
A Stable Task Assignment Scheme in

Crowdsourcing

Xiao Chen

Department of Computer Science, Texas State University, San Marcos, TX 78666
Email: xc10@txstate.edu

Abstract—Crowdsourcing has become a popular business

development strategy that outsources self-contained small tasks

to a crowd of people to solve problems that an individual

or an organization cannot easily do. There are two different

task assignment types in crowdsourcing platforms: the worker

selected task mode and the server assigned task mode. Right

now, the crowdsourcing websites only use one of them and the

satisfaction of the workers and the requesters are not fully

addressed. Furthermore, it is not easy for the requesters to

identify qualified workers quickly. In this paper, we propose

a crowdsourcing model that considers the preferences of both

the requesters and workers to improve their satisfaction and

thereafter benefits the crowdsourcing platform. We first put

forward a ranking formula for the requesters to identify

qualified workers timely based on the Bayesian inference by

considering two factors: the prices the workers charge and

their online reviews, and then propose a stable task assignment

algorithm STA that stably matches the workers and the tasks

through the stable marriage approach. Simulation results show

that our proposed task assignment approach greatly improves

the satisfaction of the requesters and the workers compared with

the existing Hungarian method and the STA variations that only

consider one factor.

Index Terms—Baysian inference, crowdsourcing, preference

list, stable matching, task assignment

I. INTRODUCTION

With the ever improving availability of social media plat-

forms, the internet and mobile devices, crowdsourcing has

become a popular business development strategy that out-

sources self-contained small tasks to a crowd of people to

solve problems that an individual or an organization cannot

easily do. Businesses use crowdsourcing to accomplish their

tasks, find solutions to problems, or gather information. There

are three basic components in crowdsourcing: requesters who

publish tasks on a platform, workers who carry out the

tasks, and a platform that manages jobs. There are many

crowdsourcing platforms available today, such as Amazon

Mechanical Turk [1] that outsources human intelligence tasks

to the crowds, Fiverr [4] that allows workers to post tasks that

they are willing to complete for a certain amount of money,

Chegg Tutors [2] that finds tutors for the students online, and

mobile crowd sensing apps such as Waze [5] and Weathermob

[6] that rely on users’ real-time mobile data to do navigation

and find out the weather conditions, respectively.

In the crowdsourcing platforms, there are two different

task assignment types: worker selected task mode and server

assigned task mode [16]. In the worker selected task mode

[9], [18], the server publishes the tasks and it is totally the

Fig. 1. Crowdsourcing model

workers’ responsibility to choose any tasks that they are

interested in. One drawback of this mode is that the server

does not have any control over the allocation of the tasks.

This may lead to some tasks never been assigned. On the

other hand, in the server assigned task mode [8], [16], [22],

the task is totally assigned by the server according to certain

rules. The server has global pictures of the tasks and can

achieve the global optimum of some objective functions.

Right now, the worker selected task mode and the server

assigned task mode are totally separated, which causes the

task assignment to be unilateral: either on the worker’s side

or on the server’s side. And the goal of the assignment is

usually to minimize or maximum some objective functions

such as to minimize the cost of autonomous carsharing

[13], or to maximize the number of location-related tasks

assigned [17], etc. The satisfaction of the workers and the

requesters of the tasks are not fully considered. Furthermore,

crowdsourcing allows anyone to participate and the financial

incentives cause workers to complete tasks quickly rather than

well, allowing for many unqualified participants and resulting

in large quantities of unusable contributions. Companies, or

additional crowdworkers, then have to sort through all of

these low-quality contributions. The task of sorting through

crowdworkers contributions, along with the necessary job

of managing the crowd, requires companies to hire actual

employees, thereby increasing management overhead [3].

Verifying responses is time-consuming, so requesters often

depend on having multiple workers complete the same task to

correct errors. However, having each task completed multiple

times increases time and monetary costs [15]. Therefore in

this paper, we propose a crowdsourcing model that allows

requesters to identify qualified workers and considers the

interests of the workers and the requesters so as to improve

the quality of the crowdsourcing platform.

