
Energy Efficient NFV Resource Allocation in Edge

Computing Environment

Xiao Chen

Department of Computer Science, Texas State University, San Marcos, TX 78666
Email: xc10@txstate.edu

Abstract—With the development of IoT and 5G communication,

a recent trend is to shift the Network Function Virtualization

(NFV) from the centralized cloud computing to edge computing.

In this paper, we study the energy efficient NFV-Resource Allo-

cation problem in the edge computing environment. We define

two problems. In the first problem, we assume that the physical

resources (PRs) on the edge do not have energy constraint. Our

objective is to find an optimal deployment so that the maximum

energy consumption on the PRs is minimized. In the second

problem, we assume that the PRs have energy constraint and

aim to find an optimal deployment to reduce the number of

PRs. We prove both problems NP -complete and propose heuristic

algorithms to solve them. We also design baseline algorithms using

genetic programming to find approximate optimal solutions to

these problems. We conduct simulations to evaluate the perfor-

mance of our proposed algorithms. Simulation results show that

our algorithms produce results very close to those of the baseline

algorithms in a much shorter time.
Index Terms—edge computing, NFV, physical resource, resource

allocation, VNFR

I. INTRODUCTION

With the development of IoT and 5G communication, a

recent trend is to shift the Network Function Virtualization

(NFV) [6] from the centralized cloud computing to edge

computing [9]. Edge computing pushes mobile computing, net-

work control and storage to distributed devices at the network

edge to provide server resources, data analysis and artificial

intelligence closer to data collection sources. It offers faster

data processing, generates less network traffic, and costs less

than cloud computing. Different from the cloud environment,

the physical resources (PRs) at the edge are not abundant.

The main challenge for the deployment of NFV at the edge

is the NFV-Resource Allocation (NFV − RA) problem, i.e.,

how to allocate PRs to satisfy a set of virtual network function

requests (VNFRs) [7]. The current NFV-RA solutions seek

to minimize the total placement cost [4], [5], achieve load

balancing [2], [3], [8], and support QoS [10]. NFV is still in

its early stage. There are still important aspects that should

be investigated to efficiently manage and allocate resources in

NFV-based edge computing. One aspect that was not discussed

much is the provisioning of energy-aware strategies to find

efficient NFV-RA solutions within reasonable time [7].

In this paper, we will study energy efficient strategies for the

NFV-RA problem at edge. Here we assume that VNFRs are

independent and their energy consumptions can be measured

and estimated before the placement. We define two problems

in NFV-RA. In the first problem, we assume that the PRs at

the edge do not have energy allowance constraint, i.e., the PRs

can accept any number of VNFRs running on them without

worrying about the energy consumption of these requests. Also

we want the energy consumption on these PRs to be balanced.

So our objective is to find an optimal deployment so that

the maximum energy consumption on the PRs is minimized.

In the second problem, we assume that the PRs have energy

constraint maxE. That is, the total amount of energy consumed

by the VNFRs deployed on a PR cannot exceed maxE.

In this problem, we aim to find an optimal deployment to

minimize the number of PRs. We show that both problems

are NP -complete and propose greedy heuristic algorithms to

solve them. Furthermore, we design baseline algorithms using

genetic programming to find approximate optimal solutions

to these problems. We conduct simulations to evaluate the

performance of our proposed algorithms by comparing them

with the baseline algorithms. Simulations show that the results

generated by our heuristic algorithms are very close to those

of the baseline algorithms but are produced in much less time.

The rest of the paper is organized as follows: Section II cites

the related work; Sections III and IV describe the problems and

solutions; Section V presents the simulations; and conclusion

is in Section VI.

II. RELATED WORK

The current work in NFV mainly focuses on how to deploy

network functions on commodity servers and minimize the total

placement cost [4], [5], achieve load balancing [2], [3], [8], and

support QoS [10]. Abu-Lebdeh et al. in [4] studied the VNF

placement problem and aimed at minimizing the operational

cost without violating the performance requirements. Cohen et

al. in [5] addressed the actual placement of the virtual functions

within the network with the goal to minimize the total system

cost which comprises the sum of the setup costs of the functions

and the sum of the distances between the clients and the nodes

from which they get service. The authors provided an integer

linear programming formulation and proposed a tabu search

algorithm to solve large instances of the problem. Carpio et

al. in [3] investigated the problem of VNF placement with

replications, especially the potential of VNF replications to

help load balance the network. Ma et al. in [2], [8] explored

the optimal placement of NFV middleboxes by considering

different middlebox traffic changing effects and dependency

relations and showed how to achieve load balancing using a

Software Defined Networking approach. Vizarreta et al. in [10]

focused on the placement of virtualized network functions to

support service differentiation between users while minimizing

the associated service deployment cost for the operator. The

energy efficient strategies for NFV resource allocation have

not been mentioned much and will be our task here.

