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Abstract—In an edge cloud environment, data processing in
self-driving vehicles goes through local processing, communica-
tion, and remote processing. How to schedule these data for
timely processing is critical to guaranteeing the safety of self-
driving vehicles. This scheduling problem is related to the flow
shop scheduling problem, which is NP-complete. In this paper,
different from those in the literature that focus on minimizing
makespan, our objective is to develop algorithms that produce
schedules to minimize the average waiting time AWT and by
taking the priorities of the data types into account since vehicle
data are time-sensitive and different data types have different
emergency levels. In regard to this objective, we propose two
heuristic algorithms: the Priority and AWT-based NEH (PAN)
algorithm, and the Priority-based Aalla’s (PAA) algorithm.
Simulation results show that our proposed algorithms outperform
the preexisting ones and while PAN is a better algorithm
when considering our metrics, PAA is more efficient while still
producing similarly viable results.

Index Terms—average waiting time, cloud, makespan, mobile
edge computing, priority, self-driving vehicle

I. INTRODUCTION

Self-driving vehicles have attracted a lot of attention from
companies and research organizations in recent years and
will reshape the transportation in the future [2]. Self-driving
vehicles combine a variety of sensors to perceive their sur-
roundings, such as radar, lidar, sonar, GPS, odometry and
inertial measurement units [9, 14]. The data collected by
these sensors need to be processed in a timely manner to
identify appropriate navigation paths, as well as obstacles and
relevant signage [9]. Meanwhile, with the development of
cloud computing, more and more mobile applications offload
computation-intensive jobs to remote cloud data centers [8].
Although such operations could substantially enhance the
capability of mobile devices, a long communication delay is
inevitable. To mitigate this problem, some data are processed
locally on the edge resources to be closer to the user. Thus,
the paradigm that combines the resources at the edge and the
cloud, called edge-clouds, also known as edge computing, has
become more and more popular [11].

In an edge computing environment, each data type ¢ col-
lected by sensors in a self-driving vehicle goes through three
stages:

« local processing in the vehicle with time [;,
e transmission to cloud (communication) with time ¢;,
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« and remote cloud processing with time ;.

Different data types have different priorities: some are more
urgent than others. Thus, we factor in the priority of each data
type. We assume that a higher number represents a higher
priority. A sample of data is shown in Figure 1.

datatype ¢ | l; | ¢; | i | Di
1 413|515
2 2141319
3 71542
4 6|1 |2]6

Fig. 1. A data sample.

With these data, in this paper, we investigate data scheduling
algorithms for self-driving vehicles in an edge computing
environment. Data types in a self-driving vehicle are time-
sensitive. To improve safety and security of self-driving ve-
hicles, we explore schedules to minimize the average waiting
time (AWT) of n data types using their three-stage processing
times and priorities.

Our problem resembles the flow shop scheduling problem
[1] where all jobs pass the same sequence of machines.
’Machines’ are the ’stages’ here. However, most papers in the
literature [3, 4, 5, 6, 10, 12, 13] aim to minimize makespan
(defined as the total amount of time for a schedule to finish),
rather than AWT of the schedules. Besides, they do not
consider the priorities of the data types. Therefore, it is
necessary for us to study the problem. After looking into a
series of three-stage scheduling algorithms, we come up with
two algorithms that best suit our goal. The first algorithm
is called the Priority and AWT-based NEH (PAN) algorithm,
which is enlightened by the NEH algorithm in [12]. And the
second one is called Priority-based Aalla’s (PAA) algorithm
inspired by the Aalla’s algorithm in [3]. Simulation results
show that they perform the best by our metric comparing
with existing algorithms. Algorithm PAN produces better
schedules than PAA but PAA is more efficient when the
number of data types is large.