On a crowdsourcing platform, the goal of the workers is to

select those tasks that can maximize their rewards, enjoyment,

and self-fulfillment while the interest of the requesters is to

get the best workers to work on their tasks. If the workers

and requesters are satisfied, more transactions can be done

between them and the crowdsourcing platform can earn more

profit. Based on these interests, we propose a crowdsourcing

model as shown in Figure 1. On a crowdsourcing platform,

each worker can submit his preference list of tasks and each

requester of a task can also submit his preference list of

workers to do the task. For the convenience of illustration,

in the rest of the paper, we just call the preference list from a

requester for a particular task ‘the task’s preference list’ and

the satisfaction of a requester on a particular task ‘the task’s

satisfaction’. Then the objective of the platform is to stably

match the workers and the tasks based on their preference

lists to improve their satisfaction. Here ‘stable’ means that

no worker will prefer another task than his matched one and

no requester will prefer another worker than his assigned one.

We are motivated to propose this model due to the following

reasons: First, our model allows both the workers and the

requesters to state their preferences so that the choice is

mutual, not unilateral as in other papers. Second, we make the

match between them stable so that their satisfaction scores can

be improved, which can make them use the crowdsourcing

platform more in the future.

To implement our crowdsourcing model, we adopt the

following methods. First, for the workers, their selections of

the tasks are usually subjective and based on their interests,

skills, rewards, and self-fulfillment. The platform can adopt

some recommender system [7] to suggest some tasks to

them according to the interests in their profiles or their past

finished tasks, but the best person to decide the eventual

preference list is the worker himself. So we assume that it

is the responsibility of each worker to provide a preference

list of tasks. For the requesters, we will come up with a

formula using the Beysian inference [10] to rank the workers

by considering two factors: the workers’ past evaluations and

the prices they charge for the tasks. With the preference lists

ready on both sides, we next propose an algorithm called

STA to stably match the workers and the tasks based on their

preference lists through the stable marriage approach [12].

The differences of our work from others and the key

contributions of our work are as follows:

• We propose a crowdsourcing model that considers the

interests of the requesters and the workers so as to

improve the quality of the platform.

• We put forward a formula using the Beysian inference to

help the requesters rank and identify qualified workers

based on the considered factors.

• We propose a stable task assignment algorithm STA to

match the requesters’ tasks and the workers.

• Simulations are conducted to evaluate the proposed STA

algorithm by comparing it with the existing method and

the variations of STA.

The rest of the paper is organized as follows: Section II

references the related works. Section III describes the model

and defines the problem. Section IV presents the formula

to rank the workers. Sections V matches the workers and

the tasks. Section VI describes the simulations we have

conducted, and the conclusion is in Section VII.

II. RELATED WORKS

Crowdsourcing covers a wide spectrum. Here we survey

the related papers on task assignment in crowdsourcing.

There are two different task assignment types: worker

selected task mode and server assigned task mode [16]. In

the worker selected task mode [9], [18], the server publishes

the tasks and it is totally the crowd workers’ call to choose

any tasks they are interested in. One drawback of this method

is that the server does not have control over the allocation

of tasks. This may lead to some tasks never been assigned

while others do. Differently, in the server assigned task mode

[8], [16], [22], the task is totally assigned by the server

according to certain rules. This method has a global picture

of the tasks so it can achieve the global optimum in terms

of some objective functions. A typical example of the server

assigned task mode is the Hungarian algorithm [20], which

finds the minimum cost bipartite matching between the tasks

and the workers. There are several other server assigned

task algorithms in some specific applications. For example,

in the car sharing industry, [13] provides a greedy method

that assigns the passenger request to its geometrically nearest

taxi. And in the spatial-crowdsourcing environment, [8], [23]

assign tasks to workers according to their positions and then

the workers will physically move to the specified locations to

conduct tasks.

Right now, the worker selected task mode and the server

assigned task mode are separated. The crowdsourcing plat-

form uses one of them and the satisfaction of the workers

and the requesters cannot be fully addressed. We argue that

the satisfaction of the workers and the requesters (tasks) can

be improved if we combine these two assignment modes by

considering the preferences of both the tasks and the workers.

We achieve that by adopting the idea of the Stable Marriage

Problem (SMP) [19]. SMP aims to find a stable matching

between two equally-sized sets of elements (i.e., men and

women) given complete preference orders of each man and

woman. Stability requires that a matched man and a matched

women will not prefer each other over their existing partners.