III. NO CONSTRAINT ON PR ENERGY CONSUMPTION

A. Problem Formulation

In this problem, we assume that there are m indepen-

dent VNFRs {r1, r2, · · · , rm} to be allocated to n PRs

{p1, p2, · · · , pn}. In this paper, any VNFR can be assigned

to any PR and a VNFR cannot be stopped before it is done.

Each VNFR cannot be divided into smaller VNFRs. The energy

consumption of each VNFR is given by ei (1 ≤ i ≤ m).

We introduce a variable xi ∈ {0, 1} to indicate whether a

VNFR is assigned to a PR pj or not. After all the VNFRs

are allocated, we denote the total energy consumption of the

VNFRs allocated to pj as Epj
, which is equal to

∑
i eixi. In

this problem, we assume there is no energy constraint on the

PRs, i.e., any number of VNFRs can be allocated to a PR

without being worried about the energy limit of the PR. We

set minimizing Epj
as our optimization goal. Furthermore, in

order to balance the energy consumption of the PRs, we aim to

achieve min(max(Epj
)). We call this problem the No Energy

Constraint (NEC) problem. We have proved that the problem

is NP -complete. The proof is skipped due to space limitation.

B. Our Solution

Since the NEC problem is NP -complete, we put forward a

greedy heuristic algorithm called Request Allocation with No

Energy Constraint (RANEC) in Fig. 1 to solve it.

In RANEC, we first sort VNFRs by their energy consump-

tions in a non-decreasing order and then assign the first n

VNFRs to the n PRs one by one. Then for each VNFR from

n + 1 to m, we assign it to the PR with the minimal energy

consumption so far. After calculation, the total time complexity

of the algorithm is no more than O(m log2 n).

Fig. 2. An example using algorithm RANEC

Let us

look at an

example.

Suppose

there are

3 PRs and

9 VNFRs. The energy consumptions of these VNFRs are

80, 42, 24, 3, 64, 97, 51, 70, and 14. The result using RANEC

is in Fig. 2. The algorithm tries to balance the energy

consumption on the PRs and the minimum of the maximum

energy consumption is 155 which occurs on p2.

In real situations, the NEC problem has to be tackled

as an online problem. That is, VNFRs arrive at the system

dynamically and stay in the network for an arbitrary amount

of time. Algorithm RANEC is an online algorithm that can

allocate the VNFRs to PRs one after another.

Algorithm RANEC: Request Allocation with No Energy

Constraint

Require: Input: Energy consumption of m VNFRs

e1, e2, · · · , em; The number of PRs n

Output: VNFR allocation to each PR Sp1
, Sp2

, · · · , Spn

and min(max(Epj
))

1: sort VNFRs in a non-increasing order based on their energy

consumption ei
2: Initialize each Spi

= ∅
3: /* Allocate a VNFR to a PR */

4: for i = 1 to n do

5: Spi
= Spi

∪ {ri};

6: Epi
= ei;

7: record min(max(Epi
))

8: end for

9: for k = n+ 1 to m do

10: /* Find the PR that has consumed the least energy so

far */

11: Epj
= min1≤i≤n{Epi

};

12: /* Allocate the k-th VNFR to pj and update pj’s energy

consumption */

13: Spj
= Spj

∪ {rk};

14: Epj
= Epj

+ ek;

15: record min(max(Epj
))

16: end for

Fig. 1. Request Allocation with No Energy Constraint

Baseline: Genetic Algorithm 1 (GA1)

Require: Input: Energy consumption of m VNFRs

e1, e2, · · · , em; The number of PRs n

Output: VNFR allocation to each PR Sp1
, Sp2

, · · · , Spn

and min(max(Epj
))

1: Generate a random chromosome population set POP of

size |POP |
2: for i = 1 to LOOPS do

3: Generate CO rate(%)∗|POP | of crossovers by picking

any two chromosomes in POP each time

4: Generate MT rate(%) ∗ |POP | of mutations by using

any one chromosome in POP each time

5: Generate RD rate(%) ∗ |POP | new random chromo-

somes, RD rate = 1− CO rate −MT rate

6: Select the best |POP | chromosomes based on the fitness

function from 2 ∗ |POP | chromosomes

7: end for

8: Output the best chromosome as the allocation and

min(max(Epj
))

Fig. 3. Genetic algorithm 1 to find the optimal solution to the NEC problem

C. Baseline: Genetic Algorithm 1 (GA1)

In order to demonstrate the effectiveness and efficiency of

our greedy algorithm, we come up with Genetic Algorithm

1 (GA1) in Fig. 3. Genetic algorithm [1] is a meta-heuristic

method targeted at providing an approximate optimal solution

for general optimization problems inspired by natural selection.

