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Abstract
Deep Neural Networks (DNNs) have gained widespread popularity for tasks related to visual processing due to their superior
performance and thewealth of images and videos available. Rich concept representation in the training dataset is crucial for the
effectiveness of the trained deep neural networkmodel. Often, images of the same object taken from slightly different angles or
with minor variations are present, and this redundancy is wasteful as the bandwidth, storage, and processing power are limited.
Near duplicate images contribute very little to the effectiveness of the model, and here we propose a novel framework for
Visual Indexing and Retrieval-based image Deduplication (VIRD). VIRD effectively eliminates redundant data and maintains
information quality in the training corpus through visual indexing and retrieval. VIRD balances the tradeoff between a large
deduplication ratio and a stable mAP by adjusting the deduplication threshold for graph-based approximate retrieval of
near-duplicate images from given target corpora. The effectiveness of VIRD is validated through extensive experiments
on well-known Convolutional Neural Network (CNN) benchmarks. While preserving the same validation mean Average
Precision (mAP), VIRD can reduce the corpus size by 25.13%. Moreover, by streamlining the training process, VIRD can
lower the energy consumption of DNN training by 27.17%, leading to more practical and sustainable DNN training practices.

Keywords Graph-based indexing · Data redundancy · Approximate search · Image deduplication · Near-duplicate images

1 Introduction

Deep neural networks (DNNs) have significantly impacted
the solutions to natural language processing, computer
vision, and reinforcement learning tasks by leveraging vast
amounts of data. DNNs have demonstrated near-human per-
formance across various vision tasks with tens of millions
of images available in the training phase, e.g., ImageNet
[1] benchmark. Going beyond known curated image bench-
marks, the quality and the percentage of redundancy in a
typical dataset are unknown [2]. The SVHN [3] corpus has
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cropped digits from the house number plates captured by
the street view cameras. It is reasonable to expect repetitive
images featuring similar plate materials and identical printed
digits. These redundant images are often referred to as dupli-
cates or near-duplicates [2].

Definition 1 Duplicate or near-duplicate images An image
I ′, is considered a duplicate or near duplicate of an image I ,
if I ′ is obtained from I through a set of transformations Tr :
I ′ = Tr (I ).

Redundant images can result in longer training times of
the network, increased storage and memory requirements,
and higher energy consumption [4].We can achieve the same
efficiency as the DNNmodel if it is trained on the smaller yet
diversified dataset [5]. Thus, we propose to develop an effi-
cient method capable of identifying and removing redundant
data while preserving the effectiveness of the model.

Image features are compact descriptive representations
of the objects and scenes in images as they capture crucial
visual attributes invariant scale, angle, and appearance in high
dimensions. Deep features play a vital role in quantifying the
similarity between images and facilitating the identification
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of redundant data [6, 7]. Feature distance score quantifies the
similarity between two objects, scenes, or images: the more
similar the feature vectors are, the closer they are in prox-
imity. The baseline for measuring deep feature similarity is
Euclidean distance [8].

Definition 2 Similarity measure D(X ,Y ) is the distance
between feature vectors X and Y . The xi is i th component in
feature vector X :

Dp =
(

n∑
i=1

|xi − yi |p
)1/p

When p = 2, D2(X ,Y ) is known as Euclidean distance.
Next, we propose the following deduplication rule definition:

Definition 3 Deduplication rule Images X and Y that satisfy

D2 (X ,Y ) ≤ T

are near duplicate images. T is the threshold for determining
image similarity and can be manually adjusted.

