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Abstract—Self-driving vehicles have attracted tremendous at-

tention from all walks of life and parking prediction is essential for

the vehicle to find a parking space. Many existing works focus on

parking predictions in an sensor network equipped environment

using large datasets. In this paper, we consider a campus-wide

smart parking problem that requires no sensor installation and

external large datasets. We assume that the parking availabilities

of the garages are not known and the only information that a

vehicle uses is its past recorded statistics. We get insights from

the multi-armed bandits problem in reinforcement learning and

come up with a framework for a vehicle to make a wise decision

in each trial. We also propose several non-reinforcement learning

algorithms for comparison. We conduct extensive simulation and

discussion to evaluate the performance of these algorithms.

Index Terms—energy-efficient, multi-armed bandits, self-

driving, smart parking

I. INTRODUCTION

Recently self-driving vehicles have attracted tremendous

attention from all walks of life. The IEEE researchers predict

that self-driving vehicles will comprise 75% of total traffic on

the road by year 2040 [1]. Self-driving vehicles will provide

tremendous benefits to society in terms of convenience and

quality of life. But the benefits will not be realized unless

vehicles are truly autonomous. At this technology level, the

driver hands over control to the vehicle and is no longer

monitoring the system. This means that the vehicle will be

able to handle all the situations on the road.

One problem facing self-driving vehicles is how to find

a parking space. The parking problem is an important issue

because long searching wastes time, causes more gasoline

consumption and environmental pollution. Researchers have

proposed prediction models to forecast parking probability.

Many of these models are based on sensor-equipped environ-

ment with network connections [10], [12], [15], [17] and/or

large collected datasets so that various kinds of mathematical

analysis and machine learning models [3], [6], [17], [18]

can be applied. These methods need hardware and software

investment. Different from these works, we consider a campus-

wide environment without hardware installation and expensive

data collection. We are aware of two papers that also address

campus-wide parking problem [2], [7]. In both papers, the

authors still rely on manual data collection and an id scanner

installation in the garages to make parking space predictions. In

our work, we ask very little from the environment and external

data collection. The only information we have is the previous

simple statistics recorded by the vehicle itself.

More specifically, we address the following parking problem:

we assume that a self-driving vehicle goes to a campus every

day for study or work. There are several garages on the campus

whose locations are known but whose parking availabilities are

not known. The vehicle makes a prediction, picks a garage

and drives there. If the chosen garage has an available space,

the vehicle parks there. If not, the vehicle will drive to the

next choice and do so until it finds a place to park. The

optimization goal of our parking problem is to minimize the

vehicle’s total energy consumption over a number of days.

Here, the energy consumption is proportional to the driving

distance. So equivalently, our goal is to minimize the total

driving distance of the vehicle over some number of days.

Our defined problem involves prediction and decision mak-

ing with uncertainty, which is a challenge. We relate it to

the multi-armed bandits problem [9] for which reinforcement

learning [14] provides a model in the dilemma. Generally

speaking, when facing uncertainty in decision making, rein-

forcement learning tries to balance exploration and exploita-

tion. Exploration is where we gather new information that

might lead to better decisions later and exploitation is where we

make the best decision given the current information. Through

exploration and exploitation, we plan to work on algorithms to

let the vehicle make wise decisions on where to go for parking.

In this paper, we introduce and extend the eGreedy and the

Upper Confidence Bound (UCB) [11] algorithms for the multi-

armed bandit problem to predict the availabilities of the garages

and then combine them with the driving distances to come up

with Energy-Efficient Garage Picking (EEGP) framework to

minimize vehicle energy consumption over a period of time. To

evaluate the performance of our algorithms, we propose several

other non-reinforcement learning algorithms. We present the

Direct algorithm where the availabilities of the garages are

known so that the vehicle can go directly there. This is the

optimal case. We also include the Random algorithm where

a vehicle randomly picks a parking garage in each try. In

addition, we add an algorithm called Closest-first where a

vehicle tries the closest garage first each time.