This is the task we do in this paper.

III. MODEL AND FORMULATION

In our model, we assume that there are a set of workers

W = {wi} looking for tasks and a set of tasks T = {tj}
from the requesters. Each worker has submitted the price

of each task and a list of preferred tasks as a result of

recommendations from the platform and personal choice.

We assume that the platform uses an evaluation system on

the workers in the form of X% positive out of Y reviews.

Different crowdsourcing websites [2], [4] may use different

formats to evaluate the workers, but they can be converted

to the format we adopt here. Our goal is to first propose

a formula to help the requester who owns a task rank the

preferred workers to work on the task and then match the

workers with the tasks stably through the stable marriage

approach.

IV. RANKING THE WORKERS

In this section, we work on the formula for the requesters

to rank the workers they desire. We consider two factors: the

price a worker charges to finish a task Pw and his past reviews

by the requesters Rw. The price factor is straightforward.

But the review part needs a little work. Nowadays, many

crowdsourcing websites use a rating system for the workers.

For example, worker A is 97% positive out of 1000 reviews

and worker B is 98% positive out of 100 reviews. Then which

worker is better? In term of the positive reviews, B is higher.

But B gets much fewer reviews, which makes B’s rating

seem not as trustworthy as A’s. So the number of reviews a

worker gets matters. So to help a requester rank the workers

based on their reviews, we need to design an aggregated scalar

rating formula by including both the ratings and the number

of reviews. We can start with the Beysian inference [10],

which is a widely used and powerful tool.

In the Beysian inference, there is a prior and a posterior. In

our case, if we know how people have rated the service of a

worker, we can predict if the requester can get a satisfactory

service from the worker in the future. So how people rate the

worker is the prior and our prediction is the posterior in the

Beysian inference. People’s rating on a worker is a random

variable that follows some distribution. We denote that as P
and its distribution is unknown. In that case, an appropriate

assumption is that it follows a beta distribution β(a, b) [21]

because beta distribution covers a broad range of distributions

with the variations of its two parameters a and b. The PDF

of the beta distribution is:

f(x) = Cxa−1(1− x)b−1, 0 < x < 1,

where the constant C = (a+b−1)!
(a−1)!(b−1)! .

Based on the current set of people’s ratings X for a

worker, e.g. 97% positive out of 1000 reviews, we observe

that the likelihood function of the sample data follows a

binomial distribution B(n, p) [24], where n is the number

of reviews and p is the probability that he gets a positive

rating. By combining these factors, our problem is to solve

the following:

We observe that X |P ∼ B(n, p), where the distribution of

the prior P ∼ β(a, b). We want to find out the distribution of

the posterior P |X .

Using the Bayesian rule, the PDF of the posterior can be

written as:

f(p|X = k) =
Pr(X = k|P)f(p)

Pr(X = k)

Here Pr(X = k|P) is the PDF of the binomial distribution.

It is equal to
(
n

k

)
pk(1 − p)n−k. Item f(p) is the PDF of

the beta distribution. After plugging in the PDFs, the above

formula becomes:

f(p|X = k) =

(
n

k

)
pk(1− p)n−kCpa−1(1− p)b−1

Pr(X = k)

After ignoring all the items that are not related to p, we

get:

f(p|X = k) ∝ pa+k−1(1 − p)b+n−k−1

=⇒ P |X ∼ β(a+ x, b+ n− x)
(1)

So the posterior is proportional to the items having p and

is still a Beta distribution but with parameters a + x and

b+ n− x. We interpret x as the new positive ratings on the

basis of the original a positive ratings and n− x as the new

negative ratings on the basis of the original b negative ratings.

Let us explain this idea using the cases of workers A and

B. First we need to determine the parameters a and b in the

prior Beta distribution. In the beginning, we do not know

how the requesters will rate the worker, so it is reasonable

to assume that their ratings are uniformly distributed. That

corresponds a = b = 1 in the Beta distribution. Thus we

assume the prior has a distribution of β(1, 1). Later we get

some observed data: Worker A is 97% positive out of 1000
reviews and worker B is 98% positive out of 100 reviews.