The key differences of our work from others are as follows:

o Developing scheduling algorithms with the objective of
minimizing AWT instead of makespan



o Adding data type priority in scheduling
o Conducting simulations to evaluate the performance of
the proposed algorithms

The rest of the paper is organized as follows: Section II
briefly summarizes the related work. Section III defines the
problem. Section IV presents our solutions. Section V de-
scribes the simulations we have conducted, and the conclusion
is in Section VL

II. RELATED WORK

The scheduling problem we study here is related to the
flow shop scheduling problem [1]. In a flow shop scheduling
problem, there are m machines that should process n jobs. All
jobs have the same processing order through the machines. The
order of the jobs on each machine can be different.

Most previous research on the flow shop problem is gen-
erally concerned with minimizing makespan. When m = 2
machines, the problem can be solved optimally in O(nlogn)
time by Johnson’s algorithm [10]. If there are m = 3 machines
or more, then the problem is NP-complete [7]. Extended
Johnson’s algorithm [10] can find optimal solutions with three
machines when certain conditions are met. The algorithm
creates two partial schedules H and L based on whether
l; < r;, then sorts the elements in H increasingly and L
decreasingly before concatenating them together.

Johnson’s algorithm would go on to serve as the basis
for many future heuristic algorithms. For instance, the CDS
algorithm [4] compares the above Johnson’s schedule against
its own similarly obtained schedule, created by only sort-
ing according to [; and r;. CDS chooses the best schedule
according to a minimized makespan. Similar to the CDS
algorithm, Algorithm 2 [5] first extends Johnson’s algorithm,
then shuffles the schedule according to critical data types in
order to check if a schedule with smaller makespan can be
obtained. Another algorithm named Palmer’s Heuristic [13]
weights the processing times of [; and r; with a multiplier,
then sorts the entire list of data types by their total weighted
processing time. This is an early utilization of a “slope” that
occurs between stages of a single data type.

Compared to the above algorithms, the Nawaz, Enscore, and
Ham (NEH) algorithm [12] appears to be the best polynomial
heuristics in practice, but at a higher complexity [15]. Finally,
a more recently developed algorithm called Aalla’s algorithm
[3] offers small makespans by calculating a slope factor that
minimizes idle times between data types. By utilizing a greedy
approach, the algorithm appends the next best data type to the
current schedule in each round.

Different from these work, our goal is to find a schedule to
minimize AWT for data types with different priorities.

III. PROBLEM DEFINITION

A self-driving vehicle installs many sensors. These sensors
measure different parameters of the vehicle. The data collected
by the sensors are processed in three stages sequentially: local
processing in the vehicle, sending to cloud (communication),
and cloud (remote) processing. Suppose there are n data types.

Each data type has a vector of four parameters: [;, ¢;, r;, and
p;. The first three parameters represent the processing times
in three stages, respectively, and the last one is the priority of
the data type.

The waiting time wt; of a data type ¢ is the time that it is
not processed in any of the three stages after its generation.
It is easier to describe it through its furn around time. The
turnaround time tr; of a data type ¢ is the period from the
time the data type was generated to the time the final remote
stage of the data type is complete. Then the waiting time wt;
of a data type 7 is:

wti = t’/‘7; — (lz “+c; + TZ‘) (1)

Then the average waiting time AWT of all n data types is:
1 n

AWT = — t; 2

- ; w )

Since self-driving vehicles receive large amount of data
from various sensors and these data are time-sensitive, our
primary goal is to develop algorithms to schedule n data types
to

minimize {AWT} 3)

Our defined problem is related to the flow shop problem
[1], which is NP-complete when n > 3. It becomes more
difficult when priority is added. It is a combinational search
problem with n! possible sequences. If one could enumerate
all n! sequences, the sequences with minimum average waiting
time could be identified, but this procedure is quite expensive
and impractical for large n.

IV. OUR SOLUTIONS

In this section, we propose two algorithms namely PAN
and PAA to generate schedules to minimize AWT.

A. Priority and AWT-based NEH (PAN ) Algorithm

Our first solution Priority and AWT-based NEH (PAN)
algorithm is inspired by the Nawaz, Enscore, and Ham
(NEH) algorithm [12]. The N EH algorithm aims to minimize
makespan and does not consider priorities of the scheduled
elements. We extend it to address our goal. The detailed PAN
algorithm is presented in Figure 2.