In this paper, we propose a Visual Indexing and Retrieval-
based image Deduplication, method or the VIRD method in
short. The VIRD method efficiently discovers and removes
near-duplicates from the training image databases while pre-
serving the data integrity. Figure1 illustrates the dynamic
deduplication process. VIRD uses a robust DNN model to
extract deep features from new images, compare them to
the stored features in the database, and decide whether to
store or discard the feature and image. The incoming query
image’s redundancy status is based on the metrics threshold
and can vary based on storage requirements and DNN per-
formance requirements. We propose a Hierarchical Layered
Graph (HLG) and an Approximate Nearest Neighbor Search
(ANNS) to retrieve the most similar item from the feature
database. We propose to index deep descriptors in the image
archive and update the index periodically to support efficient
and effective approximate nearest-neighbor searches that can
scale to billions of items [9–11]. The effectiveness of HLG
depends on the DNNmodel used to extract the deep features.
VIRD introduces a novel method by integrating ANNS into
a deep feature database, which has a minimal impact on the
pre-trained network and training data. ANNS proves highly
effective in identifying previously unknown classes within
the database [12]. This approach enables the efficient detec-
tion and elimination of redundant images while preserving
the essential visual information necessary for accurate model
training. By eliminating redundant data, this method not only
enhances computational efficiency but also facilitates better
utilization of computational resources, ultimately leading to
more practical and sustainable DNN training practices.
Paper contributions are:

1. Visual Indexing and Retrieval-based image Deduplica-
tion (VIRD) method that utilizes graph-based approxi-
mate nearest neighbor search in deep features to accom-
plish the image deduplication task.

2. Hierarchical Layered Graph (HLG) is a graph-based
approximate nearest neighbor indexing and searchmethod
that efficiently stores and retrieves themost similar image
descriptors from ample data storage.

3. The ‘Deduplication efficiency" metric is a novel metric
that summarizes the overall percentage of data reduction
and the percentage of accuracy drop tomeasure the dedu-
plication method.

Section 2 summarizes related work, and Sect. 3 discusses
our proposed VIRD method and training pipeline in detail.
Next, Sect. 4 describes the experimental corpus distribu-
tion and characteristics. In Sect. 5, we evaluate the proposed
framework and show our experimental results by comparing
it with the latest deduplication benchmarks over four con-
sumer and crowd-sensing corpora. Finally, we summarize
the findings in Sect. 6.

2 Related work

Near-exact or near-duplicate images are images that have
undergone modifications like cropping, scaling, or rotation
from an original image. Existing research on near-exact
image detection varies in the types of feature vectors used
to represent images (traditional or deep) and the indexing
techniques applied.

Velmurugan et al. [13] utilized the Speeded-up Robust
Features (SURF) algorithm and a k-dimensional (KD) tree
for indexing and matching similar image features. Lei et
al. [14] introduced a cluster of uniform randomized trees
for rapid near-duplicate image detection. Yu et al. [15] pre-
sented a SIFT-based geometric transformation fingerprinting
technique, while Li et al. [16] proposed an image-matching
algorithm using SURF feature points and daisy descriptors.
Foo et al. [17] developed a similar image collator (SICO)
utilizing PCA-SIFT and LSH for feature indexing. Chen et
al. [18] introduced a rapid image retrieval method converting
features into binary representations.

Deep feature-basedmethods leverage Convolutional Neu-
ral Networks (CNNs) for image deduplication. For instance,
Kaur et al. [2] proposed a CNN-based online image dedupli-
cation technique, showing superior performance in detecting
exact and near-exact images. Kordopatis-Zilos et al. [19]
introduced a method for near-duplicate video retrieval using
unsupervised and supervised approaches based onDeepMet-
ric Learning (DML). Liang et al. [20] presented a hierarchical
detection method utilizing CNN models and semantic fea-
tures for near-duplicate video identification.
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Fig. 1 Pipeline of proposed VIRD architecture for image deduplication

Zhang et al. [21] focus on enhancing image retrieval
through a deep collaborative graph hashing approach, which
effectively integrates visual and semantic information. How-
ever, while their method excels at improving retrieval pre-
cision, it does not address the inefficiencies caused by
redundant data.

