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Abstract. The multipeg Towers of Hanoi problem consists of k pegs mounted on a board
together with n disks of different sizes. Initially these disks are placed on one peg in the order of
their size, with the largest at the bottom. The rules of the problem allow disks to be moved one
at a time from one peg to another as long as a disk is never placed on top of a smaller disk. The
goal of the problem is to transfer all the disks to another peg with the minimum number of moves,
denoted by H(n, k). An easy recursive argument shows that H(n, 3) = 2n−1. However, the problem
of computing the exact value of H(n, k) for k ≥ 4 has been open since 1939, and in particular, the
special case of H(n, 4) has been open since 1907.

In 1941, Frame and Stewart each gave an algorithm to solve the Towers of Hanoi problem based
on an unproved assumption. The Frame–Stewart number, denoted by FS(n, k), is the number of
moves needed to solve the Towers of Hanoi problem using the “presumed optimal” Frame–Stewart
algorithm. Since then, proving the Frame–Stewart conjecture FS(n, k) = H(n, k) has become a
notorious open problem.

In this paper, we prove that FS(n, k) and H(n, k) both have the same order of magnitude of

2(1±o(1))(n(k−2)!)1/(k−2)
. This provides the strongest evidence so far to support the Frame–Stewart

conjecture.
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1. Introduction. The Towers of Hanoi problem, introduced by Édouard Lucas
in 1883, consists of three pegs and a set of n disks of different diameters that can be
stacked on the pegs. The towers are formed initially by stacking the disks onto one
peg in the order of their size, with the largest at the bottom. The rules of the problem
allow disks to be moved one at a time from one peg to another as long as a disk is
never placed on the top of a smaller disk. The goal of the problem is to transfer all the
disks to another peg with the minimum number of moves. An easy argument using
a recursive relation shows that 2n − 1 moves are necessary and sufficient to carry out
this task.

The Towers of Hanoi problem was extended to four pegs by Dudeney [2] in 1907
and to any arbitrary k ≥ 3 pegs by Stewart [7] in 1939. In 1941, Frame [3] and
Stewart [8] independently proposed an algorithm to the Towers of Hanoi problem
with k ≥ 4 pegs:

1. Recursively transport a stack of n − i smallest disks from the first peg to a
temporary peg, using all k pegs;

2. Transport the remaining stack of i largest disks from the first peg to the final
peg, using k − 1 pegs and ignoring the peg occupied by the smaller disks;
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3. Recursively transport the smallest n− i disks from the temporary peg to the
final peg, using all k pegs.

(Indeed, Frame’s algorithm is slightly different from the above proposed by Stewart.
But both algorithms are essentially equivalent [4].) The Frame–Stewart number,
denoted by FS(n, k), is the minimum number of moves needed to solve the Towers
of Hanoi problem using the above Frame–Stewart algorithm. Thus FS(n, k) has the
following recursive formula:

FS(n, k) =

{
2n − 1 if k = 3,
min1≤i<n{2FS(n− i, k) + FS(i, k − 1)} if k ≥ 4.

The Frame–Stewart number FS(n, k) is called the “presumed optimal” solution since
no justification has ever been made that an optimal algorithm must be of this form.
Let H(n, k) be the minimum number of moves needed to solve the Towers of Hanoi
problem. The Frame–Stewart conjecture FS(n, k) = H(n, k) is still open now. (As
pointed out by Klavžar, Milutinović, and Petr [4], the claimed proof of the conjecture
by Majumdar [6] is indeed incorrect.) Donald Knuth commented on the conjecture,
saying “I doubt if anyone will ever resolve the conjecture; it is truly difficult” (see [5]).

In the attempt to prove the Frame–Stewart conjecture, Bode and Hinz [1] verified
the conjecture for four pegs with up to 17 disks. Recently, Szegedy [9] proved that

FS(n, k) ≥ 2(1±o(1))ckn
1/(k−2)

,

where ck = 1
2

(
12

k(k−1)

)1/(k−2)

.

For convenience, let log x denote the logarithmic function with base 2. In this
paper, we prove that for n ≥ 1 and k ≥ 3,

logFS(n, k) = logH(n, k) + Θ(k + log n) = (n(k − 2)!)
1/(k−2)

+ Θ(k + log n).

In other words, for each fixed k ≥ 3 and for n � k,

FS(n, k) = 2(1±o(1))(n(k−2)!)1/(k−2)

= H(n, k).