In the PAN algorithm, we first do the preprocessing of each
data type by dividing its processing times in the three stages
by its priority. In this way, a higher priority data type will have
smaller processing times so that it can be scheduled earlier. We
then initialize the unscheduled list U by including all the data
types. Next, we sort the data types in U in non-increasing order
by the total processing time 7; (T; = l; +¢; + ;) of each data
type. Then we consider the two possible permutations (74, T5)
of the first two data types in U, choosing the permutation
that has the minimal AWT and assigning it to the partial
schedule 7. For the remaining unscheduled data types, we
consider every possible position a data type ¢ can be inserted in
the current partial schedule 7. Each possible insertion schedule
is stored in 7;, then the partial schedule 7 is updated by the



PAN: Priority and AWT-based NEH Algorithm

1: Inputs: a set of data types with their processing times in
three stages and their priorities.

2: Output: a schedule 7 that minimizes AWT.

3: For each data type, divide /;, ¢;, and r; by p;;

4: U = {1,...,n}; /* initialize the unscheduled list U by

including all the data types */

5: for each data type ¢ do

6:  calculate T; = l; + ¢; + r;; /* total processing time */
7: end for

8: sort U in non-increasing order based on 7j;

9: /* consider the schedules with the first two data types */
10: 74 = {Ul,UQ};

11: 7T = {[]27 Ul};

12: ™ = T4 or Tg with minimal AWT;
13: for i =3 to n do

14:  /* create possible schedules and choose the best */

15:  1; = insert U; at every possible position in 7;

16: = 7; with minimal AWT;

17: end for
18: return 7

Fig. 2. The PAN algorithm

7; with the minimal AWT. This process is repeated until all
data types have been scheduled.

If we apply the PAN algorithm to the example in Figure 1,
it returns the schedule 7 = {2,4, 1,3}, which is visualized by
the Gantt chart in Figure 3. This schedule has an AWT = 5.5.
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Fig. 3. The Gantt chart of the schedule produced by the PAN algorithm

B. Priority-based Aalla’s (PAA) Algorithm

Our second solution Priority-based Aalla’s (PAA) algo-
rithm is built on the idea of the Aalla’s algorithm [3].
The Aalla’s algorithm minimizes the schedule makespan by
greedily reducing the idle time between two adjacent items.
Therefore we think it will be helpful to reduce the average
waiting time in our problem.

The details of our proposed algorithm PAA are described
in Figure 4. First, like PAN, we do the pre-processing of
the data by dividing the processing times of a data type by
its priority. Next, for each data type ¢ (here renamed as b to
facilitate description), we calculate a slope factor W}, defined
by:

Wy =cp + 2(7”1,) 4)

In this slope factor, we give more weight to the processing
times in the later stages. W, is static once calculated for each
data type. Next, we initialize counter N to the total number
of data types n, set the current schedule 7 to ), and put all
the data types to the unscheduled list U. We initialize the first
data type a to zero.

Then in the main loop, as long as not all the data types
are scheduled, we iterate the following steps. First, for each
data type b in the unscheduled set U, we calculate the total
weighted idle time I,; between data type a, the previously
scheduled job (or 0, if a is the first date type) and b, the current
job being considered for appending. The equation for I, is
defined by:

Ia,b = 2<ia,b,c) + Z‘a,b,ry (5)

where 4,5, is the idle time between two data types in one
stage (s = c or r). In defining the total weighted idle time, we
give a higher penalty to the idle times in earlier stages as any
idle times on these stages tend to delay processing on later
stages.

Next, to decide the best candidate to append to a partial
schedule, we define a ratio P, p:

Pa,b = Ia,b/Wb (6)

Among the unscheduled data types in U, we choose the
best data type j which has the minimal Pa,b. In case there
is a tie, we pick j that has the maximal W,. We then append
data type j to the current schedule 7, remove it from U, set a
to j in preparation for the next round, and decrement counter
N by one. This process is repeated until N becomes 1, or all
data types have been scheduled.