In summary, our major contributions in this paper are:

• We consider a realistic parking problem for self-driving

vehicles on a campus with multiple garages whose avail-

abilities are unknown, and define a smart parking predic-

tion problem with energy constraint.

• We investigate the solutions by relating the problem to



the multi-armed bandits problem, digesting the ideas in

reinforcement learning, and combining them with driving

distances to form a framework for decision making.

• We also propose several non-reinforcement learning algo-

rithms for comparison.

• We conduct extensive simulations and a discussion to

evaluate the performance of the proposed algorithms.

The rest of the paper is organized as follows: Section II cites

the related work; Section III defines the problem; Section IV

puts forward our solutions; Section V presents the simulations

and discussion; and conclusion is in Section VI.

II. RELATED WORK

Parking problem is one of the most significant issues in self-

driving vehicles. Long cruising time of finding a parking space

causes enormous gasoline wastes and environmental pollution.

Thus many parking prediction algorithms in smart cities have

been popped up by researchers in the past few years. Many of

these methods require sensor networks and/or collected large

datasets on which researchers can apply multivariate regression

models [3], [5], [16], Poisson distribution and Markov chain

models [10], [13], [18], and other machine learning based

algorithms [6], [4], [15] to provide drivers with a possibility

of getting a parking space. Deep learning-based models [12],

[17] are also gaining popularity.

Besides the above works, little attention has been paid to

the availability prediction for the parking lots unequipped with

sensors and networks. In this paper, we consider such garages,

which are very common nowadays. And we do not utilize large

external datasets either. We just use simple parking statistics

recorded by the vehicle itself in the previous days. We inves-

tigate a practical recurring problem that many face when we

drive to a campus everyday. We notice that two other papers [2],

[7] also discuss the campus-wide parking problem. In [2], the

authors utilized machine learning algorithms to predict future

parking occupancy rates for the 34 parking lots on the campus

of Charles Sturt University, Australia. They collected parking

data (car occupancy and class load) manually over a five-week

period. And on the campus of James Madison University [7],

the researchers used a radio-frequency id scanner to count the

number of vehicles entering and leaving each parking lot and

developed mobile apps to inform drivers of the availability of

the garages via a Cloud Environment. Different from these

papers, we ask very little from the hardware installation and

external dataset collection in our work.

III. PROBLEM DEFINITION

In our problem, there are a set of parking garages on a

campus without sensors and networks installed to monitor the

parking spaces. On a typical workday, a self-driving vehicle is

trying to park in one of the garages. The parking availability

of each garage is not known and the vehicle only relies on

its own past recorded statistics and driving distance to pick a

garage and drives there. If the garage has a space, the vehicle

is parked. Otherwise, the vehicle makes the next choice. It

repeats this process until it finds a parking space. We assume

Notation Description

cur loc The current location of the vehicle

dist(X, Y ) The distance between locations X and Y

reward If a garage has a space, the reward is 1; 0 otherwise

rewards An array containing the rewards of all the garages

rewards(g) The rewards of garage g

score An array containing the scores of all the garages

score(g) The score of garage g

trials An array containing the trial times of all the garages

trials(g) The trial times of garage g

total distance The total distance the vehicle drives before parking

TABLE I
NOTATIONS

that eventually the vehicle is able to find a space to park.

Our optimization goal is to minimize the total driving distance

of the vehicle over some number of days so that the total

energy consumption can be minimized. That means, in each

parking trial, the vehicle needs to balance its garage availability

prediction and the driving distance so that the total driving

distance over a period of time can be minimized.

IV. OUR SOLUTIONS

In this section, we investigate the solutions to our defined

problem. First we digest the ideas in reinforcement learning and

propose an Energy-efficient Garage Picking (EEGP) framework

for the vehicle to choose a garage. Then we propose several

non-reinforcement learning algorithms for later comparison.

The notations used in the framework are listed in Table I.

A. Energy-Efficient Garage Picking (EEGP) Framework

In the EEGP framework in Fig. 1, we relate the garage

availability prediction part of our problem to the multi-armed

bandits problem. Here, the garages on campus are the arms.