This provides the strongest evidence so far to support the Frame–Stewart conjecture.

2. Lower bound on the optimal number of moves. In this section, we
derive a lower bound on the optimal number H(n, k) of moves for the Towers of Hanoi
problem. We adopt the remarkable strategy introduced by Szegedy [9] who considered
the following generalized problem: What is the minimum number of moves to move
each disk at least once among all possible initial setups of disks? The advantage of
this strategy is that one can use induction in the proofs.

An arrangement of k pegs and n disks is called a configuration if it obeys the
“smaller disk on the top of larger disk” rule. For a configuration C, let g(C) be the
minimum number of moves required to have every disk moved at least once, where all
moves are taken according to the rules of the Towers of Hanoi. Szegedy [9] defined

g(n, k) = min
C

g(C),

where C runs through all possible configurations of n disks and k pegs. The function
g(n, k) is well defined since g(C) is finite for some configuration C [9, Remark 1].
By the definition of g(n, k), we have H(n, k) ≥ g(n, k), and thus a lower bound on
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H(n, k) can be derived from Theorem 2. We begin with a study of the monotone
properties of the function g(n, k).

Lemma 1. Suppose n ≥ 1 and k ≥ 3. Then the function g(n, k) is decreasing
with respect to the variable k.

Theorem 1. Suppose n ≥ 2 and k ≥ 4. Then there exists some m with 1 ≤ m ≤
n− 1 such that

g(n, k) ≥
{

2 max{g(n−m, k), g(m, k − 1)} if g(n−m, k) = g(m, k − 1),
2 max{g(n−m, k), g(m, k − 1)} − 1 if g(n−m, k) �= g(m, k − 1).

Proof. Let C be an extremal configuration of n disks and k pegs with g(C) =
g(n, k). Let S =

(
s1, s2, . . . , sg(C)

)
be a sequence of g(C) moves that move every disk

of C at least once, where all moves are taken according to the rules of the Towers of
Hanoi. Let S = S1 ∪ S2 with |S1| = �g(C)/2� and |S2| = �g(C)/2	; that is, S1 and
S2 are the first half and the second half of the sequence of moves of S, respectively.
For i = 1, 2, let

Di = {j : disk j is moved at least once by Si}.

Then |D1 ∪D2| = n.
Claim. D1 −D2 �= ∅ and D2 −D1 �= ∅.
Proof of the claim. Let s1(C) be the configuration obtained by applying the first

move s1 of S to C. Suppose the move s1 moves disk i. We observe that disk i cannot
be moved more than once by S; otherwise, each disk in the configuration s1(C) can
be moved at least once by the following g(C) − 1 (= g(n, k) − 1) moves s2, . . . , sg(C),
contradicting the definition of g(n, k). Since disk i is moved only by s1 ∈ S1, we have
i ∈ D1 − D2 �= ∅. Similarly, the disk moved by the last move sg(C) of S cannot be
moved more than once by S either. Thus D2 −D1 �= ∅.

Let D1 −D2 = {r1, . . . , rl} and D2 −D1 = {t1, . . . , tm}, where 1 ≤ l,m ≤ n− 1.
We may label the disks in such a way that disk i has larger size than disk j if and
only if i > j. Let r1 be the smallest number in (D1 − D2) ∪ (D2 − D1). Since
|D1| = |D1∪D2|−|D2−D1| = n−m, by the definition of D1, we know that S1 moves
n − m different pegs. Suppose the moves of S1 take place in t pegs, where t ≤ k.
Then, by Lemma 1,

|S1| ≥ g(n−m, k).(1)

Since r1 ∈ D1 − D2, disk r1 is not moved by S2. Since r1 < ti for all 1 ≤ i ≤ m,
all disks ti (1 ≤ i ≤ m) have larger sizes than disk r1, which is idle during the whole
movement of S2. By the “smaller disk on the top of larger disk” rule, the peg occupied
by disk r1 is completely useless when each disk ti (1 ≤ i ≤ m) is moved by S2. Thus
the m disks t1, . . . , tm are moved by S2 using at most k−1 pegs. (S2 might also move
disks other than disks t1, . . . , tm. But those moves and disks can be ignored since
they do not affect the moves involving disks t1, . . . , tm. So one can focus on only the
subsequence of S2 that moves disks t1, . . . , tm.) By Lemma 1,

|S2| ≥ g(m, k − 1).(2)

Note that g(n, k) ≥ 2 max{|S1|, |S2|}−1. If g(n−m, k) �= g(m, k−1), then Theorem 1
follows from (1) and (2). If g(n − m, k) = g(m, k − 1), then g(n, k) ≥ 2|S1| ≥
2g(n−m, k) = 2 max{g(n−m, k), g(m, k − 1)}.
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Lemma 2. Suppose n ≥ 1 and k ≥ 3. Then the function g(n, k) is strictly
increasing with respect to the variable n.