Wang et al. [22] introduce a sparse graph-based approach
that enhances scalability in self-supervised hashing by min-
imizing redundancy in similarity information. While their
method improves storage efficiency, VIRD extends this con-
cept by applying hierarchical graph indexing combined with
a robust deduplication process, offering a more comprehen-
sive solution that simultaneously addresses both scalability
and the reduction of data redundancy in large-scale image
retrieval.

Hu et al. [23] propose a semi-supervised metric learning
approach using anchor graph hashing to optimize retrieval
performance by learning effective distance metrics. While
their method successfully preserves semantic similarity
across large datasets, VIRD differentiates itself by focusing
on eliminating redundant data through deduplication, which
not only optimizes retrieval performance but also reduces
computational overhead and energy consumption.

Jiang et al. [24] introduce a dual activation hashing
network that effectively captures both global and local fea-
tures for fine-grained image retrieval. Although this method
improves the discriminative power of hash codes, it does not
tackle the issue of data redundancy.

Zhou et al. [25] focus on preserving global semantic struc-
tures in remote sensing image retrieval using a corrective
triplet loss. While their method is effective for maintaining
semantic integrity, VIRD provides a broader solution by also
addressing the challenges of data redundancy and scalability.
The hierarchical graph indexing in VIRD not only supports
efficient retrieval but also enables the systematic removal of
redundant data, which is critical for optimizing storage and
processing resources.

He and Wei [26] present HybridHash, which combines
convolutional operations with self-attention mechanisms to
enhance image retrieval performance. Although effective in

balancing local and global feature extraction, their approach
does not address the elimination of redundant data. VIRD’s
strength lies in its ability to not only improve retrieval through
hierarchical indexing but also to reduce data redundancy,
thereby optimizing both the training process and resource
usage.

Jang et al. [27] propose a deep hash distillation approach
that enhances hash code robustness against transformations.
While their method focuses on improving the reliability of
hash codes, it does not address the challenges posed by large,
redundant datasets.

One significant advantage of VIRD compared to most
hash-based retrieval methods is that its HLG algorithm
directly indexes the deep features extracted from the DNN
without applying anycompressionor encoding.This approach
enables VIRD to achieve superior performance in exact or
near-exact retrieval. Although the index size for HLG may
be larger, our main objective is to retrieve the most similar
items from the database accurately.

3 Methodology

Exact feature matching is slow when dealing with high-
dimensional features and large databases [28–30].

First, the VIRD algorithm trains a deep neural network
(DNN) model with various images in different orientations,
lighting conditions, and angles. The trainedDNNmodel cap-
tures near similarities during the feature extraction step. This
trained DNN acts like a powerful feature extractor, capturing
inherent similarities during the feature extraction process. It
is important to note that this model does not detect specific
objects or features; it focuses on learning general similar-
ities within the data, as shown in Sect. 5. Second, VIRD
retrieves the most similar feature using a Hierarchical Lay-
ered Graph (HLG) search, followed by the exact similarity
measure of retrieved features to the incoming data deep fea-
ture. If the incoming image is considered sufficiently similar
to the retrieved feature based on a predetermined threshold,
it is redundant to save in the database.
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Fig. 2 Hierarchical Layered Graph (HLG) indexing: each feature vec-
tor connects to its M-Nearest Neighbor within the same layer and
1-Nearest Neighbor in the next layers

Conversely, if the image is distinctive enough, the fea-
ture vector is added to the existing feature database, and the
image is stored in the image database. Thus, VIRD effec-
tively reduces storage requirements and processing overhead
associated with redundant data. By eliminating duplicate or
near-duplicate images, the corpus becomes more compact
and efficient, improving visual applications’ overall perfor-
mance.

The proposed pipeline of the VIRD method consists of
two main phases. The first phase involves feature extraction
in deep descriptor space, which is discussed in detail later.
The second phase employs an approximate search in deep
descriptor space searching method to find the most simi-
lar image features concerning the query feature. During the
approximate search using HLG, the most similar image fea-
ture is retrieved from the feature database for an incoming
query image feature.