Here, the assignment of VNFRs to the PRs is the chromosome.

For example, if there are three VNFRs r1, r2, r3 assigned

to PRs p2, p5, p3, respectively, the chromosome is [2 5 3].

The fitness function here is the calculation of min(max(Epj
))

in the allocation. In GA1, we first randomly generate a

population of chromosomes POP whose size is denoted by

|POP |. Then we go into the loop. In each loop, based on

the current population of the chromosomes, we generate a

certain percentage (CO rate) of crossovers, a certain per-

centage (MT rate) of mutations, and a certain percentage

(RD rate = 1 − CO rate −MT rate) of random chromo-

somes. The crossover is generated by two randomly chosen

chromosomes and the mutation is from one chromosome. We

set CO rate > MT rate >> RD rate to pass on good

genes to the next generation to avoid local optima. In GA1,

the major time complexity comes from the number of LOOPS

to find an approximate optimal solution. As we will see later

in the simulations, this time is substantially larger than that of

the heuristic algorithm.

For the same numerical example we presented in Fig. 2, the

best solution found by GA1 is to allocate VNFRs with energy

consumptions 80, 42, 24, 3 on p1, 97, 51 on p2, and 64, 70,

14 on p3, resulting in a min-max energy consumption of 149,

which is better than 155 in Algorithm RANEC.

IV. CONSTRAINT ON PR ENERGY CONSUMPTION

A. Problem Formulation

In this problem, we assume that there is a constraint

on energy consumption in the PRs. Suppose the maximum

energy consumption allowed in each PR should not ex-

ceed Emax. We still assume that there are m independent

VNFRs {r1, r2, · · · , rm} that will be allocated to n PRs

{p1, p2, · · · , pn}. The energy consumption of each VNFR is

given by ei (1 ≤ i ≤ m). A variable xi ∈ {0, 1} indicates

whether a VNFR is assigned to a PR pj or not. After allocation,

the total energy consumed on each PR Epj
=

∑
i eixi ≤

Emax. In order to finish all the VNFRs, we may need to

involve more PRs in the network. The objective of this problem

is to minimize the number of PRs needed to finish all the

VNFRs. We denote this problem as the Energy Constraint (EC)

problem. We have proved this problem to be NP -complete.

B. Our Solutions

We propose four heuristic request allocation algorithms with

energy constraint (RAECA) to solve the problem.

1) Algorithm RAECA1: The main idea of RAECA1 is as

follows: we first allocate r1 to p1. We define rea(j) (≥ 0) as

the remaining energy allowed on pj after Emax subtracts the

current energy consumption of the VNFRs allocated on it. If

rea(p1) ≥ er2 , we allocate r2 to p1. Otherwise we need to add

p2 and put r2 there. Generally speaking, if we have already put

r1, r2, · · · , rk on p1, p2, · · · , pr, and if erk+1
is less than the

remaining energy allowed in some of the PRs, we will allocate

rk+1 to the PR with the smallest label. Otherwise, we will add

a new PR pr+1 and run rk+1 there. We repeat this process until

all the VNFRs are allocated.

15

5

9

12

4

11

3

6

8

7

2

28

10

99

RAECA1 RAECA2 RAECA3 RAECA4

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5 p1 p2 p3 p4
p1 p2 p3 p4

Fig. 4. An example using RAECA1, RAECA2, RAECA3, and RAECA4

2) Algorithm RAECA2: In RAECA2, we first sort VNFRs in

a non-increasing order according to their energy consumptions

and then call algorithm RAECA1.

3) Algorithm RAECA3: RAECA3 follows the idea of

RAECA1 except that when there are multiple PRs whose

remaining energy allowed is large enough for rk+1, we put

rk+1 on the PR with the smallest remaining energy allowed.