Proof. Let C be an extremal configuration of n disks and k pegs with g(C) =
g(n, k). Let S =

(
s1, s2, . . . , sg(C)

)
be a sequence of g(C) moves that move every disk

of C at least once, where all moves are taken according to the rules of the Towers
of Hanoi. Let s1(C) be the configuration obtained by applying the first move s1 of
S to C. Suppose the move s1 moves disk i. In the proof of Theorem 1, it is shown
that disk i cannot be moved more than once by S. Then every disk except disk i
in the configuration of s1(C) is moved at least once by S − {s1}, which consists of
a sequence of g(n, k) − 1 moves. Let C ′ be the configuration obtained by removing
the disk i from the configuration s1(C). Then C ′ has n − 1 disks and k pegs, and
g(n− 1, k) ≤ g(C ′) = g(C) − 1 = g(n, k) − 1.

Corollary 1. Suppose n ≥ 2 and k ≥ 4. Then for every m with 1 ≤ m ≤ n−1,

g(n, k) ≥ 2 min{g(n−m, k), g(m, k − 1)}.

Proof. By Lemma 2, g(n − m, k) is a strictly decreasing function of m, and
g(m, k − 1) is a strictly increasing function of m. Corollary 1 obviously follows from
Theorem 1.

As usual, the function
(
x
t

)
can be extended to real x for each integer t as follows:

(
x

t

)
=

⎧⎨
⎩

0 if t < 0,
1 if t = 0,
x(x− 1) · · · (x− t + 1)/t! if t > 0.

In particular,
(
0
0

)
= 1 by the above definition. The identity

(
x
t

)
=

(
x−1
t

)
+

(
x−1
t−1

)
will

be used repeatedly in the proofs.
Theorem 2. Suppose k ≥ 3. Then for every integer s ≥ 2,

g

((
s

k − 2

)
+

(
s + k − 7

k − 5

)
, k

)
≥ 2s−2.

Proof. We use double-induction on k and s. First, we use induction on k. If
k = 3, by [9, Remark 2],

g

((
s

k − 2

)
+

(
s + k − 7

k − 5

)
, k

)
= g(s, 3) ≥ 2s−2 + 1

for all s ≥ 2. Now suppose k ≥ 4 and suppose the theorem is true for k − 1; that is,
for every integer s ≥ 2,

g

((
s

k − 3

)
+

(
s + k − 8

k − 6

)
, k − 1

)
≥ 2s−2.

Equivalently, by using s− 1 to replace s in the above, we have

g

((
s− 1

k − 3

)
+

(
s + k − 9

k − 6

)
, k − 1

)
≥ 2s−3(3)

for all s ≥ 3.
Second, we use induction on s. If s = 2, then

(
s

k−2

)
+
(
s+k−7
k−5

)
=

(
2

k−2

)
+
(
k−5
k−5

)
= 1

since k ≥ 4. Thus

g

((
s

k − 2

)
+

(
s + k − 7

k − 5

)
, k

)
= g(1, k) = 1 = 2s−2;
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that is, Theorem 2 is true for s = 2 and k ≥ 4. Now suppose s ≥ 3 and suppose the
theorem is true for s− 1; that is, for every integer k ≥ 4,

g

((
s− 1

k − 2

)
+

(
s + k − 8

k − 5

)
, k

)
≥ 2s−3.(4)

Let n =
(

s
k−2

)
+

(
s+k−7
k−5

)
and m =

(
s−1
k−3

)
+

(
s+k−8
k−6

)
. Then by Corollary 1 together

with (3) and (4),

g(n, k) ≥ 2 min{g(n−m, k), g(m, k − 1)}

= 2 min
{
g
((

s−1
k−2

)
+
(
s+k−8
k−5

)
, k
)
, g

((
s−1
k−3

)
+
(
s+k−8
k−6

)
, k − 1

)}
≥ 2 min

{
g
((

s−1
k−2

)
+
(
s+k−8
k−5

)
, k
)
, g

((
s−1
k−3

)
+
(
s+k−9
k−6

)
, k − 1

)}
≥ 2s−2;

that is, Theorem 2 is true for s and k. The proof is complete by the principle of
double-induction.