In other words, A has 970 new positive reviews and 30 new

negative reviews and B has 98 new positive reviews and 2
new negative reviews. The posterior in expression (1) tells

us that A and B’s posterior distributions are β(971, 31) and

β(99, 3), respectively. In Beta distribution β(a, b), we know

its mean and variance are as follows:

Mean =
a

a+ b
, V ariance =

ab

(a+ b)2(a+ b + 1)

In our case, a good rating is a rating with high mean and

low variance. So to obtain the scalar rating Rw for a worker

w, we can simply use the ratio of the mean and the variance.

That is,

Rw =
Mean

V ariance
(2)

After calculation, A’s rating is: 32420 and B’s rating is:

3502. For the value of Rw, the bigger the better. So A should

be placed before B considering the number of reviews even

though A’s positive rate is lower than B’s.

Now that we have a formula to rank the workers by the

reviews, we add in the price factor and derive a combined

formula. Since the price for a task charged by a worker Pw

is known, we can use a weighted score formula in (3) to

incorporate both factors.

Sw = g1R̃w + g2P̃w (3)

The parameters g1 and g2 are the weights in the range of

[0, 1] for the two factors and g1 + g2 = 1. The R̃w and P̃w

are the processed values for Rw and Pw, respectively. The

values of Rw and Pw need to be processed first because not

only are they on different scales but also counted in opposite

directions in the final score. As we know, for the value of Rw,

the bigger the better. But for the value of Pw, the smaller the

better. So for Pw, we first take 1/Pw to make it count in the

same direction as Rw. Then since these two values are on

different scales, we normalize them to the range of [−1, 1]
using formula (4) before putting them together in formula (3).

In formula (4), V is a vector which here represents either a

price vector containing the reciprocals of the prices charged

by a worker or his review vector containing the calculated

reviews from formula (2). Notation Vi is the i’s element in the

vector and V ′

i is its normalized value. Notations mean(V),
max(V), and min(V) represent the mean of all the elements,

the maximum value, and the minimum value in the vector,

respectively.

V ′

i =
Vi −mean(V)

max(V)−min(V)
(4)

In this paper, we consider two factors for the requesters

to rank the workers, namely the price factor and the review

factor. But formula (3) can be easily extended based on

the needs of applications to include more parameters the

requesters like to consider by simply adding the parameters

and their corresponding weights.

V. MATCHING TASKS AND WORKERS

In this section, we match tasks and workers according

to their preferences so as to improve their satisfaction. We

assume that there are n workers and n tasks. Each worker

has a preference list of tasks and each task has a preference

list of workers. To match these tasks and workers, we adopt

the idea of stable marriage approach [11] and give a definition

as follows.

Definition 1: A matching between tasks and workers is

stable if there does not exist any task or worker which prefers

each other more than their current match.

Suppose a worker wi is assigned a task t′j and a task

tj is given to a worker w′

i, the matching is not stable if

wi prefers task tj more than t′j and worst yet, task tj also

prefers worker wi more than worker w′

i. In our approach,

after each worker submits his preferred list of tasks to the

crowdsourcing platform and each requester of a task lists

his preferred workers according to formula (2), we provide a

stable task assignment (STA) algorithm in Figure 2 matching

the workers and the tasks.

There are three parts in this algorithm. In the main control

part, each task tj calls Subroutine Proposal to get the next

preferred worker on its list. After the loop is done, the

matching A between the tasks and the workers is returned. In

the Subroutine Proposal, we match tj with its next preferred

Algorithm STA: Stable Task Assignment

1: Inputs: a set of tasks T , and a set of workers W .

2: Output: a stable task assignment A matching a worker

with a task.

3: Each worker i ∈ W submits his task preference list to

the crowdsourcing platform.

4: Each requester generates his worker preference list of

each task according to formula (3).

5: Main control

6: Initialize each worker as unassigned.

7: for each task tj ∈ T do

8: call Subroutine Proposal for tj .

9: end for

10: return A as the stable task assignment.

11: Subroutine: Proposal

12: Input: task tj .

13: if wi is the next entry in tj’s preference order then

14: assign tj to wi.

15: call Subroutine Refusal for A, tj , and wi.

16: end if

17: Subroutine: Refusal

18: Input: assignment A, task tj , and worker wi.