4) Algorithm RAECA4: We first sort VNFRs in a non-

increasing order according to their energy consumptions and

then call RAECA3.

Let us use an example to explain the four heuristic al-

gorithms. Suppose the energy consumptions of 13 VNFRs

are 15, 5, 12, 9, 4, 11, 3, 6, 8, 7, 28, 2, and 10, respectively. The

maximum allowed energy consumption on each PR Emax =
30. We obtain the VNFR allocations from the four algorithms

in Fig. 4. In this example, RAECA2 and RAECA4 have the

same allocation and use the least number of PRs, which is 4.

Algorithms RAECA1 and RAECA3 are online algorithms

in that they can be used when VNFRs keep coming in. But

Algorithms RAECA2 and RAECA4 are offline algorithms

because they need to sort the VNFRs first.

C. Baseline: Genetic Algorithm 2 (GA2)

We follow the same idea of GA1 to write Genetic Algorithm

2 (GA2) for the EC problem. Each chromosome is still made up

of the PR numbers assigned to the VNFRs. We first generate

|POP | chromosomes and then generate a certain number of

crossovers, mutations, and random chromosomes. Then we

select the best |POP | chromosomes according to the fitness

function for the next generation. This process repeats many

times. One difference here is that the fitness function is the

minimum number of PRs used in each chromosome. Another

difference is that we need to make sure that the crossovers,

mutations, and random chromosomes produced are valid. That

is, the total energy consumption of the VNFRs placed on a PR

cannot exceed maxE.

V. SIMULATIONS

In this section, we evaluate the performance of our proposed

algorithms by comparing them with the baseline genetic algo-

rithms using a simulator written in Matlab. We first compare

the algorithms for the NEC (no constraint) problem and then

the algorithms for the EC (constraint) problem.

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 4 6 8 10

m
in

−m
ax

 P
R

 e
ne

rg
y

co
ns

um
pt

io
n

of PRs

RANEC
GA1

(a) 30 VNFRs

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 6 8 10

m
in

−m
ax

 P
R

 e
ne

rg
y

co
ns

um
pt

io
n

of PRs

RANEC
GA1

(b) 50 VNFRs

 0

 2

 4

 6

 8

 10

2 4 6 8 10

R
un

ni
ng

 ti
m

e
(x

10
−4

)
se

co
nd

s

of PRs

(c) 30 VNFRs

 0

 2

 4

 6

 8

 10

2 4 6 8 10

R
un

ni
ng

 ti
m

e
(x

10
−4

)
se

co
nd

s

of PRs

(d) 50 VNFRs

Fig. 5. Comparison of RANEC and GA1 algorithms fixing # of VNFRs

A. No Constraint on PR Energy Consumption

In this experiment, we compare our proposed RANEC

algorithm with GA1. We use two metrics: the minimum of

maximum PR (min-max PR) energy consumptions produced

by the two algorithms and the corresponding running times

producing the results.

We set the number of VNFRs to be 30 and 50, respectively,

and withdrew the energy consumption of each VNFR randomly

from [1, 50]. The number of PRs we tried was from 2 to 10,

with a step of 2. In GA1, we set the population of POP to be

50, the number of loops to be 10k, the chromosome crossover

rate CO rate, the mutation rate MT rate, and the random

rate RD rate to be 65%, 30%, and 5%, respectively. We ran

each setting 1000 times and averaged the results. Figs. 5(a)

and (b) show the average min-max PR energy consumptions

produced by the two algorithms when the number of VNFRs

is 30 and 50, respectively. The corresponding running times

are separately presented in Figs. 5 (c) and (d).

From the simulation results, we can see that in both 30-

VNFR and 50-VNFR cases, with the increase of the number

of PRs from 2 to 10, the min-max PR energy consumption

is reduced. The 50-VNFR case has more min-max PR energy

consumption than the 30-VNFR case due to larger numbers

of VNFRs. In both cases, the proposed RANEC algorithm

produces results very close to the baseline genetic algorithm.

