
Dynamic Social Feature-based Diffusion in Mobile

Social Networks

Xiao Chen1, Kaiqi Xiong2

1Department of Computer Science, Texas State University, San Marcos, TX 78666
2Florida CyberSecurity Center and College of Arts and Sciences, University of South Florida, Tampa, FL 33620

Email: xc10@txstate.edu, xiongk@usf.edu

Abstract—With the wide use of smart mobile devices and the
popularity of mobile social networks (MSNs), direct marketing
has been adopted by more and more companies to announce
the news of their products first to a group of selected profitable
customers and let them diffuse the news by “word-of-mouth”
to other potential buyers to control the marketing cost. In this
paper, we study the diffusion minimization problem whose goal
is to select an optimal set of initial nodes to disseminate the
information to the whole network as quickly as possible. We
tackle the problem by taking advantage of node social features
in MSNs. We define dynamic social features to capture nodes’
dynamic contact behavior and use social similarity metrics to
measure their social closeness. We adopt the community concept
in social networks to reduce the complexity of the diffusion
minimization problem. We propose novel diffusion node selection
algorithms based on these new features to minimize the diffusion
time. Simulation results show that our algorithms have lower
diffusion times than the existing ones.

Index Terms—diffusion, dynamic social features, mobile social
networks, social similarity, static social features

I. INTRODUCTION

With the wide use of smart mobile devices and the popu-

larity of mobile social networks (MSNs) where people move

around and contact each other through these devices, direct

marketing has been adopted by more and more companies

to announce the news of their products first to a group of

selected profitable customers and then let them disseminate

the news by “word-of-mouth” [10] to other potential buyers

to control the marketing cost. The communication in MSNs

does not solely rely on network infrastructures. In many

cases, people communicate opportunistically via local wireless

bandwidth such as Bluetooth. This makes MSNs similar to the

delay tolerant networks (DTNs) [1] where nodes communicate

through a store-carry-forward fashion. When two nodes move

within each other’s transmission range, they contact each other

and when they move out of their ranges, their contact is lost.

The message to be delivered needs to be stored in the local

buffer until a contact occurs in the next hop.

There are several papers in the literature studying infor-

mation dissemination by “word-of-mouth” in social networks.

Some of them investigate node influence [3], [8], [21] while

others focus on node selfishness and privacy in information

dissemination [13], [14]. Recently, Lu et al. [9] work on the

diffusion minimization problem whose goal is to find an opti-

mal set of initial nodes to disseminate information to the whole

network as quickly as possible. In the dissemination process,

a node will be affected or influenced by the information with

an affect probability p. The diffusion minimization problem

under the probabilistic diffusion model can be formulated as

an asymmetric k-center problem which is NP-hard [4]. The

best known approximation algorithm for the asymmetric k-

center problem has an approximation ratio of log∗ n and a

time complexity of O(n5) [20], where n is the number of

nodes in the network and log∗ n is the iterated logarithm of

n.

Obviously, the performance and the time complexity of

the approximation algorithm are not scalable in large MSNs.

To make the algorithm scalable, Lu et al. [9] utilize the

community structures in the network and identify diffusion

nodes in the communities based on the fact that nodes in

a community are more likely to meet and influence each

other. Their solution to the diffusion minimization problem

is based on applying network analysis methods to the social

network graph formed by aggregating past node encounters.

The social network graphs can show whether two nodes have

met in the past but not the frequency of the meetings [6] nor

the social information of the nodes. In this paper, we plan

to consider these information and tackle the problem from

a different perspective inspired by the social feature method

used by several routing algorithms in MSNs [11], [16], [22],

[23]. The social features F1, F2, F3, · · · may refer to people’s

Nationality, City, Language, etc., and f1, f2, f3, · · · represent

the values of these social features. For example, the value

of Language can be English. The user social features are

usually provided by users when they fill out their profiles. The

diffusion process can take advantage of social features because

people having more social features in common tend to contact

more frequently as shown by the routing algorithms [11], [16],

[22], [23] that use social features. In addition, in information

diffusion, it is more likely for someone to be influenced by

people with similar social features.