3.1 Feature extraction with deep neural network
(DNN)

The first step toward eliminating data redundancy is effi-
ciently representing the data. Many techniques have been
devised to describe the image data in vector format, and using
DNN to extract feature vectors became themost effective and
robust method. The success of DNNs for feature extraction
is mainly due to the availability of the data and the compu-
tational power. Based on the previous success of DNNs [31,
32] for object detection in consumer and aerial images, we
have chosen to use ResNet50 [33] architecture for generat-
ing feature vectors for the image data. Figure1 shows that
the ResNet50 model is built upon many Convolution(Conv)

blocks stacked one after one. The initial seven blocks within
the ResNet50 network are Convolutional (Conv) blocks with
64 approximate searches in profound descriptor space out-
puts and only one stride at the beginning. Then, the next block
starts with a Conv blockwith a stride of 2 and an approximate
output search in a deep descriptor space of 128. This CNN
fashion follows onward with 256 and 512 output approxi-
mate searches in deep descriptor space. Next, it performs
an average pooling on the last Conv layer output. Finally,
we feed the output from the average pool into Multi-layered
perceptions (MLPs) and save the output from this layer as a
feature in our database in 512 lengths of a vector.

3.2 Hierarchical layered graph (HLG)

HLG index building Fig. 2 depicts the index structure of our
HLGmethod. It organizes feature vectors hierarchically,with
fewer vectors at higher levels and more at lower ones. A
probability function, P

(
Lv

) = F
(
Lv, lm

)
, determines the

insertion level Lv based on a "level multiplier" lm . After
level generation, vectors are layered by their distances from
the centroid, where closer vectors reside in layer 0 and farther
ones in layer L . A bidirectional graph connects each vector to
its M-Nearest Neighbor within the same layer and 1-Nearest
Neighbor in subsequent layers. This results in layer 0 to L
vectors havingM+L−1 toM neighboring nodes, impacting
index size and recall. Typically, an optimal M ranges from 5
to 48, with larger values increasing index size and recall.

Algorithm 1: LAYERING
(
X , M, f

)
Input: data vector X, number of established connections M,

outlier filtering factor f
Output: Dictionary of elements with their designated layer

1 numLayer ← �log2 M�
2 cen ← mean of X
3 dist ← distances from the centroid to all data vectors
4 avg ← mean of all distances
5 σ ← standard deviation of all distances
6 ub ← avg + f × σ

7 lb ← smallest of dist

8 r ← ub−lb
numLayer

9 layeredElem ← φ

10 foreach
(
d, x

)
of

(
dist, X

)
do

11 l ← � d
r �

12 add element x to layer l in layeredElem
13 end
14 return layeredElem

Indexing complexity The construction of the HLG index
involves two main steps. Firstly, in the initial step (Algo-
rithm 2, lines 2–4), each element undergoes iterative inser-
tions to form a hierarchical proximity graph. M is the
parameter that controls themaximumnumber of levels in this
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Fig. 3 Illustration of a HLG retrieval. Red denotes the starting point in each level, blue denotes the local optimum in each level, and green arrows
show the direction of the greedy algorithm to the query(shown green)

Algorithm 2: BUILD
(
HLG, X , M, and, f

)
Input: hierarchical layered graph HLG, data vector X, number of

established connections M, size of dynamic candidate list
cand, outlier filtering factor f

Output: Update HLG inserting all elements
1 graph ← φ

2 foreach x of X do
3 graph ← ADD

(
x, M, cand

)
4 end
5 layeredElem ← LAYERING

(
X , M, f

)
6 maxLayer ← si ze(layeredElem)

7 foreach layer of layeredElem do
8 if layer < maxLayer then
9 clg ← get the graph for layer

10 nlg ← get the graph for (layer + 1)
11 foreach elem of layer do
12 n ← SEARCH

(
nlg, elem, k = 1, cand = 1

)
13 update graph inserting n to neighbor list of elem
14 end
15 end
16 end

graph. Utilizing an exponential decaying probability distri-
bution, with ml as 1

log2(M)
, determines the maximum level

for each element. Insertions start from the top level, with
a greedy traversal of the graph to identify the closest neigh-
bors of the inserted element x . This process repeats, using the
closest neighbors from the previous level as starting points
for the subsequent level search. This step’s complexity is
O(N .log(N )).