If we apply the PAA algorithm to the table in Figure 1, it
returns the schedule 7 = {2, 1,4, 3}, visualized by the Gantt
chart in Figure 5. This schedule has an AWT = 5.25.
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Fig. 5. A Gantt chart of the schedule produced by the PAA algorithm

V. SIMULATIONS

In this section, we evaluate the performance of our proposed
algorithms by comparing them with existing algorithms using
a simulator written in Python.



PAA: Priority-based Aalla’s Algorithm

1: Inputs: a set of data types with their processing times in
three stages and their priorities.
Output: a schedule 7 that minimizes AWT.
For each data type b, divide Iy, ¢, and 7, by pp
for each data type b do
calculate Wy,
end for
N = n, where n is the number of data types
=0
U=A{1,...,n};
10: a = 0;
while N > 1 do
122 for bin U do
13: calculate I, p;
14: Pup = Ia,b/Wb;
15:  end for
16:  /* choose best j, append to 7, remove from U */
17:  j = b with min{P, ; }, and max{W}} to break ties;
18: w=7nU{j}h
190 U=U\{j}
20: a=j;
2. N=N-1;
22: end while
23: return
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Fig. 4. The PAA algorithm

A. Algorithms Compared

We compared PAA and PAN to the following existing
scheduling algorithms, each modified to consider priority of
the data types for fair comparison.

« Extended Johnson’s algorithm [10]

o Algorithm 2 [5]

o Campbell, Dudek, and Smith (CDS) algorithm [4]
o Nawaz, Enscore and Ham (NEH) algorithm [12]

In addition to these algorithms, we also compared our algo-
rithms to the brute-force algorithm, which finds the schedule
with the minimum AWT.

B. Metrics

For our primary metric, we utilized AWT in Equation (2).
Furthermore, in order to measure the advantage of considering
priority p;, we define another metric, satisfaction S;, defined
by the following equation to evaluate how satisfied each data

type is.
_ z—j . .
s, = 1 RSt if z > j, e
1, otherwise
S; is a ratio that represents how close the order number z
of a scheduled data type 7 in the generated schedule is to
its priority rank j, where j represents the position of 7 in a

schedule sorted by priority only. Then the average satisfaction
AS of all data types in a schedule is defined by:

1 n
A = — i
S - ;,1 S; ®)

For AS, a higher value means a better result.

To summarize the effectiveness of every algorithm in terms
of AS and AW T, we define a score metric {2 to combine them.
Metric €2 is a ratio that represents how well both metrics are
met, with a higher value representing a better score.

Q= AS/AWT )

AS and AWT are the normalized values of AS and AW T,
respectively. The normalization allows us to put metrics on
different scales together.

C. Experiment Settings

In the simulations, we feed all the algorithms with the same
data, which contain the processing times of the data types in
the three stages and their priorities. The processing times are
randomly generated in the range of [1,99] and priorities are
randomly selected in the range of [1,10].

To test our algorithms with different numbers of n, we tried
n=06,n =10, n = 20, n = 50, and n = 100. Each value of
n had 100 runs. In each round, once an algorithm generated a
schedule, we calculated its AWT, AS, and €. And after these
100 rounds were finished, we computed the average metrics
for each algorithm across the rounds.

D. Results of Comparing All Algorithms

From the simulations, we found that both PAN and PAA
had higher 2 values than the rest of the algorithms for all
values of n, with PAN scoring higher than PAA. Figure 6
displays the €2 values when n = 6.

» b ] A
B |- —
G

5P |- A
olm m [ = ]

I I I I I I

. Vv
A & & &
& Vgooo

Fig. 6.  scores of algorithms, n = 6

These high 2 values show that PAN and PAA do a better
job of both minimizing AWT and maximizing AS. Given that
PAN has the highest €2, we conclude that PAN is the best
suited algorithm for this research problem.