Similar to [9], we will adopt the community structure to

group nodes into different communities based on their social

features to speed up information diffusion in MSNs. However,

there are several challenging issues to consider before we use

social features in information dissemination in MSNs. First,

how to use social features. Social features in user profiles,

which we refer to as static social features, do not show

nodes’ meeting frequencies either and are not always adequate

to reflect users’ dynamic contact behavior, especially for an

MSN formed impromptu at some conferences or events. For

example, someone who puts New York as his home state in his

profile may actually attend a conference in Texas. Thus, static

social features need to be extended to include nodes’ contact

frequencies in order to be useful in information diffusion.

Second, how to compare the social similarity or closeness

of nodes to form communities based on their social features.

Finally, how to find an optimal set of diffusion nodes from

these communities to minimize the diffusion time.

To address the above issues, in this paper, we first put

forward the definition of dynamic social features to capture

nodes’ dynamic contact behavior based on nodes’ encounter

frequency. Then, we present an enhanced definition of dynamic

social features to better serve the purpose. Next, we adopt

metrics derived from data mining [5] to calculate the social

similarity of nodes based on dynamic social features. More-

over, we propose diffusion node selection algorithms to select

a set of nodes from communities formed according to nodes’

social similarity using the two definitions of dynamic social

features. Finally, we feed the selected nodes into the diffusion

algorithm to obtain the diffusion time. Simulation results show

that our algorithms using dynamic social features have shorter

diffusion time than the algorithms based on network analysis,

static social features, and random diffusion node selection.

In summary, we make the following contributions in this

paper. (1) To the best of our knowledge, this is the first

research to study the diffusion minimization problem using

social features. (2) We introduce the concepts of dynamic and

enhanced dynamic social features to capture nodes’ dynamic

contact behavior and use social similarity metrics to measure

nodes’ social closeness. (3) We group nodes into communities

based on their social closeness to make our algorithms scal-

able. (4) We conduct simulations to evaluate the performance

of our proposed algorithms.

The rest of the paper is organized as follows: Section II

references the related works. Section III defines the problem

we want to solve in this paper. Section IV introduces the pre-

liminaries of our solution to the problem. Section V presents

our algorithms. Section VI shows the simulation results, and

the conclusion is in Section VII.

II. RELATED WORKS

A. Information dissemination by “word-of-mouth”

In the literature, several papers [3], [8], [13], [14], [21]

have been concerned with the “word-of-mouth” advertisement

diffusion problem in the network, among which some pa-

pers [3], [8], [21] focus on node influences in information

dissemination. For example, Domingos et al. [3] model cus-

tomers’ influence by their network value. Kempe et al. [8]

work on maximizing the spread of influence through a social

network. And Wang et al. [21] propose a community-based

greedy algorithm for mining top-K influential nodes. Some

other papers [13], [14] emphasize on node selfishness and

privacy in the diffusion process. For instance, Peng et al.

[14] design schemes to address users’ selfishness and their

privacy concerns in information diffusion. Ning et al. [13]

put forward a Self-Interest-Driven (SID) incentive scheme to

stimulate cooperation among selfish nodes for ad dissemina-

tion in autonomous mobile social networks. Recently, Lu et al.

[9] discuss the diffusion minimization problem and propose a

community-based algorithm from network analysis.

B. Social analysis-based and social feature-based methods

As social network applications explode in recent years, there

are basically two methods that take social factors into account

in the study of routing problems. The first is the social analysis

method [2], [7], [12], [15], [19], which assesses the message

delivery probability of a node by analyzing the social network

graph generated by the aggregation of past node contacts.

The second is the social feature method [11], [16], [22],

[23], which evaluates a node’s message delivery probability

by looking at the number of common social features shared

between the node and the destination. The intuition of this

method is that nodes with more common social features are

more likely to meet in the future. In this method, routing

is treated as a process to resolve social feature differences

between a source and a destination. In the study of diffusion

minimization problem, Lu et al. [9] address it using the

social analysis method, identifying communities by analyzing

node connections from past encounter history. In this paper,

we will solve the problem using nodes’ social features and

their contact frequencies that are not reflected in the network

analysis method. Our approach, as far as we know, has not

been proposed in information diffusion before.

III. PROBLEM DEFINITION

In an MSN network with n nodes, information diffusion

is a process as follows: First, a set of diffusion nodes are

selected and given the information to spread. Then, these

affected diffusion nodes will spread the information when they

encounter unaffected nodes. An unaffected node will become

affected with an affect probability p. The diffusion process

terminates when all of the nodes are affected.