Next, we determine the layers of each element based on
their distances from the centroid (Algorithm 1). An out-
lier filtering factor f is employed during this process to
exclude elements that are f standard deviations from the
mean distance so that outliers do not significantly affect the
determination of layer boundaries. Subsequently, we extract
the graphs for each layer from the constructed network.

In the second step (Algorithm 2, lines 9–12), for each
element, we extract the closest neighbors from the upper lay-
ers and add them to the neighbor list in the previous graph,
excluding aspects in the last layer (Algorithm 2, line 8). This
phase, being a series of greedy searches, also has a complex-

ity of O(N .log(N )). Consequently, the overall complexity
of HLG index building scales as O(N .log(N )). Neighboring
nodes within the same layer aid HLG in improving recall,
while those in upper layers expedite the search process.
Hence, adjusting the connections between the inner and outer
layers allows us to balance retrieval speed and recall.

Algorithm 3: SEARCH
(
g, q, k, cand

)
Input: graph index g, query element q, number of nearest

neighbors k, size of dynamic candidate list cand
Output: k closest neighbors to q

1 ep ← get entry point of g
2 L ← get highest level of g
3 for l ∈ L, L − 1, . . . , 2 of g do
4 p ← extract nearest neighbor to q starting with ep
5 ep ← p
6 end
7 C ← extract cand neighbors to p at bottom level of g
8 neighbors ← top k closest from C to q
9 return neighbors

HLG searchingFig. 3 shows the k-NN retrieval process of the
proposedHierarchical LayeredGraph (HLG) searchmethod.
Initially, the search begins at the upper level of the index,
where edges are the longest, employing a greedy search to a
local optimum. Subsequently, it progresses to lower levels,
starting from the previous local optimum, until reaching the
query and returning the top k-NN. Layering enables HLG
to avoid exhaustive exploration within the same layer when
the query resides in a different layer of the feature space.
Additionally, it skips visiting nodes in distant layers from the
current query node (Algorithm 3, Line 3−6). The algorithm
identifies the nearest neighbors for each inner layer using
a greedy search, updating the network accordingly. Starting
from the top level with the input network’s entry point, it
iterates to lower levels until reaching the second lowest level.
Finally, at the network’s bottom level (g), it retrieves the
closest k neighbors to the query q based on their distances.
Search complexity Each HLG index level is built as a navi-
gable small-world graph, allowing the greedy search path’s
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Table 1 Experimental corpus for image deduplication

Data Train Validation Number of classes

cifar10 [34] 50,000 10,000 10

cifar100 [34] 50,000 10,000 100

Birds [35] 56,500 14,126 450

ImageNet [1] 309,032 77,259 1000

hop count to scale logarithmically. HLG indexing builds the
graph with a set of maximum number of links for each ele-
ment, ensuring a consistent average degree for each element
at a certain level. The number of hops and the average degree
of the itemson the greedypath aremultiplied to get the overall
amount of distance calculations. As a result, each level of the
HLG has logarithmic search complexity. At any given level
l with Nl elements, the search complexity is O

(
log

(
Nl

))
,

where Nl increases from the top to the bottom. The max-
imum number of elements allowed at the bottom level is
N . Therefore, the general search complexity of the HLG is
determined by O

(
log

(
N

))
.