The main idea of the framework is as follows: as long as

the vehicle has not parked, it is going to repeat the following

steps. First it will call X pick() function (line 3) to choose the

best untried garage after balancing exploration and exploitation,

the current location of the vehicle, and the driving distance

consideration. X pick() is a placeholder. It has two versions

eGreedy pick() and UCB pick() based on the ideas of the

two multi-armed bandit algorithms eGreedy and UCB [11],

respectively. Different versions take different parameters, but

they have score, cur loc, dist in common. The details of the

two versions will be described in the following subsections.

After a garage g is chosen, the vehicle will drive there and

the driving distance from the current location to the garage

dist(cur loc, g) is added to the total distance (line 5) driven

by the vehicle. If the reward of g is 1, which means the garage

has a parking space, the vehicle is parked (line 6). After that,

function updateScore() will be called to update the garage

information based on this trial (line 10).

The details of updateScore() are presented in Fig. 2. In this

function, the trial times of the picked garage g is incremented

by 1 because it is selected for this trial. The rewards of g is

incremented by the reward in this trial. The value of reward
is 1 if g has an available spot, 0 otherwise. The score of g is

the ratio of rewards(g) and trials(g).



Algorithm EEGP: Energy Efficient Garage Picking

Require: Input: score, cur loc, dist, rewards, trials
Output: a garage is picked and the vehicle parks there

1: while not parked do

2: /*X pick() is to select an untried garage based on

the exploited garage information, the current vehicle

location, and the distance information */

3: g = X pick(score, current location, distances, · · · );

4: /* the distance from the current vehicle location to the

picked garage g is added to the total driving distance */

5: total distance = total distance+ dist(cur loc, g);
6: if the reward of g is 1 (space available) then

7: parked = true;

8: end if

9: /*updateScore() is to update the garage information

based on this trial */

10: updateScore(trials, rewards, score, g, reward);

11: end while

Fig. 1. Energy Efficient Garage Picking (EEGP) Framework

Function: updateScore()

Require: Input: trials, rewards, score, g, reward
Output: updated trials, rewards, score

1: /* Assume the picked garage is g */

2: /* add 1 to the trial times of the picked garage g */

3: trials(g) = trials(g) + 1;

4: /* add reward 1 to the rewards of the picked garage g */

5: rewards(g) = rewards(g) + reward;

6: /* update the score of the picked garage g */

7: score(g) = rewards(g)/trials(g);

Fig. 2. updateScore() function

1) EEGP with eGreedy Picking: In this subsection, we

describe the idea of the eGreedy version of the X pick() func-

tion eGreedy pick() shown in Fig. 3. In eGreedy pick(), the

tradeoff between the exploration and exploitation is controlled

by a parameter ǫ (line 1). If the number rand generated by

a random number generator is less or equal to ǫ, the vehicle

explores the availabilities of the garages by randomly picking a

garage (line 2). Otherwise it does exploitation to make the best

decision by considering the scores of the untried garages and

the distances from the current vehicle location to the untried

garages (line 3). The value of ǫ is set to a number between 0 and

1, say 0.1. It is usually small so we mainly make a decision

based on exploitation but still leave a little room to explore

the unknown availabilities of the unexplored garages. In the

exploitation, we normalize score(g) and dist(cur loc, g) to

the same scale (line 5) and then pick a garage with the largest

score/distance ratio.

2) EEGP with UCB Picking: The UCB version of the

X pick() function is described in Fig. 4. It uses a different

idea. The true availability score denoted by SCORE(g) of

each garage g is not known. The score(g) we obtain from

the exploration trials is the sample score. Through the trials,

we want score(g) to be as close to SCORE(g) as possible,

Function: eGreedy pick()

Require: Input: ǫ, score, cur loc, dist
Output: The garage picked in this trial

1: if rand <= ǫ then

2: Randomly pick a garage

3: else

4: for g in all untried garages do

5: normalize score(g) and dist(cur loc, g);
6: end for

7: pick a garage with the largest score(g)/dist(cur loc, g)
ratio;

8: end if

Fig. 3. eGreedy pick() function

or at least probabilistically. To do that, we have Hoeffding’s

inequality [8]:

Pr(SCORE(g)) ≤ score(g) +

√

log(1
δ
)

2Nt(g)
) ≥ 1− δ (1)

Hoeffding’s inequality shows that the true score SCORE(g)

is upper bounded by the sample score score(g) plus

√

log( 1

δ
)

2Nt(g)
.