19: if wi is assigned t′j but prefers tj over t′j then

20: break up wi and t′j and assign wi to tj ; update A.

21: reassign t′j by calling Subroutine Proposal.

22: else

23: t′j and wi remain matched

24: end if

Fig. 2. The stable task assignment (STA) algorithm

worker wi and then check if wi will refuse this proposal or

not by calling Subroutine Refusal. In the Subroutine refusal,

the temporarily matched worker wi can refuse the match. If

wi is matched to t′j but prefers tj over t′j , then we break up

wi and t′j , match tj and wi, and let t′j go back to the market

by calling Subroutine Proposal. Otherwise, t′j and wi remain

matched.

We now use an example in Figure 3 to explain the stable

task assignment algorithm. There are four tasks and four

workers. Their preference lists are shown in the figure. For

example, for task t1, its preferred workers are in the order of

w4, w1, w2, and w3. And for worker w1, its preferred tasks

are in the order of t4, t1, t3, and t2. We start from the Main

control of the STA algorithm. Task t1 first calls subroutine

Proposal to propose to its first preference w4. Then task t1 and

worker w4 are temporarily matched. Then subroutine Refusal

is called to see if worker w4 would refuse the assignment. In

Refusal, since w4 is not assigned to any task yet, task t1 and

worker w4 will remain matched. Next, in the Main control,

task t2 calls Proposal to propose to its first preference w2.

They are temporarily matched. Then Refusal is called to see if

worker w2 would refuse the proposal. Since w2 is not matched

to any task yet, t2 and w2 remain matched. Then, in the Main

Control, task t3 calls Proposal to propose to its first preference

w2. They are temporarily matched (see Figure 3(a)). Then

t1

4w

2t

3t

4t 3 1 4 2

14 3

2 3 1 4

4 31 2

2

4 1 3 2

42 33

2 1 3 2 4

4 21 31

1

w

w

w

2w

2w

4wt1

2w

2w

4w

3w

2w

3w

4wt1

w
3

(a)

(c)

1w

2w

3w

4wt1

2t

t1

3t3t

2t

3t

4t

2t

3t

4t

2t 2t

(b)

(d)

Fig. 3. An example of the STA algorithm

Refusal is called to see if w2 would refuse the proposal. In

Refusal, w2 is already matched to t2 but w2 prefers t3 more

than t2 according to its preference list. So t2 and w2 break up

and w2 is assigned to t3. Now task t2 is back on the market

and calls Proposal to propose to its 2nd preference w3. Task

t2 and w3 are temporarily matched. Then Refusal is called to

see if w3 would refuse the match. In Refusal, since w3 is not

matched to any task, t2 and w3 remain matched (see Figure

3(b)). Next, in the Main control, task t4 proposes to its first

preference w3. They are temporarily matched. Then Refusal

is called to see if w3 would refuse the match. In Refusal,

since w3 is already matched to t2 and prefers t2 over t4, so

w3 is still matched to t2 and task t4 does not get w3 (see

Figure 3(c)). Then task t4 proposes to its 2nd preference w1.

And since w1 is not matched to any task, t4 and w1 remain

matched. By now, all the tasks have obtained the matched

workers and the algorithm terminates. Finally, tasks t1, t2,

t3, and t4 get workers w4, w3, w2, and w1, respectively (see

Figure 3(d)).

After applying the STA algorithm, all the workers and the

tasks are stably matched. But there is a question: what if a

worker does not like any of the tasks or a task does not like

any of the workers? In that case, we allow them to insert a

dummy in their preference lists. If finally someone is matched

to a dummy, then he does not get a match this time and can

wait for a better partner in the future. Furthermore, dummy

relaxes the condition that the two matching sets should have

the same size.

VI. SIMULATIONS

In this section, we evaluate the performance of our pro-

posed STA algorithm with its variations and the existing

algorithm using a customized simulator written in Matlab.

A. Algorithms Compared

The following algorithms are compared:

1) The stable task assignment algorithm (STA): our pro-

posed algorithm based on stable matching and the con-

sideration of both workers’ reviews and their charging

prices.

2) The price-only algorithm (Price-only): a variation of

the STA algorithm based on stable matching and the

consideration of only the workers’ charging prices.