4 Experimental setup

4.1 Dataset andmodel training

VIRD method is evaluated on three benchmark corpora:
ImageNet [1], cifar10 and cifar100 [34], and one crowd-
sensing iNaturalist-Birds corpus [35]. Table 1 shows the
corpus characteristics, and each corpus comes with various
classes showing the corpus’s diversity, as shown in Fig. 4. All
the experiments are conducted on hardware configured with
Ubuntu 20.04.3 server with 11th generation Intel�CoreTM
i9-11900K @ 3.5GHzX16 CPU with 128GB RAM GPU
NVIDIA Corporation GP102 [TITAN Xp] GPU Memory
12GB.We have chosen to use ResNet50 [33] architecture for
generating feature vectors for the image data. During each
training epoch of the DNN model, a mini-batch consisting
of 64 images is utilized for the Birds dataset. In compari-
son, a mini-batch comprising 128 images is employed for the
remaining corpora. The learning rate is fixed at 0.0001, and
each model is trained over 70 epochs. These configurations
remain consistent across both the original and deduplicated
datasets.

4.2 Evaluationmeasures

To assess the effectiveness of our deduplication method,
we utilize three evaluation criteria: Deduplication Efficiency
(DE), Training time, and Total energy consumption:

Fig. 4 Sample images from the experimental corpora showing the class
diversity for each corpus

Deduplication efficiency measures the effectiveness of a
deduplication method based on duplicate data elimination
and the resultingmAP loss.Given the absence of ground truth
for actual duplicates or near-duplicates in our experimental
image corpora, to measure the effectiveness of comparing
methods, we introduce a new metric termed Deduplication
efficiency (DE):

DE = (1 − α) × Dedup

+α × (
1 − mAPdrop

)

The Dedup represents the percent of duplicate data elimi-
nation, where a higher value indicates a greater reduction in
redundant data.
The mAPDrop is the percentage decrease in mean average
precision (mAP) resulting from the DNN training on the
deduplicated data. α is a weighting factor between 0 and
1 that determines the relative importance of mAPDrop com-
pared to deduplication percentage. It allows us to adjust the
tradeoff between deduplication and mAP. Higher α values
penalize mAP loss more heavily.
The Deduplication efficiency metric is designed such that
higher values indicate better performance, as it rewards
higher levels of data reduction while penalizing mAPDrop.
Training timemetric forDNN training refers to the duration it
takes to train a deep neural network model on a given corpus.
Itmeasures the total elapsed time from the start of the training
process until the model has been fully trained.
Total energy consumptionmetric for DNN training quantifies
the amount of energy consumed during the entire process of
training a deep neural network model on a given corpus. It
includes energy usage by computational hardware (such as
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Fig. 5 mAP as a function of the threshold distance T for Cifar10 corpus

CPUs or GPUs), memory storage devices, and associated
cooling systems.

5 Experiments

Our work is closely aligned with CEDedup [36], which uti-
lizes hash-based feature extraction techniques for efficient
image deduplication. CEDedup inspires our work. However,
we criticize the hash-based feature extraction techniques for
imagededuplication.UnlikeCEDedup, our approach focuses
on deep feature extraction and retrieval, using graph-based
indexing methods for improved efficiency in deep neural
network training. CEDedup relies on the efficiency of hash
codes generated by different hashing algorithms to identify
and remove duplicates. We argue that deep features offer
a superior representation of an image compared to hash
codes. To prove our claim, we compare the proposed VIRD
approach with four different state-of-the-art hashing algo-
rithms, namelyWHash [37], PHash [38],DHash [39],AHash
[40], DCGH [21], DGSSH [25], HybridHash [26] and DHD
[27] in terms of Deduplication efficiency.

The relationship between deduplication percentage and
mAP based on the threshold T for the Cifar10 dataset is
depicted in Fig. 5, demonstrates that as T rises, the percent-
age of deduplication increases, leading to a decrease in the
training data and consequently a gradual decline in mAP.
When employing ResNet50 with the parameter configura-
tions specified in section 4 and trained on the original Cifar10
dataset,we achieve anmAPof 95.40%.With T set to 2,VIRD
removes 25.13% of redundant data, resulting in a compara-
ble mAP of 95.03% for the Cifar10 corpus (Fig. 5). However,
determining the optimal threshold for DNN performance is
challenging. Therefore, the Deduplication Efficiency (DE)
metric aids in understanding the balance between data dedu-

plication and mAP. The weighting factor α in DE signifies
the relative importance of mAP loss to data deduplication.
The α value greater than 0.5 indicates a higher emphasis on
mAP. Figure6 demonstrates the influence of α on deduplica-
tion efficiency across various values for the Cifar10 dataset.
Given our objective of eliminating duplicates without com-
promisingmAP, subsequent experiments are carried out with
α set to 0.7, prioritizing the mAP.