Let D be the set of k selected diffusion nodes. The diffusion

time T (D) of the selected node set D is defined as the

time interval from the start of information spreading by the

diffusion nodes to the time when all of the nodes have accepted

the information (affected). To solve the diffusion minimization

problem using social features, we need node encounter history

H in an MSN because static social features in user profiles

are not adequate to capture users’ dynamic contact behavior.

Thus, our problem can be formulated as: Given node static

social features F and their encounter history H in an MSN,

and given the diffusion set size k and the affect probability p,

we want to find a diffusion set D to minimize T (D).

IV. THE PRELIMINARIES

In this section, we introduce the preliminaries of our so-

lution to the diffusion minimization problem. We first give

the definition of dynamic social features and its enhancement,

then show how to calculate the social similarity of two nodes

based on their dynamic social features.

A. Definitions of dynamic social features

Suppose we consider m social features 〈F1, F2, · · · , Fm〉
in an MSN. We associate each node with a vector of its

social feature values. Thus, a node is denoted by a vector,

x, consisting of m components 〈x1, x2, · · · , xm〉. Based on

nodes’ encounter history H , we define xi as follows to capture

nodes’ contact behavior:

(1). Dynamic social features by frequency

One definition of xi is the frequency of node x meeting nodes

with the same fi out of all of the nodes it has met in the history

we observe. That is,

xi =
Mi

Mtotal

(1)

In Definition (1), Mi is the number of times that x has met

nodes with the same fi in the history we observe and Mtotal

is all of the nodes that x has met in that interval. For example,

if fi refers to Student and if x has met 20 Students out of

a total of 100 people, then xi = 20/100 = 0.2.

Therefore, a node x’s dynamic social features are defined by

its vector, which is

< x1, x2, · · · , xm >=

〈

M1

Mtotal

,
M2

Mtotal

,
M3

Mtotal

, · · · Mm

Mtotal

〉

Nevertheless, one problem with the frequency definition of xi

can be shown in the following example. Assume node x has

met 1 Student out of 2 people it has met in total in the history

we observe. Node y has met 5 Students out of 10 people it

has met in total. Using Definition (1), both of their frequencies

are 0.5 in meeting Students. So which one is more likely

to meet Students in the future? From the intuition, node y
should be given a higher priority because it is more actively

meeting people. To deal with this kind of case, we have the

following enhanced definition by focusing on Mi.

(2). Enhanced dynamic social features by focusing on Mi

If we focus on Mi, xi can be calculated as:

xi = (Mi+1

Mtotal+1
)pi(Mi

Mtotal+1
)1−pi

= (Mi + 1)pi
M

1−pi
i

Mtotal+1

(2)

In Definition (2), pi = Mi/Mtotal. This definition predicts

xi by looking at the next meeting probability of node x with

another node having the same social feature value fi. In the

next time, the total meeting times will be Mtotal+1. The first

part (Mi+1

Mtotal+1
)pi means that there will be pi probability that x

will have a “good” meeting with another node having the same

social feature value fi next time. In this case, Mi will also

be incremented by 1. The second part (Mi

Mtotal+1
)1−pi means

that there will be 1− pi probability for x not to meet a node

with the same social feature value fi next time. In that case,

Mi will remain the same. The definition for xi then takes the

geometric mean of the two parts.

Now we can break the tie in the example above. For node

x, Mi = 1,Mtotal = 2, pi = 0.5, and for node y, Mi =
5,Mtotal = 10, pi = 0.5. Using Definition (2), xi = (1 +

1)0.5∗ 1
(1−0.5)

2+1
= 0.4714 and yi = (5+1)0.5∗ 5

(1−0.5)

10+1
= 0.4979.

These two results are close to the result from Definition (1),

yet they tell us that y is better because it has met more nodes

with the intended social feature value Student and it will be

more likely doing so in the future.

Dynamic social features, as shown in the definitions, not

only record if a node has certain social features, but also

predict the probability of this node meeting other nodes with

the same social features. Unlike the static social features,

dynamic social features change as user activities change over

time so that they can better reflect users’ contact behavior.

Next is the definition of the mean dynamic social features

which will be used in the later algorithms.

