the

tasks are matched by the three algorithms, we calculated their

satisfaction scores. In each parameter setting, we ran the three

algorithms 100 times and took the average of the satisfaction

scores. We have two cases in our experiments.

In our first case, there are equal numbers of tasks and

workers. The simulation results are shown in Figs. 5(a) and

5(b). Fig. 5(a) compares the requester’s satisfaction of the

three algorithms. We can see that the requester’s satisfaction is

the lowest if RA is used. This is because RA does not consider

(50,1) (50,10)(50,20)(50,30)(50,40)(50,50)(40,50)(30,50)(20,50)(10,50) (1,50)

(Worker size,Task size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s
fa

c
ti
o

n
 o

f
R

e
q

u
e

s
te

rs

RA

RP

SM

(a) Satisfaction of Task Requesters

(50,1) (50,10)(50,20)(50,30)(50,40)(50,50)(40,50)(30,50)(20,50)(10,50) (1,50)

(Worker size,Task size)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s
fa

c
ti
o

n
 o

f
W

o
rk

e
rs

RA

RP

SM

(b) Satisfaction of Workers

Fig. 6. Comparison of Stable Matching (SM), Requester Picking (RP), and
Random Assignment (RA) algorithms with unequal worker and task sizes

the requester’s preference. The requester’s satisfaction of SM

is very close to that of RP. This means that SM has done

a good job in finding a match as if the requester picked

the worker himself. Fig. 6(b) shows the worker’s satisfaction

using the three algorithms. The workers are most satisfied

in SM. The worker’s satisfaction of the RP algorithm is

downgraded to that of the RA because in RP, the requester

does not consider the preference of the workers when he picks

workers. To summarize, in order to maximize satisfaction in

workers and requesters alike, SM is the best choice.

In the second case, the numbers of the tasks and workers

may not be equal. Fig. 6(a) shows the requester’s satisfaction

when the sizes of the tasks and the workers vary. The X-

coordinate represents the (worker size, task size) pair. In the

middle point of the X-axis, the (worker size, task size) is (50,

50). This means there are 50 workers and 50 tasks. When we

slide to the left side, the number of workers is still 50, but the

number of tasks decreases by 10 at each axis tick. And when

we move to the right side, the number of tasks is still 50,

but the number of workers decreases by 10 at each axis tick.

In the whole range of the X-axis, the requester’s satisfaction

scores of the SM and the RP algorithms are very close (curves

overlapped) and higher than those of RA for the same reason

as in the equal-size case. The requester satisfaction scores

of SM and RP start from 100% when the requester has all

the workers available to choose from for his task, and then

decrease linearly either when the number of workers is fixed

at 50 and the number of tasks increases from 1 to 50, or

when the number of tasks is fixed at 50 and the number of

workers decreases from 50 to 1. The requester’s satisfaction

falls almost to zero when there are 50 tasks and only 1 worker.

In this case, the majority of the tasks will get a dummy

worker, which reduces the requester’s satisfaction score. As

for the RA algorithm, since it does random matching, even

though there are more workers than the tasks on the left part

of the figure, the satisfaction scores of the data points on

the left side are no different from that of the middle point.

On the right side of the figure, the satisfaction scores of RA

go down linearly as there are more tasks than the workers.

The worker’s satisfaction scores from the three algorithms are

presented in Fig. 6(b) and can be interpreted in a similar way.

In summary, from our experiments we can conclude that

SM can maximize the satisfaction of both the requesters and

the workers by considering all their preferences.

IX. CONCLUSION

In this paper, we have proposed a crowdsourcing platform

model that considers the satisfaction of both the requesters

and the workers so as to improve the quality of the plat-

form. We have adopted Analytic Hierarchy Process (AHP) to

generate the preference lists of both sides automatically after

considering multiple complex criteria deemed by each party.

We have put forward the stable matching (SM) algorithm to

pair the workers and the tasks so that they will not switch

to other choice other than that matched. The simulation

results have shown that our proposed platform can make the

requesters and workers more satisfied than the existing ones

and one that uses the random assignment. In the future, we

will work on more ways to further improve our model.

ACKNOWLEDGMENTS

This research was supported in part by NSF under Award

#1757893. REFERENCES

[1] AHP. https://en.wikipedia.org/wiki/Analytic hierarchy process.
[2] Amazon mechanical turk. http://mturk.com.
[3] Chegg Tutors. https://www.chegg.com/tutors/become-a-tutor/?from

header=1.
[4] Crowdsourcing. https://en.wikipedia.org/wiki/Crowdsourcing#Crowd

sourcers.
[5] Fiverr. https://en.wikipedia.org/wiki/Fiverr.
[6] J. Bentez, X. Delgado-Galvn, J. Izquierdo, and R. Prez-Garca. Achiev-

ing matrix consistency in ahp through linearization. Applied Mathe-
matical Modelling, 35(9):4449 – 4457, 2011.

[7] J-M Bernardo. Reference analysis. In Handbook of statistics, vol-
ume 25, pages 17–90. 2005.

[8] X. Chen. A stable task assignment scheme in crowdsourcing. In IEEE
International Conference on Embedded and Ubiquitous, pages 489–
494, 2019.

[9] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task assignment
on multi-skill oriented spatial crowdsourcing. IEEE Transactions on
Knowledge and Data Engineering, 28(8):2201–2215, 2016.

[10] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the number
of worker’s self-selected tasks in spatial crowdsourcing. In 21st
SIGSPATIAL GIS, pages 314–323, 2013.

[11] D. Gale and L. S. Shapley. College Admissions and the Stability of
Marriage. American Mathematical Monthly, 69:9–14, 1962.

[12] J. P. Hanna, M. Albert, D. Chen, and P. Stone. Minimum cost matching
for autonomous carsharing. In IFAC-PapersOnLine, volume 49, pages
254–259. 2016.

[13] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with
spatial crowdsourcing. In 21st SIGSPATIAL GIS, pages 189–198, 2012.

[14] L. Kazemi, C. Shahabi, and L. Chen. GeoTruCrowd: Trustworthy
Query Answering with Spatial Crowdsourcing. In ACM SIGSPATIAL,
2013.

[15] Y. Li, M. L. Yiu, and W. Xu. Oriented online route recommendation for
spatial crowdsourcing task workers. Advances in Spatial and Temporal
Databases, pages 137–156, 2015.

[16] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita.
Hard variants of stable marriage. In Theoretical Computer Science,
volume 276, pages 261–279. 2002.

[17] K. Pearson. Mathematical contributions to the theory of evolution,
XIX: Second supplement to a memoir on skew variation. Philosophical
Transactions of the Royal Society A, 216(538-548):429–457, 1916.

[18] Thomas L. Saaty. What is the analytic hierarchy process? In
Mathematical Models for Decision Support, volume 48, pages 109–
121. Springer Berlin Heidelberg, 1988.

[19] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial crowd-
sourcing framework. ACM Transactions on Spatial Algorithms and
Systems, 1(1), 2015.

[20] G. P. Wadsworth and George & Bryan. Introduction to Probability and
Random Variables. New York: McGraw-Hill, 1960.