Here, the parameter δ is a value in [0, 1]. Notation Nt(g) means

that in t trials, the number of times that the vehicle has chosen

garage g. With a certain δ, if the vehicle chooses garage g

more often in all the t trials, the value

√

log( 1

δ
)

2Nt(g)
will decrease

and therefore the upper bound becomes tighter, which means

that we are closer to discover the true score of g. For δ, if

we make it smaller and smaller with the trial times t, then the

probability to discover the true score will become larger and

larger. In the UCB algorithm [11], δ = 1
t4

. Then Hoeffding’s

inequality (1) becomes

Pr(SCORE(g)) ≤ score(g) +

√

2 ∗ log(t)

Nt(g)
) ≥ 1−

1

t4
(2)

This is the reasoning behind the formula in line 3 of the

UCB pick() function in Fig. 4. In the UCB pick() function,

initially each garage will be tried once to obtain its initial score.

Then for all the untried garages, we update their score(g)
values using the formula in line 3 and then normalize them with

the distances from the current vehicle location to these garages.

Finally we pick the garage with the largest score/distance ratio.

B. Random Algorithm

In the Random algorithm, the car randomly chooses a garage

to park in each try until it finds a parking space.

C. Direct Algorithm

In this algorithm, we assume that the vehicle knows the

closest garage that has an available spot and drives there

directly. This is an ideal but impractical strategy. But it serves

as the best case benchmark in the algorithm comparison.

D. Closest-First Algorithm

In this algorithm, the vehicle always drives to the closest

garage first based on its current location.



Function: UCB pick()

Require: Input: score, cur loc, dist
Output: The garage picked in this trial

1: for g in all untried garages do

2: /* score(g) is the score of garage g so far, t is the

total number of trials, and Nt(g) is the number of times

garage g has been picked in the t trials */

3: score(g) = score(g) +
√

2∗log(t)
Nt(g)

;

4: end for

5: for g in all untried garages do

6: normalize score(g) and dist(cur loc, g);
7: end for

8: pick a garage with the largest score(g)/dist(cur loc, g)
ratio;

Fig. 4. UCB pick() function

V. SIMULATIONS AND DISCUSSION

In this section, we compare the performance of our proposed

algorithms using a simulator written in Matlab and discuss the

applicability of the algorithms.

A. Comparison of All the Algorithms

In this simulation, we compare the following algorithms.

1) The EEGP with eGreedy Algorithm (EEGP-eGreedy)

2) The EEGP with UCB Algorithm (EEGP-UCB)

3) The Random Algorithm (Random)

4) The Direct Algorithm (Direct)

5) The Closest-first Algorithm (Closest-first)

We assume that the parking availabilities of the garages are

stochastic. We tried 3, 5, 8, and 10 garages with randomly

generated locations on a campus. We randomly generated the

availabilities of these garages in the range of [0, 1]. In the

EEGP-eGreedy algorithm, we set ǫ to 0.1. We looked at 300
working days in a year on each of which a vehicle wants to

find a place to park. For all the algorithms, we calculated the

average distance to find a parking space per day over the 300
working days. The results of 3, 5, 8, and 10 garages are shown

in Figs. 5(a), (b), (c), and (d), respectively. The numbers in the

x-coordinate represent the 10 times that we ran the simulations.

The y-coordinate is the average driving distance per day.

From the figures we can see that the Random algorithm

produces the longest average driving distance per day and the

Direct algorithm has the shortest driving distance per day. This

is because the Random algorithm does not use any guidance

in finding a parking space while the Direct algorithm knows

exactly which garage is available and can go directly there.