Mean dynamic social features

For n nodes u1, u2, · · · , un in a network, assume their asso-

ciated dynamic social features are: u1 = 〈u11, u12, · · · , u1m〉,
u2 = 〈u21, u22, · · · , u2m〉, · · · , un = 〈un1, un2, · · · , unm〉.
The mean dynamic social features of these nodes is defined

as: umean =
〈∑n

i=1 ui1

n
,
∑n

i=1 ui2

n
, · · · ,

∑n
i=1 uim

n

〉

.

B. Calculation of social similarity

With the defined dynamic social features of nodes, we can

use the social similarity calculation algorithm in Fig. 1 to

calculate the social similarity S(x, y) of nodes x and y based

on their dynamic social feature vectors. The first few steps of

the algorithm are to obtain the dynamic social features of x and

y from the recorded static social feature set F and the contact

history H . In calculating dynamic social features, we should

combine all of their social feature values in their vectors. If

a node does not have a value for, say fi, then the xi for that

fi is 0. After getting their dynamic social features, in the last

step of the algorithm, we apply the following metrics derived

from data mining [5] to calculate their social similarity. In

these metrics, x and y represent the dynamic social feature

vectors of nodes x and y. All of these metrics are normalized

to the range of [0, 1].

(1). Euclidean similarity

After normalizing the original Euclidean similarity to the range

of [0, 1] and subtract it from 1, it is now defined as S(x, y) =

1−
√
∑m

i=1
(yi − xi)2√
m

.

For example, suppose we consider four social features 〈City,

Language, Position, Affilation〉. Node x’s values in

these social features are: 〈NewY ork, English, Student,
New York State Univ.〉 and y’s values in these social features

are: 〈NewY ork, English, Student, Texas State Univ.〉. Ac-

cording to Fig. 1, we create a vector 〈NewY ork, English,

Student, New York State Univ., Texas State Univ.〉 containing

all of x and y’s social feature values. Then we obtain x and

y’s dynamic social features by filling xi and yi in these fields

according to nodes’ contact history H . Suppose x’s dynamic

Algorithm: Social Similarity S(x, y) Calculation

Require: m: a set of social features we consider; F : a set

recording the static social features of nodes; H : a data

set containing the encounter history of the n nodes in the

network.

1: Obtain the static social feature values of x and y from F :

〈f1x, f2x, · · · , fmx〉 and 〈f1y, f2y, · · · , fmy〉.
2: /* create a vector of social feature values that is the union

of the social feature values of x and y */

3: 〈f1, f2, · · · , fl〉 = 〈f1x, · · · , fmx〉
⋃ 〈f1y, · · · , fmy〉.

4: calculate the dynamic social features of x and y by filling

xi and yi in these fields using dynamic social feature

definitions (1) or (2). If x or y does not have a value

in a field, put a 0 there.

5: apply one of the similarity metrics in Section IV-B to the

dynamic social features of x and y to calculate their social

similarity.

Fig. 1. The social similarity calculation algorithm

social feature vector is: 〈0.7, 0.93, 0.41, 0.30, 0〉, meaning in

the history we observe, x has met New Yorker 70% of the time,

people who speak English 93% of the time, students 41% of

the time, people from New York State University 30% of the

time, and no one from Texas State University. And suppose

y’s social feature vector is: 〈0.23, 0.81, 0.5, 0, 0.2〉. Applying

the Euclidean similarity metric on x and y’s dynamic social

feature vectors, their social similarity S(x, y) = 0.73.

(2). Tanimoto similarity

It measures the similarity of x and y as: S(x, y) =
x · y

x · x+ y · y − x · y . The notation x · y is the product of the

two vectors.

(3). Cosine similarity

It measures the similarity of x and y as: S(x, y) =
x · y

√

(x · x)(y · y)
.

(4). Weighted Euclidean similarity

In addition to the basic Euclidean similarity mentioned above,

we also employ the weighted Euclidean similarity to favor

the social features that are more influential to the delivery of

the packet. To determine the weight of a social feature, we

use the Shannon entropy [18] which quantifies the expected

value of the information contained in the feature [22]. The

Shannon entropy for a given social feature is calculated as:

wi = −
k

∑

i=1

p(fi) · log2(fi), where wi is the Shannon entropy

for feature Fi, vector 〈f1, f2, · · · fk〉 contains the possible val-

ues of feature Fi, and p denotes the probability mass function

of Fi. The weighted Euclidean similarity normalized to the

range of [0, 1] is: S(x, y) = 1−
√

∑m

i=1
wi · (yi − xi)2

√

∑m

i=1
wi

.