3) The review-only algorithm (Review-only): a variation

of the STA algorithm based on stable matching and the

consideration of only the workers’ reviews.

4) The Hungarian algorithm (Hungarian): the existing

Hungarian algorithm which achieves the lowest cost of

assigning tasks but does not consider the requesters’

and workers’ satisfaction.

B. Comparison Metric

To compare the above algorithms, we define a metric called

dissatisfaction score. It is calculated as follows. For a task

tj , suppose worker wi’s position in its preference list is k. If

finally the task is matched to worker w′

i, which is in the k′th
position in its preference list. We define tj’s dissatisfaction

score Dj = k′ − k. If Dj is positive, the task is assigned

to a worker it is less in favor of. If Dj is zero, the task is

assigned to a worker exactly as it expects in its preference

list. A negative value is not possible due to the nature of the

stable matching problem. Then for the whole match, the task

dissatisfaction score of a match is
∑n

j=1 Dj . Similarly, the

worker dissatisfaction score of a match is defined in the same

way. For the dissatisfaction scores, the smaller the better.

C. Simulation Setup

In our simulations, we randomly generated a set of tasks

T and a set of workers W . For each worker, we randomly

generated his task preference list and the associated price for

each task in the range of [1, 100]. We also randomly generated

each worker’s evaluation scores in the range of [10%, 100%]
and the number of reviews in the range of [1, 1000]. For the

STA algorithm, we used formula (3) to calculate a worker’s

preference list for each task by considering both the price

and the review factors. For the Price-only and Review-only

algorithms, we only included one factor in the calculation.

Once the preference lists were ready, we applied algorithms

STA, Price-only, and Review-only to match the workers with

the tasks. For the Hungarian algorithm, we did not use the

preference lists but just assigned tasks according to the prices

of the tasks. We tried 100 to 500 tasks. After the matching

results were obtained, we calculated the task and worker

dissatisfaction scores. We ran each algorithm 1000 times and

averaged the results.

D. Simulation Results

The simulation results are shown in Figures 4(a)-(f). We

tried three weight values g1 = 0.2, 0.5, 0.7 in the experiments.

A weight of 0.2 means that the weight of the review factor

50k

100k

150k

200k

250k

 100 150 200 250 300 350 400 450 500

T
a
sk

 d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(a) Task dissatisfaction (g1 = 0.2)

20k

40k

60k

80k

100k

 100 150 200 250 300 350 400 450 500

W
o
rk

e
r

d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(b) Worker dissatisfaction (g1 = 0.2)

50k

100k

150k

200k

 100 150 200 250 300 350 400 450 500

T
a
sk

 d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(c) Task dissatisfaction (g1 = 0.5)

20k

40k

60k

80k

100k

120k

 100 150 200 250 300 350 400 450 500

W
o
rk

e
r

d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(d) Worker dissatisfaction (g1 = 0.5)

50k

100k

150k

200k

 100 150 200 250 300 350 400 450 500

T
a
sk

 d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(e) Task dissatisfaction (g1 = 0.7)

20k

40k

60k

80k

100k

120k

 100 150 200 250 300 350 400 450 500

W
o
rk

e
r

d
is

sa
ti

sf
a
c
ti

o
n
 s

c
o
re

s

Tasks

STA
Price-Only

Review-Only
Hungarian

(f) Worker dissatisfaction (g1 = 0.7)

Fig. 4. Comparison of the algorithms with different weights

g1 is 20% and the weight of the price factor g2 = 1 − g1
is 80%. For each weight, we obtained the task and worker

dissatisfaction scores. Unanimously, the methods based on

stable matching have substantial lower dissatisfaction scores

than the Hungarian method in all of the parameter settings. In

addition, the STA algorithm which considers both the price

and the review factors has a lower dissatisfaction score than

the Price-only and the Review-only algorithms which only

consider one of the factors. In conclusion, the stable matching

method can reduce the task and worker dissatisfaction scores

compared with the existing Hungarian method and the tasks

and workers can be more satisfied if both the price and the

review factors are considered.