In terms of the running time, if we just look at the RANEC

algorithm, with the rise of the number of PRs, the running time

of the algorithm does not change much due to the fact that the

number of VNFRs is fixed. If we compare RANEC with GA1,

the running time of GA1 is substantially higher than that of the

RANEC algorithm - It takes GA1 more than 10 hours rather

than several 10−4 seconds in the RANEC algorithm to produce

a slightly better result. Because of this big contrast, we draw

the running time of the genetic algorithm to the full range of

the vertical axis in Figs. 5(c) and (d) and present the scale

here. In the rest of the paper, we do the same thing to all the

running times of the genetic algorithms. From this experiment,

we can conclude that the RANEC algorithm is both effective

 0

 50

 100

 150

 200

 250

 300

 350

 400

20 22 24 26 28

m
in

−m
ax

 P
R

 e
ne

rg
y

co
ns

um
pt

io
n

of VFNRs

RANEC
GA1

(a) 3 PRs

 0

 50

 100

 150

 200

20 22 24 26 28

m
in

−m
ax

 P
R

 e
ne

rg
y

co
ns

um
pt

io
n

of VNFRs

RANEC
GA1

(b) 5 PRs

 0

 5

 10

 15

 20

20 22 24 26 28

R
un

ni
ng

 ti
m

e
(x

10
−5

)
se

co
nd

s

of VFNRs

(c) 3 PRs

 0

 5

 10

 15

 20

20 22 24 26 28

R
un

ni
ng

 ti
m

e
(x

10
−5

)
se

co
nd

s

of VFNRs

(d) 5 PRs

Fig. 6. Comparison of RANEC and GA1 algorithms fixing # of PRs

and efficient.

Next, we fixed the number of PRs to be 3 and 5, respectively

and varied the number of VNFRs from 20 to 28, with a step of

2. All the other parameters were kept the same as the previous

experiment. Figs. 6(a) and (b) show the average min-max PR

energy consumptions produced by the two algorithms when

the number of PRs is 3 and 5, respectively. The corresponding

running times are separately presented in Figs. 6 (c) and (d).

In both 3-PR and 5-PR cases, with the increase of the number

of VNFRs, more energy consumption is required. Comparing

the 3-PR case with the 5-PR case, the 5-PR case produces

lower min-max PR energy consumption due to more PRs.

In both cases, the min-max PR energy consumption of the

RANEC algorithm is very close to that of GA1. In terms of

the running time, in both cases, when the number of VNFRs

goes up, the running time of the RANEC algorithm also goes

up due to the increase of VNFRs. Comparing with RANEC,

GA1 uses more than 10 hours rather than several 10−5 seconds

in RANEC to achieve a little better result. This again confirms

the effectiveness and efficiency of the proposed algorithm.

B. Constraint on PR Energy Consumption

In this experiment, we compare our proposed four RAECA

algorithms with GA2. We use two metrics: the number of PRs

produced by the algorithms and the corresponding running time

producing the results.

We set the number of VNFRs to be 50 and 100, respectively

and drew the energy consumption of each VNFR randomly

from [1, 50]. The maximum allowed energy consumption

maxE in each PR was changed from 20 to 100, with a step

of 20. In the genetic algorithm, we set the population of POP

to be 50, the number of loops to be 10k, the chromosome

crossover rate CO rate, the mutation rate MT rate, and the

random rate RD rate to be 65%, 30%, and 5%, respectively.

We ran each simulation 1000 times and averaged the results.

Figs. 7(a) and (b) show the average number of PRs produced

by the algorithms when the number of VNFRs is 50 and

100, respectively. And the corresponding running times are

separately presented in Figs. 7 (c) and (d).

 0

 10

 20

 30

 40

 50

20 40 60 80 100

of

 P
R

s

MaxE

RAECA1
RAECA2
RAECA3
RAECA4

GA2

(a) 50 VNFRs

 0

 20

 40

 60

 80

 100

20 40 60 80 100

of

 P
R

s

MaxE

RAECA1
RAECA2
RAECA3
RAECA4

GA2

(b) 100 VNFRs

 0

 2

 4

 6

 8

 10

20 40 60 80 100

R
un

ni
ng

 ti
m

e
(x

10
−4

)
se

co
nd

s

MaxE

(c) 50 VNFRs

 0

 5

 10

 15

 20

20 40 60 80 100

R
un

ni
ng

 ti
m

e
(x

10
−4

)
se

co
nd

s

MaxE

(d) 100 VNFRs

Fig. 7. Comparison of RAECA and GA2 algorithms fixing # of VNFRs

From the simulation results, we can see that in both the 50-

and 100-VNFR cases, with the increase of MaxE from 20 to

100, the number of PRs allocated is reduced. This is straight-

forward because if the PRs allow more energy consumption,

fewer resources are needed. Also, the PR numbers generated

by the four proposed algorithms are very close to those of the

genetic algorithm GA2. Among the four proposed algorithms,

RAECA2 and RAECA4 use fewer PRs because they are offline

algorithms. But the more practical online algorithms RAECA1

and RAECA3 can produce very similar results. In terms of

the running time, there is not much difference among the

four heuristic algorithms. At some data points, RAECA2 and

RAECA4 use less time than RAECA1 and RAECA3. This

indicates that sorting the VNFRs first can make the algorithms

allocate resources more efficiently. In contrast to the several

10−4 second running times of the heuristic algorithms, it takes

GA2 at least 10 hours to reach a slightly better result. This

experiment confirms that our proposed heuristic algorithms can

produce good results in a much shorter time.