3. Proof of main result. By the definition of g(n, k) and H(n, k), we have
g(n, k) ≤ H(n, k) ≤ FS(n, k). Thus, in order to obtain the order of magnitude of
H(n, k), one needs to have a lower bound on g(n, k) and an upper bound on FS(n, k)
with the same order of magnitude.

Lemma 3. Suppose n ≥ 1 and k ≥ 3. Then

logFS(n, k) < (n(k − 2)!)
1/(k−2)

+ log n.

Proof. For any fixed k and n, there is a unique s such that
(
k+s−3
k−2

)
< n ≤

(
k+s−2
k−2

)
.

The exact expression on FS(n, k) in the first line below can be found in many papers
(for example, [3]).

FS(n, k) = 2s
(
n−

(
k+s−3
k−2

))
+

s−1∑
t=0

2t
(
k+t−3
k−3

)

≤ 2s
(
n−

(
k+s−3
k−2

))
+
(
k+s−4
k−3

) s−1∑
t=0

2t

< 2s
(
n−

(
k+s−3
k−2

))
+
(
k+s−4
k−3

)
2s

= 2s
(
n−

(
k+s−3
k−2

)
+
(
k+s−4
k−3

))
= 2s

(
n−

(
k+s−4
k−2

))
< n2s.

Thus logFS(n, k) ≤ s + log n. To estimate s, we have n >
(
k+s−3
k−2

)
> sk−2/(k − 2)!,

which implies s < (n(k − 2)!)
1/(k−2)

.
Lemma 4. Suppose n ≥ 1 and k ≥ 3. Then

log g(n, k) > (n(k − 2)!)
1/(k−2) − k + 1.

Proof. Lemma 4 holds for n = 1 since

log g(1, k) = log 1 = 0 > ((k − 2)!)
1/(k−2) − k + 1.



ON THE FRAME–STEWART CONJECTURE 589

If k = 3, by [9, Remark 2], we have g(n, 3) ≥ 2n−2 + 1 for all n ≥ 2. Thus

log g(n, 3) > n− 2 = (n(k − 2)!)
1/(k−2) − k + 1.

Now suppose n ≥ 2 and k ≥ 4. Then there is a unique s such that
(

s
k−2

)
+
(
s+k−7
k−5

)
<

n ≤
(
s+1
k−2

)
+
(
s+k−6
k−5

)
. Also it is easy to verify that s ≥ 2. To estimate s, we have

n ≤
(
s+1
k−2

)
+
(
s+k−6
k−5

)
≤

{ (
s+1
k−2

)
if k = 4,(

s+k−4
k−2

)
+
(
s+k−4
k−3

)
if k ≥ 5

=
(
s+k−3
k−2

)
< (s + k − 3)k−2/(k − 2)!,

from which s > (n(k − 2)!)
1/(k−2) − k + 3. By Lemma 2 and Theorem 2,

log g(n, k) > log g

((
s

k − 2

)
+

(
s + k − 7

k − 5

)
, k

)
≥ s−2 > (n(k − 2)!)

1/(k−2)−k+1.

Finally, we have the main theorem (Theorem 3) showing that FS(n, k) and

H(n, k) both have the order of magnitude of 2(1±o(1))(n(k−2)!)1/(k−2)

.
Theorem 3. Suppose n ≥ 1 and k ≥ 3. Then

logFS(n, k) = logH(n, k) + Θ(k + log n) = (n(k − 2)!)
1/(k−2)

+ Θ(k + log n).

In other words, for each fixed k and for n � k,

FS(n, k) = 2(1±o(1))(n(k−2)!)1/(k−2)

= H(n, k).

Proof. By the definition of g(n, k) and H(n, k), we have g(n, k) ≤ H(n, k) ≤
FS(n, k). By Lemmas 3 and 4,

(n(k − 2)!)
1/(k−2) − k + 1 < logH(n, k) ≤ logFS(n, k) < (n(k − 2)!)

1/(k−2)
+ log n,

from which Theorem 3 follows.
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