They provide the upper and lower bounds of the average driving

distance. The EEGP-eGreedy algorithm has longer average

distance than the EEGP-UCB algorithm. This is because the

random exploration in EEGP-eGreedy may end up with a bad

choice but the exploration in EEGP-UCB favors choices with

a strong potential to be the best choice. As for the Closest-

first and the EEGP-UCB algorithms, sometimes Closest-first

performs better and sometimes EEGP-UCB performs better. In
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Fig. 5. Average driving distance per day to find a parking space

the following simulations, we will compare them more in detail

to find out in what situation is one better than the other.

B. Availability Randomly Distributed

In this simulation, we compare the performance of the

Closest-first algorithm and the EEGP-UCB algorithm. We

assume that the availabilities of the garages are random. For the

3, 5, 8, and 10 garages, we randomly generated the availabilities

of these garages in the range of [0, 1]. We set the number

of days we observe to 300. For the two algorithms, we first

calculated the average driving distance to find a parking space

per day over the 300 working days and then ran the simulation

1000 times to find out the percentage of the times that the

Closest-first algorithm has a longer average driving distance per

day than the EEGP-UCB algorithm. The percentage results of

the 3, 5, 8, and 10 garages are shown in Figs. 6(a), (b), (c) and

(d), respectively. The numbers in the x-coordinate represent

the 10 times that we ran the 1000-time simulations and the

y-coordinate is the percentage that the Closest-first algorithm

is worse than the EEGP-UCB algorithm.

From the figures we can see consistently that the chance

of the Closest-first algorithm having a longer average driving

distance per day than the EEGP-UCB algorithm is below

50%. So we can conclude that if the availability is randomly

distributed, it is better to use the Closest-first algorithm.

C. Availability Not Randomly Distributed

In this simulation, we compare the performance of the

Closest-first algorithm and the EEGP-UCB algorithm by as-

suming that the availabilities of the garages are not random. We

still tried 3, 5, 8, and 10 garages. We assume the availabilities

of the garages are increasing with the increase of the distances.

This is a reasonable assumption because usually the closer

garages are filled first. We set the first 20% or more garages

full and randomly generated the availabilities of the rest of the

garages in an increasing order in the range of [0, 1]. If the
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Fig. 6. Percentage of the times that the closest-algorithm has an average
distance per day longer than the UCB algorithm
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Fig. 7. Percentage of the times that the closest-algorithm has an average
distance per day longer than the UCB algorithm

number of the garages was not an integer, we rounded it up to

the ceiling. We again set the number of days to 300. For the

two algorithms, we first calculated the average driving distance

to find a parking space per day over the 300 working days and

then ran the simulation 1000 times to find out the percentage of

the times that the Closest-first algorithm has a longer average

driving distance per day than the EEGP-UCB algorithm. The

percentage results of the 3, 5, 8, and 10 garages are shown

in Figs. 7(a), (b), (c), and (d), respectively. The numbers in

the x-coordinate represent the 10 times that we ran the 1000-

time simulations and the y-coordinate is the percentage that the

Closest-first algorithm is worse than the EEGP-UCB algorithm.

From the figures, we can see that when the first few closest

garages (over 20% of the garages in the simulations) are full,

above 50% of the chance that EEGP-UCB will have a shorter

average driving distance per day than Closest-first. Therefore,

we can conclude that in this situation, it is wiser to use the

EEGP-UCB algorithm to find the parking space.

VI. CONCLUSION

In this paper, we have worked on a parking problem with

energy constraint on a campus where the availabilities of the

garages are unknown for self-driving vehicles. We have inves-

tigated the solutions by digesting the ideas in reinforcement

learning and combining them with driving distances to form a

framework for picking the best garage in each trial. We have

also proposed some non-reinforcement learning algorithms.

We have conducted extensive simulations and discussion to

evaluate the performance of the algorithms. In the future, in

order to improve the prediction accuracy, we will take more

factors into account such as time of day and holiday.
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