In the next experiment, we fixed maxE to be 50 and 100,

respectively. We increased the number of VNFRs from 10 to

50, with a step of 10. We kept the rest of the parameters

the same as the previous experiment. Figs. 8(a) and (b) show

the average number of PRs produced by the algorithms when

maxE is 50 and 100, respectively. The related running times

are separately presented in Figs. 8(c) and (d).

Comparing the results in Fig. 8(a) with those in Fig. 8 (b),

it is obvious that for the same number of VNFRs, increasing

maxE can reduce the number of PRs. In each figure, it is

evident that with the increase of the number of VNFRs, the

number of PRs is also increased. The PR numbers produced

by the four proposed algorithms are very close to those of

GA2. Among the four proposed algorithms, the PR numbers

produced by the RAECA2 and RAECA4 algorithms are a

little lower than those of the online algorithms RAECA1 and

RAECA3 due to their offline nature. For the running time, there

is not much difference among the four heuristic algorithms.

We again observe that RAECA2 and RAECA4 use less time

than RAECA1 and RAECA3 at some data points in our

 0

 10

 20

 30

 40

 50

10 20 30 40 50

of

 P
R

s

of VNFRs

RAECA1
RAECA2
RAECA3
RAECA4

GA2

(a) MaxE=50

 0

 5

 10

 15

 20

10 20 30 40 50

of

 P
R

s

of VNFRs

RAECA1
RAECA2
RAECA3
RAECA4

GA2

(b) MaxE=100

 0

 5

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(x

10
−5

)
se

co
nd

s

of VNFRs

(c) MaxE=50

 0

 5

 10

 15

 20

10 20 30 40 50

R
un

ni
ng

 ti
m

e
(x

10
−5

)
se

co
nd

s

of VNFRs

(d) MaxE=100

Fig. 8. Comparison of RAECA and GA2 algorithms fixing MaxE

experiment. This indicates that sorting VNFRs first can make

the algorithms more efficient. Comparing with the several 10−5

second running times of the heuristic algorithms, it takes GA2

at least 10 hours to come up with a little better result. Once

more, we can assert that our proposed heuristic algorithms are

effective and much more efficient.

VI. CONCLUSION

In this paper, we have worked on the energy efficient

strategies for the NFV-RA problem in the edge computing

environment. We have discussed two NP -complete problems

and proposed heuristic algorithms to solve them. We have also

put forward baseline algorithms using genetic programming

to find approximate optimal solutions to the problems. We

have conducted simulations to evaluate the performance of

our proposed algorithms by comparing them with the baseline

algorithms. Simulation results have proved that our proposed

algorithms are both effective and efficient. In the future, we

hope to measure VNFR energy consumption using some tools.

REFERENCES

[1] Genetic Algorithm. https://en.wikipedia.org/wiki/Genetic algorithm.
[2] Traffic Aware Placement of Interdependent NFV Middleboxes, 2017.
[3] VNF Placement with Replication for Load Balancing in NFV Networks,

2017.
[4] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati. On

the Placement of VNF Managers in Large-Scale and Distributed NFV
Systems. IEEE Transactions on Network and Service Management,
14(4):875–889, 2017.

[5] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Rax. Near Optimal Placement
of Virtual Network Functions. In IEEE INFOCOM, 2015.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE
Communications Magazine, 53(2):90–97, 2015.

[7] J. G. Herrera and J. F. Botero. Resource Allocation in NFV: A
Comprehensive Survey. IEEE Transactions on Network and Service
Management, 13(3):518–532, 2016.

[8] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou. SDN-based Traffic
Aware Placement of NFV Middleboxes. IEEE Transactions on Network
and Service Management, 14:528–542, 2017.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[10] P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahoodi, and W. Kellerer.
QoS-driven Function Placement Reducing Expenditures in NFV Deploy-
ments. In IEEE ICC, 2017.