VII. CONCLUSION

In this paper, we have proposed a crowdsourcing model

that considers the preferences of both the requesters and the

workers to improve their satisfaction so as to benefit the

crowdsourcing platform. We have first put forward a formula

based on Bayesian inference for the requesters to identify

qualified workers quickly by considering the price and the

review factors. And then we have proposed a stable task

assignment algorithm STA to stably match the tasks and the

workers through the stable marriage approach. Simulation

results have shown that our proposed scheme STA greatly

improves the satisfaction of the requesters and the workers

compared with the ones which only consider one of the

factors and the existing Hungarian method which does not

consider the requesters’ and workers’ satisfaction. In the

future, we will explore more factors in the stable task as-

signment method.

ACKNOWLEDGMENTS

This research was supported in part by NSF under

CNS1305302 and ACI1440637.

REFERENCES

[1] Amazon mechanical turk. http://mturk.com.
[2] Chegg Tutors. https://www.chegg.com/tutors/become-a-tutor/?from

header=1.
[3] Crowdsourcing. https://en.wikipedia.org/wiki/Crowdsourcing#Crowd

sourcers.
[4] Fiverr. https://en.wikipedia.org/wiki/Fiverr.
[5] Waze. https://en.wikipedia.org/wiki/Waze.
[6] Weathermob-Social Weather Reporting, and Local and Global Weather

Reports. https://itunes.apple.com/us/app/weathermob-social-weather-
reporting-local-global-weather/id463729367?mt=8.

[7] E. Aldhahri, V. Shandilya, and S. Shiva. Towards an effective crowd-
sourcing recommendation system: A survey of the state-of-the-art. In
IEEE on SOSE, 2015.

[8] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao. Task assignment
on multi-skill oriented spatial crowdsourcing. IEEE Transaction on
Knowledge and Data Engineering, 2015.

[9] D. Deng, C. Shahabi, and U. Demiryurek. Maximizing the number
of worker’s self-selected tasks in spatial crowdsourcing. In 21st

SIGSPATIAL GIS, pages 314–323, 2013.
[10] J-M Ernardo. Reference analysis, volume 25. Handbook of statistics,

2005.
[11] D. Gale and L. S. Shapley. College Admissions and the Stability of

Marriage. American Mathematical Monthly, 69:9–14, 1962.
[12] Y. A. Gonczarowski, No. Nisan, R. Ostrovsky, and W. Rosenbaum. A

stable marriage requires communication. In ACM-SIAM SODA, 2015.
[13] J. P. Hanna, M. Albert, D. Chen, and P. Stone. Minimum cost matching

for autonomous carsharing. In IFAC-PapersOnLine, 2016.
[14] C. J. Ho and J. W. Vaughan. Online Task Assignment in Crowdsourcing

Markets. AAAI, 12:45–51, 2012.
[15] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on amazon

mechanical turk. In ACM HCOMP, 2010.
[16] L. Kazemi and C. Shahabi. Geocrowd: enabling query answering with

spatial crowdsourcing. In 21st SIGSPATIAL GIS, pages 189–198, 2012.
[17] L. Kazemi, C. Shahabi, and L. Chen. GeoTruCrowd: Trustworthy

Query Answering with Spatial Crowdsourcing. In ACM SIGSPATIAL,
2013.

[18] Y. Li, M. L. Yiu, and W. Xu. Oriented online route recommendation for
spatial crowdsourcing task workers. Advances in Spatial and Temporal

Databases, pages 137–156, 2015.
[19] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita.

Hard variants of stable marriage. Theoretical Computer Science, 2002.
[20] J. Munkres. Algorithms for the Assignment and Transportation Prob-

lems. Journal of the Society for Industrial and Applied Mathematics,
5:32–38, March 1957.

[21] K. Pearson. Mathematical contributions to the theory of evolution,
XIX: Second supplement to a memoir on skew variation. Philosophical

Transactions of the Royal Society A, 216(538-548):429–457, 1916.
[22] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial crowd-

sourcing framewor. ACM Transactions on Spatial Algorithms and

Systems, 1, 2015.
[23] H. To, C. Shahabi, and L. Kazemi. A server-assigned spatial crowd-

sourcing framework. ACM Transactions on Spatial Algorithms and

Systems, 1, 2015.
[24] G. P. Wadsworth. Introduction to Probability and Random Variables.

New York: McGraw-Hill, 1960.