Algorithm: Diffusion Node Selection

Require: k: the number of diffusion nodes; F : a set recording

the static social features of nodes; H : a data set containing

the encounter history of the n nodes in the network.

1: arbitrarily choose k nodes from the network as the

diffusion nodes and form k clusters with each cluster

containing one diffusion node;

2: calculate the dynamic social features for each node using

Definition (1) or (2) according to F and H ;

3: repeat

4: (re)assign each node to a cluster whose center, defined

by the mean dynamic social features of the nodes in

the cluster, is most similar to that node based on some

similarity metric in Section IV-B;

5: after all of the nodes are assigned to clusters, update

each cluster center, that is, recalculate the mean dy-

namic social features of the nodes in each cluster;

6: until no more changes;

7: pick the node which is most similar to its cluster center

as the diffusion node of that cluster.

8: return a set of diffusion nodes D.

Fig. 2. The diffusion node selection algorithm

V. DIFFUSION NODE SELECTION AND DIFFUSION

ALGORITHMS

With the above preliminaries, we present our algorithm to

select k diffusion nodes in Fig. 2 inspired by the k-means

algorithm in data mining [5]. The idea of the algorithm is

as follows: first arbitrarily choose k nodes from the network

as the diffusion nodes and form k clusters with each cluster

containing one diffusion node. Then calculate the center of

each cluster which is defined as the mean dynamic social

features of that cluster. Assign each node to a cluster whose

center is most socially similar to that node. After all of the

nodes are allocated to the k clusters, recalculate the center

of each cluster. Repeat this process until there are no more

changes in node allocation. Then in each cluster, pick the node

that is most similar to the cluster center as the diffusion node

of that cluster and return all of these nodes as the diffusion

nodes of the network.

Time complexity of the diffusion node selection algorithm.

It is easy to see that the time complexity of the diffusion

node selection algorithm is O(nkt), where n is the total

number of nodes in the network, k is the number of diffusion

nodes, and t is the number of iterations. Normally, k << n
and t << n. Therefore, the method is relatively scalable and

efficient in large mobile social networks.

After the k diffusion nodes are selected, they are fed into

the diffusion algorithm in Fig. 3 to spread the message in the

network. The selected k diffusion nodes are ‘affected’ nodes

and whenever an affected node meets an unaffected node, there

is a p probability to affect that node. The process continues

until all of the nodes in the network are affected.

Algorithm: Diffusion

Require: D: a set of diffusion nodes from the Diffusion Node

Selection Algorithm; p: node affect probability.

1: set the states of all of the nodes in set D to be ‘affected’.

2: repeat

3: if an affected node encounters an unaffected node then

4: the affected node will send the message to the unaf-

fected node.

5: if the unaffected node accepts the message with an

affect probability p then

6: change the state of the unaffected node to ‘af-

fected’.

7: end if

8: end if

9: until all of the nodes are affected;

Fig. 3. The diffusion algorithm

VI. SIMULATIONS

We conducted simulations to compare the diffusion times of

our algorithms and the existing ones using a custom simulator

written in Matlab.

A. Algorithms compared

We compared the following algorithms.

1) The Diffusion Algorithm using Static Social Features

(Static): where diffusion nodes are selected from commu-

nities formed using nodes’ static social features in user

profiles.

2) The Diffusion Algorithm using Network Analysis Methods

(Analy) [9]: where diffusion nodes are selected from

communities formed using network analysis on network

graphs.

3) The Diffusion Algorithm using Random Diffusion Nodes

(Rand): where diffusion nodes are selected randomly.

4) The Diffusion Algorithm using Dynamic Social Feature

Definition (1) (DSF1): our algorithm where diffusion

nodes are selected from communities formed using the

Euclidean social similarity metric and nodes’ dynamic

social feature Definition (1).

5) The Diffusion Algorithm using Dynamic Social Feature

Definition (2) (DSF2): our algorithm where diffusion

nodes are selected from communities formed using the

Euclidean social similarity metric and nodes’ dynamic

social feature Definition (2).