Figure7 highlights VIRD’s superior performance over
comparing methods across all four experimental datasets in
terms of DE for normalized T values due to the variation
in threshold distance across different methods. DCGH and
DHD applied to the CIFAR10, CIFAR100, and ImageNet
datasets produce better representations than all other com-
paring methods when the learning set is small. However,
VIRD demonstrates the most robust performance, achieving
the highest deduplication efficiency across all four experi-
mental datasets.VIRD’s impressive performance is primarily
due to its HLG algorithm, which indexes the actual deep fea-
tures without applying binarization or compression. While
this results in a larger index size compared to other methods,
VIRD excels in deduplication. Since indexing occurs offline
during the training period, VIRD proves to be the most suit-
able method for the deduplication task.
Next, we utilized a physical device, the P4400 p3 Kill A
Watt meter (accurate within 0.2%), to measure the power
consumption of each DNN model training on the original
corpus and deduplicated corpus. Using this device, we mea-
sured the power consumption of the CPU line.We conducted
all the experiments for energy efficiency analysis with a
similar setup specified in Sect. 4.1. Table 2 shows the train-
ing time and total energy consumption during the Resnet50
training phase on the experimental corpora before and after
the deduplication process. Here, we only present the results
for Threshold distance T=2, where we observed the high-
est data deduplication with no more than 5% mAP loss.
VIRD demonstrates reductions in total energy consumption
by 27.17%, 23.68%, 18.59%, and 16.91%, respectively, for
the Cifar10, Cifar100, Birds, and ImageNet datasets without
any significant mAP loss. The findings support the effec-
tiveness of VIRD in improving energy efficiency without
compromising the overall performance of the DNN mod-
els. This green practice aligns with sustainability efforts by
minimizing energy consumption in deep learning tasks, ulti-
mately contributing to a more eco-friendly approach to data
processing and model training.

6 Conclusion

Identifying and eliminating redundant images plays a cru-
cial role in optimizing the Deep Neural Network (DNN)
training process. The proposed VIRD framework presents
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Table 2 Training time and Energy consumption of Resnet50 model for original and deduplicated corpora

Dataset Original Deduplicated
Training time (minute) Energy consumption (KWh) Training time (minute) Energy consumption (KWh)

Cifar10 153 0.92 111 ↓ 0.67 ↓
Cifar100 188 1.14 144 ↓ 0.87 ↓
Birds 1332 8.28 1106 ↓ 6.88 ↓
ImageNet 326 1.99 278 ↓ 1.62 ↓

Fig. 6 mAP as a function of the weighting factor α for Cifar10 corpus

Fig. 7 Deduplication efficiency for comparing methods on Cifar10, Cifar100, Birds and ImageNet corpora at different threshold values

a promising solution for optimizing the process of training
DNNs by effectively identifying and removing redundant
images from large-scale datasets. Through the implemen-
tation of graph-based approximate search and deduplication
threshold adjustments,VIRDsuccessfully balances the dedu-
plication ratio and stability ofmeanAveragePrecision (mAP)
while reducing the dataset size by 25.13%. Additionally, the
streamlined training process facilitated by VIRD leads to
a significant reduction in energy consumption by 27.17%,
making DNN training more practical and sustainable. These
findings underscore the potential of VIRD in mitigating
resource and computation consumption while ensuring the
quality of data to enhance the accuracy of network training,
making it a valuable framework for the field of visual pro-
cessing and deep learning.
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