To confirm our claim, we will compare both PAN and
PAA more closely against the brute-force algorithm that
generates the minimal AW T next.



E. PAA and PAN vs Brute-Force

We compared PAN and PAA with the brute-force algo-
rithm in terms of AWT and AS. The brute-force algorithm
finds the optimal schedule from all permutations of n data
types.

Obviously, the brute-force algorithm produced schedules
with the smallest AWT overall. However, our proposed PAN
and PAA did not appear to be drastically far off from the
ideal result. Evaluating PAN and PAA, we found that they
had very similar AWT, with PAA having a slightly lower
AW'T. Figure 7 shows the comparison of the three algorithms
in terms of AWT when n = 6.
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Fig. 7. AW of proposed algorithms and brute-force search, n = 6

Next, we analyzed the AS of the three algorithms. From
these results, we found that PAN produced schedules with
a significantly higher AS than PAA. Figure 8 shows the
comparison when n = 6. We conclude that this difference
in satisfaction accounts for the PAN having a higher overall
score. Compared to brute-force, which did not consider prior-
ity at all, both PAN and PAA had higher AS making them
more effective algorithms for our application.
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Fig. 8. AS of PAN, PAA, and brute-force algorithms, n = 6

Despite the high satisfaction values of PAN and PAA,
brute-force algorithm’s optimal AWT results in a higher 2
than PAN and PAA (Figure 9). Nonetheless, the scores of
PAN and PAA are not significantly lower than that of brute-
force.
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Fig. 9. Q scores of proposed algorithms and brute-force, n = 6

F. Efficiency of the Algorithms

To further compare our proposed algorithms, we looked
into the run times of PAN, PAA, and the brute-force. To
measure these times, we added timers into our simulation to
track how long it took each to produce a schedule. Once we
had calculated the run times for each round’s schedules, we
calculated the average run time for each algorithm across all
rounds.

First, comparing our proposed algorithms to brute-force, we
see that both PAA and PAN are considerably more efficient
(Figure 10). From this result, we conclude that while brute-
force produces minimal AWT, PAN and PAA still produce
quality results while also being much more efficient. For this
reason, we argue that PAA and PAN are more effective than
the brute-force algorithm.
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Fig. 10. Average run time of proposed algorithms and brute-force, n = 6

Looking at our two proposed algorithms, it is clear that the
average run time for PAN is greater than that of PAA (Figure
11). Knowing that PAA produces only one final schedule
whereas PAN produces many more partial schedules, we can
understand how P AA is a more efficient algorithm than PAN.

Furthermore, we analyzed the average run time across
several different values of n data types to see how the run times
would vary with larger data tables. From this experiment, we
found that the larger the value of n and the more data types to
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Fig. 11. Average run time of proposed algorithms, n=6

process, the greater the difference in run time between PAN
and PAA (Figure 12).
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Fig. 12. Average run time of proposed algorithms across different values of
n

From this insight, we conclude that while PAN can pro-
duce better schedules in terms of AWT and AS combined,
PAA is much more efficient when there are large quantities
of data types to be scheduled.

VI. CONCLUSION

In this project, we have explored a series of priority-
based three-stage scheduling algorithms for scheduling time-
sensitive data from self-driving vehicles in an edge cloud
environment. In order to ensure that data are processed in a
timely manner, our objective has been to develop algorithms
to reduce the average waiting time by considering data type
priorities. To meet this objective, we have proposed two
heuristic algorithms PAN and PAA. Simulation results have
shown that our proposed algorithms outperform the existing
ones and while PAN is a better algorithm when considering
our metrics, PAA is more efficient while still producing
similarly viable results. Therefore, PAA is better suited when
the data size is large.

In the future, we will explore more efficient and effective
three-stage scheduling algorithms. Additionally, we hope to
look into implementing and testing the algorithms we have
proposed in real self-driving vehicle data systems.
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