B. Simulation trace

To compare the performance of these algorithms, we used a

real-life Infocom06 trace [17], which has recorded conference

attenders’ contact history in an MSN using Bluetooth devices

(iMotes) for four days at IEEE Infocom 2006 in Miami. The

trace data set consists of two parts: contacts between the

iMote devices carried by participants and social features of

the participants, which were collected using a questionnaire

form. Six social features were extracted from the data set:

nationality, language, affiliation, position, city, and country.

C. Settings

We had the following settings for the algorithms we com-

pared. In the Infocom06 trace we studied, we found that 17
out of 79 iMotes carried by people have no or partial social

features, which excluded them from being used in the diffusion

algorithms. Thus, the actual number of iMotes used was 62. In

our simulations, we utilized the first one day of the data as the

initial history for the algorithms and performed the diffusion

algorithms on the remaining three days.

We tried the cases where the number of diffusion nodes k
was 5 and 10, and nodes’ affect probability went from 0.4 to

1 to ensure a reasonable affect probability so that the message

will be diffused and accepted by all of the nodes within the

duration of the trace. We ran each algorithm 300 times and

averaged the diffusion times of the compared algorithms.

To find the best fit for our simulations, we compared Eu-

clidean, Tanimoto, Cosine, and Weighted Euclidean similarity

metrics by adopting them in the diffusion process. Results

show that all of the metrics produced similar diffusion times.

Here, we present the results of using the Euclidean metric in

our algorithms as an example as the metric does not require

the calculation of additional weighting values and performs

slightly better than Tanimoto and Cosine in diffusion time.

D. Simulation results

We first compared the diffusion times of DSF1 and DSF2.

Results in the selection of both 5 and 10 diffusion nodes

show that DSF2 has a shorter diffusion time than DSF1. This

confirms that Definition (2) of the dynamic social features is

more accurate than Definition (1) as it breaks the tie cases in

Definition (1).

We then compared DSF1 and DSF2 with the Analy, the

Static, and the Rand algorithms. With both 5 and 10 diffusion

nodes, DSF1 and DSF2 algorithms consistently have shorter

diffusion times than these algorithms. In most cases, the Static

algorithm has a higher diffusion time than the Rand algorithm,

especially when there are 10 diffusion nodes. These results

verify the advantages of the dynamic social feature method

over the network analysis method by including nodes’ contact

frequencies and social features, and over the static social

feature method to more accurately capture users’ dynamic

contact behavior.

When nodes’ affect probability increases from 0.4 to 1, the

diffusion times decrease in all of the algorithms. This means

that if nodes are more easily affected, then the diffusion time

will be reduced.

In summary, simulation results show that our algorithms

based on dynamic social features have lower diffusion times

than the algorithms that use network analysis methods, static

social features or random selection. Furthermore the minimiza-

tion of the diffusion time depends on the accuracy of the model

to capture users’ dynamic contact behavior.

VII. CONCLUSION

In this paper, we tackled the diffusion minimization prob-

lem by proposing new diffusion algorithms where diffusion

 45000

 50000

 55000

 60000

 65000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

DSF1
DSF2

(a) Comparison of DSF1 and DSF2

 45000

 50000

 55000

 60000

 65000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

Static
DSF1
Rand

Analy

(b) Comparison of Analy, Static, DSF1,
and Rand

 46000

 48000

 50000

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

Static
DSF2
Rand

Analy

(c) Comparison of Analy, Static, DSF2,
and Rand

Fig. 4. Comparison of algorithms with 5 diffusion nodes

 45000

 50000

 55000

 60000

 65000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

DSF1
DSF2

(a) Comparison of DSF1 and DSF2

 45000

 50000

 55000

 60000

 65000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

Static
DSF1
Rand

Analy

(b) Comparison of Analy, Static, DSF1,
and Rand

 45000

 50000

 55000

 60000

 65000

 0.4 0.5 0.6 0.7 0.8 0.9 1

D
if

fu
si

on
 ti

m
e

Affect probability p

Static
DSF2
Rand

Analy

(c) Comparison of Analy, Static, DSF2,
and Rand

Fig. 5. Comparison of algorithms with 10 diffusion nodes

nodes were selected based on dynamic social features and

community structure in MSNs. Simulation results show that

our algorithms have shorter diffusion times than the existing

algorithms. Currently, the diffusion node selection algorithm

uses the idea from the k-means algorithm to group nodes

into communities. This is not the only algorithm that we

can use. There are many community detection algorithms

in the literature. For example, to make the algorithm more

scalable, we can use the microclustering idea, which first

groups nearby nodes into “microcluster” and then performs k-

means clustering on the microcluster. But as our first attempt,

our main focus in this paper is to explore the feasibility of

using social features to minimize information diffusion in

MSNs. We will leave the task of finding better community

detection algorithms and evaluate them on Global Environment

for Network Innovations (GENI) to the future.

ACKNOWLEDGMENTS

This research was supported in part by NSF under

CNS1305302, ACI1440637, and CNS1065665, and NSF/BBN

under CNS1346688 for project 1936.

REFERENCES

[1] Delay-tolerant networking. http://en.wikipedia.org/wiki/Delay-tolerant
networking.

[2] E. Daly and M. Haahr. Social network analysis for routing in discon-
nected delay-tolerant manets. In ACM MobiHoc, 2007.

[3] P. Domingos and M. Richardson. Mining the network value of cus-
tomers. In Proceedings of ACM SIGKDD, 2001.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman and Company, 1979.

[5] J. W. Han, M. Kamber, and J. Pei. Data Mining: concepts and
techniques. Morgan Kaufmann, MA, USA, 2012.

[6] T. Hossmann, T. Spyropoulos, and F. Legendre. From contacts to graphs:
Pitfalls in using complex network analysis for dtn routing. In IEEE Int.
Workshop on Network Science For Communication Networks, 2009.

[7] P. Hui, J. Crowcroft, and E. Yoneki. Bubble rap: social-basedforwarding
in delay tolerant networks. In MobiHoc, 2008.

[8] D. Kempe, Kleinberg J., and É. Tardos. Maximizing the spread of
influence through a social network. In ACM SIGKDD, 2003.

[9] Z. Q. Lu, Y. G. Wen, and G Cao. Information diffusion in mobile social
networks: The speed perspective. In IEEE INFOCOM, 2014.

[10] H. Ma, H. Yang, M. R. Lyu, and I. King. Mining social networks using
heat diffusion processes for marketing candidates selection. In ACM

CIKM, 2008.
[11] A. Mei, G. Morabito, P. Santi, and J. Stefa. Social-aware stateless

forwarding in pocket switched networks. In IEEE INFOCOM, 2011.
[12] M. Motani, V. Srinivasan, and P. Nuggehalli. Peoplenet: engineering a

wireless virtual social network. In MobiCom, pages 243–257, 2005.
[13] N. Ning, Z. Yang, H. Wu, and Han Z. Self-interest-drive incentives

for ad dissemination in autonomous mobile social networks. In IEEE

INFOCOM, 2013.
[14] W. Peng, F. Li, X. Zhou, and J. Wu. A privacy-preserving social-

aware incentive system for word-of-mouth advertisement dissemination
on smart mobile devices. In IEEE SECON, 2012.

[15] A. Pietilainen and C. Diot. Dissemination in opportunistic social
networks: the role of temporal communities. In ACM MobiHoc, 2012.

[16] D. Rothfus, C. Dunning, and X. Chen. Social-similarity-based routing
algorithm in delay tolerant networks. In IEEE ICC, pages 1862–1866,
2013.

[17] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau.
Crawdad trace cambridge/haggle/imote/infocom2006 (v.2009-05-29).
http://crawdad.cs.dartmouth.edu/cambridge/haggle/imote/infocom2006,
May 2009.

[18] C. Shannon, N. Petigara, and S. Seshasai. A mathematical theory of
communication. Bell System Technical Journal, 27(1):379–423, 1948.

[19] V. Srinivasan, M. Motani, and W. Ooi. Analysis and implications of
student contact patterns derived from campus schedules. In MobiCom,
pages 86–97, 2006.

[20] S. Vishwanathan. An o(log*n) approximation algorithm for the asym-
metric p-center problem, 1996.

[21] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks.
In ACM SIGKDD, 2010.

[22] J. Wu and Y. Wang. Social feature-based multi-path routing in delay
tolerant networks. In IEEE INFOCOM, 2012.

[23] Y. Xu and X. Chen. Social-similarity-based multicast algorithm in
impromptu mobile social networks. In IEEE GLOBECOM, 2014.

